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Abstract Simple approximate analytic expressions are de-
rived for the electrophoretic mobility of a spherical colloidal
particle of radius a and zeta potential ( in a mixed solution of
1:1 and 2:1 electrolytes with common anions on the basis of
the general mobility expression previously derived by
Ohshima (Colloids Surf A Physicochem Eng Asp 267:50,
2005). The obtained expressions, which are applicable for
spheres of any ¢ and large radii such that xa > ca. 30 (where
k is the Debye-Hiickel parameter), consist of Smoluchowski’s
equation and the correction term taking into account the
relaxation effect.

Keywords Electrophoretic mobility - Spherical particle - Zeta
potential - Relaxation effect

Introduction

The zeta potential of a charged colloidal particle in an
electrolyte solution, which is usually estimated from its
electrophoretic mobility, plays an essential role in deter-
mining its electrokinetic behaviors. A number of theo-
retical studies have been made on the electrophoretic
mobility of spherical particles [1-22]. In particular,

H. Ohshima (D<)

Faculty of Pharmaceutical Sciences, Tokyo University of Science,
2641 Yamazaki Noda, Chiba 278-8510, Japan

e-mail: ohshima@rs.noda.tus.ac.jp

approximate mobility expressions for charged spheres
derived in Ref. [18] are applicable for all values of zeta
potentials and large particle radii @ such that xa > ca.
30 (x is the Debye-Hiickel parameter) and have been
applied to analyze the mobility of spherical particles
with high zeta potentials [23-25]. The corresponding
mobility expression for a cylindrical particle has also
been derived [26]. However, simple mobility expres-
sions for a sphere in a mixed electrolyte solution, so
far, have not been available, since the general mobility
expression given in Ref. [18] involves cumbersome
numerical multiple integration, if applied for the case
of mixed electrolyte solutions. The purpose of the pres-
ent paper is to derive simple analytic mobility expres-
sions of a charged sphere in a mixed solution of 1:1
and 2:1 electrolytes on the basis of the general mobility
expression previously derived [18].

Theory

Consider a spherical particle of radius @ and zeta po-
tential ( moving with a velocity U under an external
electric field E in a liquid containing a general electro-
lyte composed of N ionic species with valence z; and
bulk concentration (number density) n;” and drag coef-
ficient \; (i=1, 2, ..., N). The electrophoretic mobility u
of the particle is defined by p=U / E, where U=|U| and
E=|E|. In a previous paper [18], we have derived the
following general mobility expression, which is correct
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to the order of exp(ze|(| / 2kT) / ka, where z is the
valence of counterions, e is the elementary electric
charge, k is Boltzmann’s constant, 7 is the absolute

temperature, and ~ is the Debye-Hiickel parameter, so
that it is applicable for all values of ( at large ka (ka >
ca. 30):
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where sgn(¢)=+1 if (>0 and —1 if (<0, ¢; is a function that is
related to the deviation &y; of the electrochemical potential 1; of
the i-th ionic species from its equilibrium value due to the applied
electric field E, ¢(a) is its value at the sphere surface, y=ey /kT
is the scaled equilibrium electric potential (y is the equilibrium
electric potential), ( =e(/kT is the scaled zeta potential, ), is the
drag coefficient of the i-th ionic species, m; is its scaled drag
coefficient, which is further related to the limiting conductance
A°; of that ionic species, N is Avogadro’s number, £, and 7 are,
respectively, the relative permittivity and the viscosity of the
electrolyte solution, and &, is the permittivity of a vacuum.

tion of the electrochemical potential of the i-th ionic species is
not influenced by those of other ionic species j (j # 7). Under
this approximation, the terms involving ¢(a) (j#i) are
neglected so that terms involving small quantities m; % m;
may be dropped. This approximation holds good when
m; X m; « 1. We give below explicit expressions for the
electrophoretic mobility p of a spherical particle of
radius a and zeta potential ( in a mixed solution of
1:1 electrolyte of bulk concentration n; and 2:1 electro-
lyte of bulk concentration n, with common anions
(where the Debye-Hiickel parameter s of this solution

is given by k= \/2(n1 + 3n2)e2/ecokT ):
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where Liy(z) is a dilogarithm function (defined by Liy(z)=
> 71(z"/k%)), which can easily be evaluated via, e.g.,
Mathematica.

Consider first the case of (>0. In this case, the counterions
are anions of valence —1 and we have

9-1(a) 3 9.1(a) _ ¢i0(a) 3 (7)
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with
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where . and A°; are, respectively, the drag coefficient and
the limiting conductance of the counterions (anions) of va-
lence —1 and m_; is the corresponding scaled drag coefficient.
Equation (4) thus becomes

“enstoe)y e

In the limit of n,—0 (a—0, pure 1:1 electrolyte), Eq. (9)
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In the limit of n;,—0 (a«— 1, pure 2:1 electrolyte), on the
other hand, Eq. (9) tends to
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Equations (10) and (12), respectively, agree with the pre-
vious results derived for pure 1:1 and 2:1 electrolytes [18].
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Consider next the case of (<0. In this case, the counterions
are cations of valence +2 and those of valence +1 and we have
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where A, and A3, are, respectively, the drag coefficient and
limiting conductance of counterions (cations) of valence +1,
Ai» and A, are those of counterions (cations) of valence +2,
and m, and m., are the corresponding scaled drag coeffi-
cients. The electrophoretic mobility y is thus given by
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In the limit of n,— 0 (a—0, pure 1:1 electrolyte), in which
case, Eq. (17) tends to

) as n,—0 and (18)
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while in the limit of n;—0 (a—1, pure 2:1 electrolyte),
Eq. (17) tends to
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Equations (18) and (19), respectively, agree with the pre-

vious results derived for pure 1:1 and 2:1 electrolytes [18].

Note that F',, F,, and F_; in the above equations correspond
to Dukhin’s number, expressing the relaxation effect.

Results and discussion

We have derived approximate analytic expressions Egs. (4)
and (17) for the electrophoretic mobility p of a spherical
particle of radius a and zeta potential ¢ in a mixed solution
of 1:1 and 2:1 electrolytes with common anions. The relaxa-
tion effect, which becomes appreciable for high zeta poten-
tials, is taken into account. Equations (4) and (17) are approx-
imate equations applicable for all values of ( at large ~a. Since
these equations are derived by neglecting terms of the order of
1/ka, they are expected to be applicable for ka > ca. 30 with
tolerable errors. Some examples of the calculation of the
electrophoretic mobility y for a positively (Fig. 1) or nega-
tively (Fig. 2) charged spherical particle for ka=50 in an

b
[ KCl+MgClL,
5-_ (k2 =50, ¢>0) MgCl, only ]
4:— [MgC12]7 —:
KCI]
: ! 0.2
LL]E3_- KClonly ]
oL E
N :
)P T R B B
0 2 4 6 8 10

ellkT

Fig. 1 Scaled electrophoretic mobility E,,=(3ne / 2¢,£,kT) p of a posi-
tively charged spherical particle of radius a and zeta potential (>0 in an
aqueous mixed solution of KCl and MgCl, as functions of scaled zeta
potential eC / kT. Calculated with ka=50 at 25 °C
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Fig.2 Same as Fig. 1 but for a negatively charged spherical particle with
(<0

aqueous mixed solution of KCI and MgCl, at 25 °C for
several values of the concentration ratio [MgCl,] / [KCI] are
shown in Figs. 1 and 2 in comparison with the results for pure
1:1 or 2:1 electrolytes. These figures show the scaled electro-
phoretic mobility E,,=(3ne/2e,.c.,kT) plotted as functions of
the scaled zeta potential e(/kT. For (>0 (Fig. 1), in which case
the counterions are CI” (A°%,=76.3x10* m* Q' mol ' and
m—1=0.169), the mobility ; for a mixed solution slightly
differs from those for pure electrolytes. For (<0 (Fig. 2),
however, in which case the counterions are K ions (A31=
73.5x10 *m? Q ' mol ! and m41=0.176) and Mg2+ ions
(A%,=106.1x10*m? Q" mol ' and m.»=0.061), the mobil-
ity p for a mixed solution considerably differs from those for
pure electrolytes. This difference comes from the fact that in
this example, there are two kinds of counterions with different
valences for (<0, but just one kind of counterion for (>0.

Conclusion

We have derived simple approximate analytic expressions
Egs. (4) and (17) for the electrophoretic mobility u of a
charged spherical colloidal particle of radius a and zeta po-
tential ¢ in an mixed solution of 1:1 and 2:1 electrolytes with
common anions by taking into account the relaxation effects.
These expressions, which are obtained by neglecting terms of
order 1/ka in the general mobility expression and correct to
the order of exp(ze| (| / 2kT) / ka (where z is the valence of
counterions), are applicable for all values of zeta potential at
large ka (ka > ca. 30).
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