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Abstract A phenomenological modification of the eXtended
Pom-Pom (XPP) model is proposed with the aim to reduce the
number of free nonlinear parameters. The modified XPP
model includes three parameters per mode in total (two linear
viscoelastic parameters—linear relaxation time λ and shear
modulus G, and one nonlinear parameter). The original XPP
model contains five parameters (two linear viscoelastic pa-
rameters and three nonlinear ones, one nonlinear parameter
participates in the second normal stress difference prediction).
The predictive/fitting capabilities of the modified model are
compared with the Giesekus, eXtended Pom-Pom, and mod-
ified Leonov models using various low-density PE materials
in steady and transient shear and uniaxial elongational flows.
It has been found that the modified model is capable of
predicting/fitting the rheological properties, with the excep-
tion of the second normal stress difference, for studied LDPE
materials with sufficient accuracy, including strain hardening
in uniaxial elongational flow.

Keywords Constitutivemodel . XPPmodel . LDPE
materials . Strain hardening . Elongational flow . Shear flow

Introduction

Understanding the rheological properties of polymeric mate-
rials plays a key role for modelling of their processing. The
rheological properties are subject to the molecular structure of
the material and to the character of the flow. Based on the
molecular structure, the materials can be divided into linear,
branched, and cross-linked. In principle, the character of the

flow can be differentiated as shear or elongational (according
to the type of deformation) and steady or transient (depen-
dence on time). The rheological properties simultaneously
generated by the material used and by the flow character are
approximated by means of the constitutive models. The con-
stitutive models represent, of course, only an idealized and
simplified form of polymer melt flow description, as it is not
possible to achieve a more complete description due to the
complexity of the materials and the difficulty of solving
numerically the corresponding balance equations. Unlike a
constitutive equation (CE), two remaining ones—the continu-
ity equation and equation of motion—are of standard
(unchangeable) forms. A CE completing this set of equations
can be proposed in various forms.

In the following, an overview of six frequently used
differential constitutive models will be given with an
emphasis on the number of parameters used for the
description of individual rheological characteristics. For
clarity, the mathematical description of all six models
including the number of parameters per mode is sum-
marized in Table 1. The introduced numbers of param-
eters involve not only so-called free parameters but also
two linear viscoelastic parameters (linear relaxation time
λ and relaxation modulus G) of the Maxwell model
determined by the oscillatory characterization. It implies
that the total numbers of free parameters per mode in
the discrete relaxation spectrum are reduced by two for
each model introduced in Table 1.

The frame invariant-based Maxwell model proposed by
Lodge [1] is in its differential version known as the upper-
convected Maxwell model (UCM). This model has two pa-
rameters (relaxation time λ=η/G and relaxation modulus G,
where η represents shear viscosity). The UCMmodel predicts
constant steady shear viscosity η and first normal stress coef-
ficient ψ1 and zero second normal stress coefficient ψ2. The
extensional viscosity ηe attains the values from a triple of zero
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shear viscosity η0 (for extensional rateε̇ << 1=λ ) to infinity
(for ε̇ ¼ 1=2λ ) .

The constitutive model proposed by Giesekus [2] is based
on anisotropic drag which is expressed by the coefficient α,
attaining values between 0 (corresponding to minimum an-
isotropy) and 1 (maximum anisotropy). For α=0, the UCM
model is recovered. The Giesekus model predicts nonzero
second normal stress coefficient ψ2. Description of the shear
thinning behaviour is governed by the only free parameter α.
The elongational viscosity ηE shows monotonic increase up to
a constant maximum for α>0.

Phan-Thien and Tanner [3] developed a model (so called
PTT model) in which the nonaffine motion is enabled with the
help of the Gordon-Schowalter derivative. The model assumes
two forms—linear and exponential. Each form uses four pa-
rameters, among which two free parameters ξ and ε participate
in controlling the nonaffine motion (for ξ=0 affine motion is
recovered) and governing shear thinning, respectively. The
model predicts zero second normal stress coefficient ψ2 when
the affine motion is assumed. Its exponential version exhibits a
maximum in steady elongational viscosity. For the nonaffine
motion (i.e. ξ≠0), the unphysical oscillations in η, ψ1 and ψ2

occur during a start-up of steady shear at higher rates.
The derivation of the Pom-Pom model proposed by

McLeish and Larson [4] is based on the idealized theory for
branched molecules. It assumes generalized molecules of H
structure having an arbitrary number of branches q at the end
of the backbone, creating a branching point. For the prediction
of the rheological behaviour of commercial materials with

more complex structure by the Pom-Pom model, the multi-
mode version was introduced by Inkson et al. [5]. Verbeeten
et al. [6] introduced the eXtended Pom-Pom (XPP) model,
which eliminated the following shortcomings of the Pom-Pom
model:

1. Solutions in steady state elongation exhibiting
discontinuities,

2. For high strain rates, unboundedness of the equation for
orientation,

3. Impossibility to predict a second normal stress difference
in shear.

Both models (Pom-Pom and XPP) include four parameters
representing the same quantity (linear relaxation time λ and
relaxation modulus G, and two free parameters: stretch relax-
ation time λs and number of arms q). Unlike the Pom-Pom
model, the XPP model has one additional free Giesekus
parameter α linearly involved in the term participating in
predicting the second normal stress coefficient. The
predictive/fitting capabilities of the XPP model were verified
on steady and transient shear and elongational flows, e.g. in
[7, 8]. It was shown that the XPPmodel is capable of fitting all
the rheological properties characterizing these flows. The XPP
model can be slightly modified by replacing the upper-
convected derivative by the Gordon-Schowalter one (see Tan-
ner and Nasseri [9]) to fit/predict steady shear viscosity with
the help of the additional free parameter ξ included in the term
of the Gordon-Schowalter derivative. Use of the Gordon-

Table 1 The dissipative term
H(c) for the individual differential
constitutive models (supposing
ξ=0)

Model Dissipative term H(c) Number of parameters
(incl. linear λ,G)

Nonlinear
parameters

UCM [1] c−I 2 −
PTT linear [3] [1+ε(trc−3)](c−I) 3 ε

PTT exp. [3] exp[ε(trc−3)](c−I) 3 ε

Giesekus [2] a(c−I)2+c−I 3 α

XPP [6] a(c−I)2+FXPPc−I 5 λs,q,α

PTT-XPP [9] FPTT−XPP(c−I) 4 λs,q

Leonov [11] b
2 c2−tr c−tr c−1

3 c−I
� �

4 ζ,v

Present Fc−I 3 β

FXPP ¼ 2
λ

λs
exp

2

q
Λ−1ð Þ

� �
1−

1

Λ

� �
þ 1

Λ2
1−α−

α

3
tr c2−2c
� 	h i

FPTT−XPP ¼ 2
λ

λs
exp

2

q
Λ−1ð Þ

� �
1−

1

Λ

� �
þ 1

Λ2

F ¼ exp β Λ−1ð Þ½ � 2−
1ffiffiffiffi
Λ

p
� �

Λ ¼
ffiffiffiffiffiffiffiffi
tr c

3

r

Leonov [11] b ¼ exp −ζ tr c−3ð Þ½ � þ sinh v tr c−3ð Þ½ �
v tr c−3ð Þ −1

Modified Leonov [8] b ¼ exp −ζ tr c−3ð Þ½ � þ sinh v tr c−3ð Þ½ �
v tr c−3ð Þþ1
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Schowalter derivative results in the unphysical oscillations in
the transient shear characteristics.

Tanner and Nasseri [9] demonstrated that both the original
PTT [3] and XPP [6] models can be considered as special
cases of the general network model (PTT-XPP) if the upper-
convected derivative is replaced by the Gordon-Schowalter
one, the Giesekus term containing α is neglected, and the
dissipative term H(c)=Fc-I is replaced by H(c)=F(c-I)
resulting in the simplified form of dissipative term expressed
in stress tensor H(τ). For the XPP and PTT-XPP models this
term is H(τ)=FXPPτ/G+(F-1)I and H(τ)=FPTT-XPPτ/G, re-
spectively. The PTT-XPP model uses the identical four pa-
rameters as the Pom-Pom and XPP models and one additional
free parameter ξ given by replacing the upper-convected de-
rivative by the Gordon-Schowalter one. The model was also
tested in steady and transient shear and elongational flows [7].
It implied an ability to describe the steady shear and
elongational properties, as well as the transient elongational
properties of the commercial materials. However, the
unphysical oscillations caused by application of the Gordon-
Schowalter derivative occur in the transient shear characteris-
tics. Tanner [10] suggested the reduction of the parameters in
the PTT-XPP model by replacing the term 2λ/λs by 12q in the
extra function.

The modified Leonov model predicts both strain hardening
and nonzero second normal stress coefficient. Apart from two
linear parameters (linear relaxation time λ and relaxation
modulus G) there are two nonlinear adjustable parameters
depending on the relaxation time. Leonov model [11] is
derived from heuristic thermodynamics arguments, resulting
from the theory of rubber elasticity. A modification of the
dissipation function employed in this work was proposed by
Zatloukal [8].

As the commercial polymeric materials include a large
number of polymer molecules of different lengths, they are
characterized by the distribution of relaxation times λi and
moduliGi. Consequently, the stress tensor τ is given by a sum
of the contributions from each relaxation elements spectrum

τ ¼
X
i¼0

N

τ i ð1Þ

where N is the number of relaxation elements.
As is apparent from the above overview, a number of entry

free parameters seems to be one of the crucial points in
presentation of the individual models. However, a reduction
of the free parameters can be reflected in the range of rheo-
logical characteristics that are predicted by the models—more
often it concerns the (im)possibility of predicting strain hard-
ening (concerning elongation characteristics) and the second
normal stress coefficient.

Simultaneously with the above presented molecular-based
or thermodynamically based models, the phenomenological
models can be relatively efficient for a description of rheolog-
ical characteristics of studied materials. Their structure quite
often emanates from the classical models such as Cross (Liang
and Zhong [12]), Carreau (Zatloukal [13]), Carreau-Yasuda
(Phan-Thien et al. [14]), or is based on other algebraic formu-
lae (Fuchs and Ballauf [15]). Liang and Zhong [12] proposed
the 5-parameter phenomenological Cross-type model describ-
ing a steady uniaxial elongational flow including strain
hardening.

The aim of this contribution is to present a 3N-parameter
(three parameters per mode) phenomenological modification
of the XPP constitutive model (only one free parameter)
capable of predicting all rheological characteristics except
for the second normal stress coefficient but including strain
hardening. It means that both shear thinning and strain hard-
ening behaviour is modelled with help of one free parameter
only (per one mode in the discrete relaxation spectrum). For
an evaluation of polymer melt behaviour any reduction of free
parameters simplifies numerical procedures and substantially
reduces computational time, especially in the presence of one
free parameter only as no attention has to be paid to appear-
ance of possible ambiguity. In addition to it, this facilitation of
the whole approach is linearly proportional to the number of
modes taken into account. The applicability of the proposed
model is demonstrated on a series of various LDPE materials
enabling evaluation of the predictive/fitting capabilities using
IUPAC [16], Dow 150R [8], and Escorene LD165BW1 [7].
The similar results were also obtained for Lupolen 1840 [7],
Bralen RB0323 [8], and LDPE1 [17]. These materials differ
among other things in polydispersity and molecular weight.
This indicates that the applicability of the model is not re-
stricted to a relatively narrow class of LDPE materials. The
comparison under steady and transient shear and uniaxial
elongational flow situations with the Giesekus model [2]
(not providing simultaneous modelling of strain hardening
and consequent thinning behaviour), eXtended Pom-Pom
model [6], and Leonov model [11] gives favourable results
with respect to the number of free parameters.

Proposed modification of the XPP model

A phenomenological modification of the XPP model is pro-
posed for the rheological characterization of the polymer
melts with the aim of minimizing a number of additional
(nonlinear) parameters—it contains two linear parameters (re-
laxation time λ and elastic shear modulus G), and only one
free nonlinear parameter β which affects the level of strain
hardening in elongational flows as well as shear thinning in
shear flows.
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A nonnegligible number of CEs (UCM, PTT, Giesekus,
XPP, Leonov—see Table 1) suppose the following relation
between extra stress tensor τ and symmetrical conformation
tensor c

τ ¼ G c −Ið Þ; ð2Þ

whereG represents the elastic shear modulus and I denotes the
unit tensor.

In general, the evolution equation of the models can be
written in the form

dc

dt
−∇ν⋅c−c⋅∇vTþ ξ

2
γ̇⋅ cþ c ⋅ γ̇
� �

þ 1

λ
H cð Þ ¼ 0 ð3Þ

where v is the velocity, γ̇ is the rate of deformation
tensor ∇v+∇vT, λ is the relaxation time, and H(c) is the
dissipative term depending on conformation tensor c.
The parameter ξ is the nonaffine motion parameter
(0≤ξ≤2). If the parameter ξ attains the limiting values
0 and 2 , the conformat ion tensor represen t s
contravariant (upper convected derivative) and covariant
(lower convected derivative) form, respectively. For
many polymer systems the parameter ξ takes the zero
value.

A constitutive equation proposed in this work supposes ξ=
0. Generally, the parameter ξ can attain nonzero value (0≤ξ≤
2). However, there are two reasons why to choose ξ=0. First,

the principal aim of the proposed modified model is to reduce
a number of nonlinear parameters as much as possible. Sec-
ond, the presence of nonzero value of the parameter ξ evokes
unphysical oscillations in transient shear characteristics at
high shear rates (see Figs. 8 and 9 in [7]). On the other hand,
a nonzero value of ξ significantly contributes to a more pro-
nounced shear thinning (see Fig. 3 in [7]).

The dissipative term H(c) is of a simple form

H cð Þ ¼ Fc − I ð4Þ

where the extra function F and stretch characteristic Λ are
defined as

F ¼ exp β Λ−1ð Þ½ � 2−
1ffiffiffiffi
Λ

p
� �

ð5Þ

Λ ¼
ffiffiffiffiffiffiffi
tr c
3

r
ð6Þ

From here, the evolution equation can be rewritten as
follows:

λč þ Fc −I ¼ 0 ð7Þ

where č denotes the upper-convected derivative.

Fig. 1 Predictions of shear and
uniaxial extensional viscosities of
the modified XPP model
in single mode (λ=1 s, G=1 Pa,
β={0.1, 0.316, 1, 3.16, 10, 31.6,
100})
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The proposed form (5) is the modification of the originally
proposed extra function FXPP in Verbeeten [6]

FXPP ¼ 2
λ
λs

exp
2

q
Λ−1ð Þ

� �
1−

1

Λ

� �
þ 1

Λ2 1−α−
α
3
tr c2−2c
� 	h i

ð8Þ

After formal setting

α ¼ 0;λ ¼ λs;β ¼ 2=q ð9Þ

Eq.(8) is simplified to

FsimplifiedXPP ¼ 2exp β Λ−1ð Þ½ � 1−
1

Λ

� �
þ 1

Λ2 ð10Þ

Unlike the parameter q representing a number of arms, β is
now supposed to attain any positive number. Both versions of
the extra function F (Eqs. (5) and (10)) exhibit formally
similar but not equal characteristics (extra function F as
a function of stretch characteristic Λ). Nevertheless, a
value of β in Eq. (5) is also influenced by stretch

Table 2 Relaxation spectrum and estimated values of the parameters of the the modified XPP, Giesekus, XPP, and modified Leonov models for LDPE
IUPAC at 150 °C

Maxwell parameters modified XPP Giesekus XPP modified Leonov

i λ [s] G [Pa] β [−] α [−] λ/λs [−] q [−] α [−] ζ [−] v [−]
1 0.001 152,000 2.5 0.5 5.0 1 0.1 0 0.08

2 0.005 40,050 2.2 0.5 5.0 1 0.1 0 0.08

3 0.028 33,260 2.0 0.5 5.0 1 0.1 0 0.08

4 0.14 16,590 1.7 0.5 4.0 1 0.1 0 0.08

5 0.7 8,690 1.4 0.7 4.0 2 0.05 0 0.08

6 3.8 3,151 1.0 0.7 2.5 3 0.0333 0 0.08

7 20 859.6 0.67 0.4 2.0 4 0.025 0.6 0.005

8 100 128.3 0.26 0.2 1.1 8 0.0125 0.46 0.0015

9 500 1.8495 0.065 0.1 1.1 37 0.027 0.27 6.0

Fig. 2 Comparison between
measured steady shear and
uniaxial extensional viscosity
data and fits/predictions of the
modified XPP (Eq. (5)) and
simplified XPP (Eq. (10)) models
for LDPE IUPAC at 150 °C
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characteristic Λ due to functional restructuralization of
the extra function. Although, the proposed modification
(Eq. (5)) and simplified version (Eq.(10)) show the
same steady uniaxial extensional viscosity characteris-
tics, the proposed modification exhibits lower steady
shear viscosity in nonlinear region, which better corre-
sponds to the measured data (see Fig. 2).

The form of the evolution equation Eq. (7) used in the
modified version of the XPP model is the same as in the case
of the XPP model (see Table 1), if the Giesekus parameter α is
equal to zero (Eq. (9)). Physically, it implies the impossibility
to predict the second normal stress difference. The evolution
equation (Eq. (7)) together with the stress equation (Eq. (2))
and extra function (Eqs. (5) and (6)) define a complete set of
equations of viscoelastic constitutive model. Substituting

Eq. (2) into Eq. (7), the CE can be expressed in the term of
extra stress tensor

λ τ⌣ þ Fτ þ G F−1ð ÞI ¼ λGγ̇ ð11Þ

Basic properties of the modified XPP model

The proposed modification involves three parameters per
mode (two linear parameters: relaxation time λ and elastic
shear modulus G, and one nonlinear parameter β). The relax-
ation time λ and elastic shear modulus G are usually obtained
from oscillatory shear under linear viscoelastic limit (typically
γ≈10−2−10−1 for polymer melts and solutions). The nonlinear
adjustable parameter β affects both shear thinning and

Fig. 3 Comparison between
measured steady shear viscosity,
uniaxial extensional viscosity, and
first normal stress coefficient data
and fits/predictions of the
modified XPP, Giesekus, XPP,
and modified Leonov models for
LDPE IUPAC at 150 °C

Table 3 Original relaxation
spectrum and estimated values of
the parameters of the modified
XPP, XPP, and modified Leonov
models for LDPE Dow LD 150R
at 200 °C

Maxwell parameters modified XPP XPP modified Leonov

i λ [s] G [Pa] β [−] λ/λs [−] q [−] α [−] ζ [−] v [−]
1 0.0001 202,935.5 1.5 9.0 1 0.1 0 0.2

2 0.001 110,089.3 2.0 9.0 1 0.1 0 0.2

3 0.01 50,474.2 2.2 9.0 1 0.1 0 0.2

4 0.1 25,026.4 2.5 6.0 1 0.1 0 0.2

5 1 10,621.6 2.8 6.0 1 0.1 0 0.5

6 10 2,779.5 0.9 6.0 1 0.1 1 0.6

7 100 346.3 0.3 1.7 9 0.0111 0.22 0.001

8 1,000 23.3 1.3 9.0 9 0.0111 0 0.001

9 10,000 1.3 3 6.0 10 0.01 0 0.001

2758 Colloid Polym Sci (2014) 292:2753–2763



extensional strain hardening. The values of the parameter β
are expected to be nonnegative in which case the extra func-
tion F can attain its minimum value equal to 1. In the limiting
case F→1+, the model is reduced to the upper-convected
Maxwell model. If F→1+ and λ→0+, the proposed model
reduces to the Newtonian one. Steady shear and uniaxial
extensional viscosity characteristics of the model in a single
mode (λ=1 s, G=1 Pa, β=0.1, 0.316, 1, 3.16, 10, 31.6, 100)
are shown in Fig. 1. As can be seen, the parameter β strongly
influences both characteristics (shear viscosity—dashed lines,
uniaxial extensional viscosity—full lines). Strain hardening is
more manifested with decreasing values of the β parameter.
On the other hand, an increase in values of the parameter β
results in more pronounced shear thinning.

The behaviour of the model under steady state shear and
uniaxial elongation flows has been analysed. Simple shear and

uniaxial extensional flows are described by the velocity vector
v=(γ̇ 0y,0,0) and v ¼ ε̇0x;− 1

2ε̇0y;−
1
2ε̇0z

� 	
, respectively. For

analyzing the steady state behaviour in the shear flow, shear
viscosity η η ¼ τ xy=γ̇0

� 	
, the first ψ1 and second ψ2 normal

stress coefficients ψ1 ¼ τ xx−τ yy
� 	

=γ̇
0

2
;ψ2 ¼ τyy−τ zz

� 	
=γ̇

0

2
� �

were used. In the case of steady state of the uniaxial extensional
flow, extensional viscosity ηE ηE ¼ τxx−τyy

� 	
=ε̇0

� 		
was used

for analysis of the model.
The final set of the model equations in steady simple shear

regime is given by

τ xy ¼ λγ̇0
F

τ yy þ G
� 	

;

τxx ¼ 2λγ̇0
F

τ xy−G 1−
1

F

� �
;

τyy ¼ τ zz ¼ −G 1−
1

F

� �

ð12Þ

The final form of the material functions is as follows
(η0=λG):

η ¼ η0
F2 ;ψ1 ¼

2λη0
F3 ;ψ2 ¼ 0 ð13Þ

As the extra function F (defined by Eqs.(5) and (6)) attains
its minimum at one, the maximum of the steady shear viscos-
ity is η0, and the maximum of the first normal stress coefficient
is 2λη0.

Table 4 Recalculated relaxation spectrum and estimated values of the
parameters of the modified XPP model for LDPE Dow LD 150R at
200 °C

Maxwell parameters modified XPP

i λ [s] G [Pa] β [−]
1 0.0001 244,120 2.5

2 0.00139 111,580 2.8

3 0.01931 47,177.6 2.9

4 0.26827 20,515.2 3.0

5 3.72759 6,018.61 3.0

6 51.7947 759.665 0.33

7 719.686 40.098 0.95

8 10,000 1.46318 3.0

Fig. 4 Comparison between
measured steady shear viscosity,
uniaxial extensional viscosity, and
first normal stress coefficient data
and fits/predictions of the
modified XPP, XPP, and modified
Leonov models for LDPE Dow
LD150R at 200 °C
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The final set of the model equations in steady uniaxial
extensional flow is expressed by the following:

τ xx ¼ −
G F−2λε̇0−1
� �

F−2λε̇0
;

τyy ¼ τ zz ¼ −
G F þ λε̇0−1
� �

F þ λε̇0

ð14Þ

Then, the steady uniaxial extensional viscosity is of the form

ηE ¼ 3η0

F−2λε̇
� �

F þ λε̇0
� � ð15Þ

A value of the steady uniaxial extensional viscosity at low
rates F→1 and ε̇0→0ð Þ attains 3η0 thus respecting the
Trouton’s ratio.

Predictive/fitting capabilities of the modified XPP model

The testing and comparison of the present modification of the
XPP constitutive model with the Giesekus, XPP, and modified
Leonov models in the steady and transient shear and uniaxial
elongational flows is motivated by the following arguments.
The Giesekus model uses the same number of parameters
(three) per mode as the modified model. The XPP model
represents a basis from which the modification was proposed.

Table 5 Relaxation spectrum
and estimated values of the pa-
rameters of the modified XPP,
XPP, and modified Leonov
models for LDPE Escorene
LD165BW1 at 200 °C

Maxwell parameters modified
XPP

XPP modified Leonov

i λ [s] G [Pa] β [−] λ/λs [−] q [−] α [−] ζ [−] v [−]
1 0.00154 109,430 0.8 2.4 1 0.1 0 0.01

2 0.00633 37,352.6 0.7 2.2 2 0.05 0 0.01

3 0.02602 32,409.3 0.7 2.2 3 0.0333 0 0.01

4 0.10686 15,251.2 0.65 1.8 3 0.0333 0.2 0.008

5 0.43891 11,081.2 0.6 1.8 4 0.025 0.53 0.006

6 1.80281 4,835.09 0.39 1.3 5 0.02 0.6 0.006

7 7.40488 1,986.65 0.38 1.2 6 0.0167 0.5 0.005

8 30.4149 494.69 0.38 1.2 6 0.0167 0.38 0.005

9 124.927 110.156 0.38 1.2 6 0.0167 0.37 0.005

10 513.127 33.3765 0.38 1.1 6 0.0167 0.33 0.005

Fig. 5 Comparison between
measured steady shear viscosity,
uniaxial extensional viscosity, and
first normal stress coefficient data
and fits/predictions of the
modified XPP, XPP, and modified
Leonov models for LDPE
Escorene LD165BW1 at 200 °C
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The modified Leonov model has been chosen for its predictive/
fitting capabilities to fit the LDPE materials. For all three LDPE
materials, the Giesekus parameter α in the XPP model has been
taken as the ratio of 0.1/q, i.e. the nominal number of five
parameters in the XPP model was reduced by this choice to four
only (more details on reasons for choosing this value for α are
introduced inVerbeeten et al. [6]). This corresponds to a number of
parameters (four per mode) used in the modified Leonov model.

For numerical evaluation, the ode15s variable order
multistep solver based on the numerical differentiation
formulas (NDFs) was applied using the MATLAB soft-
ware [18]. This solver is based on the backward differ-
entiation formulas (BDFs, also known as Gear’s meth-
od). For introductory basic orientation, the ode23s one-
step solver (based on a modified Rosenbrock formula of
order 2) was used.

Fig. 6 Comparison between
measured transient uniaxial
extensional viscosity data and
fits/predictions of the modified
XPP, XPP, and modified Leonov
models for LDPE Escorene
LD165BW1 at 200 °C

Fig. 7 Comparison between
measured transient shear viscosity
data and fits/predictions of the
modified XPP, XPP, and modified
Leonov models for LDPE
Escorene LD165BW1 at 200 °C
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The data (including the relaxation spectra) of three mate-
rials introduced below are taken as presented in the respective
references. Preference of any subregions (correlated, e.g. with
respect to long time and high rates tending to appearance of
slip or edge fracture) is beyond the scope of this contribution.

For the materials which exhibit strain hardening behaviour
in uniaxial extensional viscosity, no comparison is made with
the Giesekus model (nonpredicting such behaviour).

A comparison between the modification of the XPP model
and the XPP model with the simplifying relations (Eq.(10)) is
documented in Fig. 2.

The LDPE IUPAC (data taken from Verbeeten [16]) has
been fitted by the modified XPP, Giesekus, XPP, and modified
Leonov models. The nonlinear parameters of the modified
XPP (β), XPP (r=λ/λs and q), and modified Leonov (ζ, v)
models has been estimated based on fitting the steady uniaxial
extensional viscosity. As mentioned above, the Giesekus pa-
rameter α of the XPP model is set to 0.1/q. The estimated
values of the models parameters are summarized in Table 2.
Figure 3 shows the models fits for the steady uniaxial exten-
sional and shear viscosities, and the first normal stress
coefficient.

For relaxation spectra taken from Zatloukal [8] the modi-
fied XPP model shows a worse capability to fit the uniaxial
extensional viscosity of LDPE Dow LD 150R (Table 3). This
inadequacy can be overcome by adding the relaxation time
within the interval (100, 1,000). After a recalculation, the
corresponding spectrum is presented in Table 4. It can be seen
that for an adequate interpretation of the measured data, eight
relaxation modes (Table 4) instead of nine (Table 3) are
sufficient (see Fig. 4).

Although the second normal stress difference data for
LDPE Escorene LD165BW1 is available (Pivokonsky et al.
[7]), the Giesekus term α in the XPP model is set to 0.1/q.
There are two reasons for it—the modifiedmodel is not able to
fit the second normal stress difference data, and a higher value
of the Giesekus parameter influences the steady state values of
the extensional viscosity in the XPP mode. Table 5 summa-
rizes the estimated parameters of the models. For the
predictive/fitting capabilities of the individual models see
Figs. 5, 6, 7 and 8.

Conclusions

The proposed phenomenological modification/parameter re-
duction of the XPP model has been tested in the steady and
transient uniaxial extensional and shear flow situations. For
testing, the three LDPE materials have been used. The
predictive/fitting capabilities of the modified XPP model have
been compared with the 3-parameter Giesekus and 4-
parameter XPP and modified Leonov models. The number
of parameters in the nominally 5-parameter XPP model was
reduced to four by setting the Giesekus parameter α to 0.1/q.
The reasons for this were given in the preceding section. It has
been found that the modified XPP model is capable of fitting
reasonably the rheological properties of LDPE materials, in-
cluding steady and transient elongational viscosities. Howev-
er, the proposed 3-parameter modification of the XPP model
exhibits higher steady shear viscosity at high strain rates in
comparison to the 4-parameter XPP model. On average, eval-
uating behaviour of three LDPE materials, fitting of all four

Fig. 8 Comparison between
measured transient first normal
stress coefficient and
fits/predictions of the modified
XPP, XPP, and modified Leonov
models for LDPE Escorene
LD165BW1 at 200 °C
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models is comparable with the exception of strain hardening
prediction where the Giesekus model exhibits monotonous
behaviour. Nevertheless, the modified XPP model has only
one adjustable parameter. On the other hand, the present
modification of the XPP model is not capable to predict
nonzero second normal stress coefficient. The uniaxial exten-
sional viscosity is predicted well by the present modification
(in most cases the extensional viscosity is predicted identically
with the XPP model). However, the only situation in which
the lack of one parameter (compared with the discussed 4-
parameter form of the XPP model and 4-parameter modified
Leonov model) is spotlighted, is in the case of a sparsely
defined relaxation spectrum at the onset of strain hardening.
Then the present modification is not capable of fitting this part
of the extensional viscosity with the same quality as the XPP
and modified Leonov models. However, when the relaxation
spectrum is recalculated as in the case of LDPE Dow LD
150R, the present modification fits the extensional viscosity at
the same quality as both above mentioned models. This un-
derlines an importance of analysis which should be given to a
sound constitution of discrete relaxation spectrum preceding
an application of the chosen differential model. On the other
hand, the reduction of free parameters to one (but still permit-
ting modelling of strain hardening) noticeably simplifies an
overall approach to evaluation of rheological characteristics
and among other things substantially reduces complexity of
data processing. Quantitatively, the results obtained are com-
parable with those obtained by frequently used differential
models.
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