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Abstract A new semiempirical equation has been proposed
for the rate of approach of highly flattened droplets, applicable
in the whole range of the ratios, p, of viscosity of the dispersed
droplets and matrix. The equation is utilized to calculate the
probability, Pc, that the droplet collision induced by shear or
extensional flow is followed by the droplet fusion for systems
with Newtonian droplets and Newtonian or viscoelastic ma-
trix. The comparison of the results of these calculations with
available experimental data and with the calculation using the
trajectory analysis shows that the proposed model of the
matrix drainage provides more reasonable results than the
broadly applied model of partially mobile interface.
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Introduction

The competition between the droplet breakup and coalescence
controls the phase structure evolution during mixing and
processing of immiscible polymer blends of the droplets-in-
matrix structure. Therefore, the reliable description of the
flow-induced coalescence is a necessary condition of the
prediction and tailoring of the blend phase structure. Due to
its importance for polymer blends and other emulsion-like
systems, coalescence is a subject of intensive theoretical and
experimental studies [e.g., 1–26]. Coalescence in a flowing

polymer blend is a complex event. There is a certain discrep-
ancy between the attempt to describe it precisely and the
requirement to achieve, as simply as possible, results which
can be efficiently utilized for describing the competition be-
tween simultaneous droplet breakup and coalescence. It was
recognized that the probability, Pc, that the droplets collision
(their touching if all their interactions are neglected) would be
followed by their fusion was controlled by the competition
between the rate of their approach and the rotation around
their common center of inertia [7, 11, 22, 27]. The approach of
the droplets is slowed down by the drainage of the matrix
trapped between them. During recent years, great attention has
been paid to describing and modeling the drainage of the
matrix film trapped between colliding drops, including the
determination of the condition of the film breakup [6, 7, 12,
13, 16, 17, 28–34]. A recent state of the art of modeling the
droplets coalescence in fluids is summarized in [35]. The
modern methods of modeling, e.g., boundary integral method,
show that the drop shapes develop in a quite complex way
(dimple formation) [28, 29, 35]. Calculations are quite diffi-
cult and time consuming, especially under conditions reliably
modeling the flow. As their results are obtained in numerical
form, it is difficult to excerpt dependences on system param-
eters. Therefore, the dependences of the time of matrix drain-
age on system parameters are determined by the combination
of these results with scaling considerations; they have so far
not provided a satisfactory agreement with experiment [28,
29, 31]. Moreover, there are only a limited number of exper-
imental results applicable to the determination of drainage
time during the coalescence in shear or extensional flow.

For the reasons discussed above, theories describing the
evolution of the shape of coalescing droplets by approxi-
mate procedures have so far been used for flowing polymer
blends. The importance of coalescence for the evolution of
the phase structure in flowing polymer blends was recog-
nized by Elmendorp and Van der Vegt [7, 36]. They
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assumed that the resistance to the droplet approach due to
matrix drainage could be expressed as a sum of resistances
calculated for hard spherical droplets and for highly flat-
tened droplets with the fully mobile (FMI), partially mobile
(PMI), or immobile (IMI) interface. Expressions for FMI,
PMI, and IMI were calculated using different boundary
conditions [6, 35–37] in the lubrication approximation for
the drainage of the matrix between planes with characteristic
dimension much larger than their distance. The theory over-
estimates the matrix resistance due to the consideration of
hard spheres instead of viscous droplets, and its duplication
for parameters when resistances for spherical and flattened
droplets are equal. Janssen and Meijer’s theory [11, 37] has
frequently been used to describe the flow-induced coales-
cence in polymer blends as it provides analytical expres-
sions for Pc if the FMI, PMI, or IMI models are considered.
The theory is based on the assumption that

Pc ¼ exp �tc=tif g ð1Þ
where tc is coalescence time for the approach of droplets
from their original distance, h0, to critical distance, hc, for
the breakup of the thin matrix film, and ti is interaction time
equal to the inversion value of the shear rate, γ˙. A weak
point of this theory is the prediction of a larger Pc (near 1)
than that calculated for the spherical droplets of small radi-
us, R, and/or γ˙. Wang et al. [22] derived a theory of the
coalescence of droplets keeping spherical shape through the
whole coalescence process until their eventual fusion. Ap-
parently, this theory is applicable if the driving force of
coalescence is small and, therefore, possible droplet flatten-
ing is negligible. Unfortunately, Pc calculated using the
theories of Janssen and Meijer and Wang et al. show quite
different dependences on system parameters. Therefore,
their using beyond their applicability range can lead to a
totally wrong interpretation of experimental results.

Rother and Davis [19] modified the theory of Wang et al.
[22] by including the flattening of droplets as a small but
singular perturbation. They found that, at a certain particle
size and velocity gradient, Pc started to decrease steeply to a
negligibly small value. Similar steep decrease in Pc at cer-
tain values of these parameters follows also from Janssen
and Meijer’s theory. Fortelný and Živný [38] used the as-
sumption that the matrix drainage was described by the
formula for spherical droplets if the ratio of radii of the
flattened part of the droplet and undeformed droplet was
smaller than a certain value; a formula for highly flattened
droplets was used in the opposite case. Using this assump-
tion, the authors derived a theory for coalescence induced by
extensional flow. This theory provided the shape of Pc vs. R
dependence similar to that predicted by the Rother and
Davis theory. Recently, we have derived the theories of
shear-flow- [39] and extensional-flow-induced [40] coales-
cence. The theories always use the larger of the expressions

describing the matrix resistance to the droplets approach for
spherical and highly flattened droplets. The dependences of
Pc on droplet radius and the rate of the flow of velocity for
Newtonian systems have the same shape as those calculated
in the previous papers [19, 38].

In the application of Janssen and Meijer’s theory [11, 37]
and theories based on the switch between expressions for
spherical and highly flattened droplets [38–40], the choice
of the expression for the resistance of the matrix trapped
between flattened droplets to their drainage is an important
task. The expressions for the FMI, PMI, and IMI models of
the interface were derived for boundary conditions related to
the low, moderate, and high ratios of viscosities of the
dispersed phase and matrix [6, 37]. Unfortunately, the
dependences of individual expressions on system parame-
ters, i.e., the droplet radius, shear or extensional rate, the
viscosity of the matrix and droplets, interfacial tension, and
critical distance hc, differ qualitatively and do not pass from
one to another with the change of the viscosity ratio. Jeelani
and Hartland [12] derived an equation for matrix drainage
that passed to the equation for the IMI model at a high
viscosity ratio; they predicted decreasing matrix resistance
with decreasing viscosity ratio. On the other hand, the
dependences of the Jeelani and Hartland (JH) expression
on system parameters differ substantially from those of the
FMI model. The comparison of Pc calculated using the PMI
and JH models shows a strong difference for the viscosity
ratios of about 1 [39, 40]. Recently, Gabriele et al. [9] have
compared the experimentally determined dependence of
droplet radius, Rss (at which Pc for given system parameters
falls practically to 0), on the shear rate with predictions
following from Janssen and Meijer’s theory for the FMI,
PMI, and IMI models. They have found that the experimen-
tally determined slopes of the dependence of Rss on the
shear rate changes with increasing viscosity ratio continu-
ously from a value predicted for the FMI model to a value
for the IMI model.

In the light of the results of Gabriele et al. [9] and
considering that the dependence of the matrix resistance to
the approach of the droplets on system parameters should
change continuously with increasing ratio, p, of the viscos-
ities of the droplets and matrix, we are proposing an expres-
sion for the matrix drainage, i.e., the arbitrarily mobile
interface (AMI) model, which passes to that of the FMI
model at p→0 and to that for the IMI model at p→∞.

Construction of the equation describing matrix drainage
between highly flattened droplets

We assume that the approach of two highly flattened drop-
lets with p→0 is described by the equation for the fully
mobile interface [6, 7, 11, 27]
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� d h

d t
¼ 2σh

3ηmR
ð2Þ

where σ is interfacial tension, h is distance between the
surfaces of the droplets, t is time, ηm is the viscosity of the
matrix, and R is droplet radius. For systems with p→∞, the
droplet approach is described by the equation for the immo-
bile interface [6, 7, 11, 27]

� d h

d t
¼ 8pσ2h3

3ηmR2F
ð3Þ

where F is the driving force of coalescence. Jeelani and
Hartland [12] derived the droplet approach

� d h

d t
¼ 8pσ2h3

3ηmR2F
1þ 3C

p

� �
ð4Þ

where C is the relative circulation length of the order of
unity.

In our construction, we assume that the droplet ap-
proach can be described by Eq. 4, where C is an
arbitrary function of the system parameters. Equation 4
passes to Eq. 2 for FMI if the following equation is
valid for p→0

lim
p!0

C ¼ p

3

RF

4ph2σ
� 1

� �
ð5Þ

For p→∞, Eq. 4 passes to Eq. 3 for the immobile inter-
face for any C independent of p. The following equation
meets both the above conditions:

C ¼ a 1� exp � p

3a

RF

4ph2σ
� 1þ bp

� �� �� �
ð6Þ

where a and b are dimensionless adjustable parameters.
Substitution from Eq. 6 into Eq. 4 leads to the following
equation for droplet approach

� d h

d t
¼ 8pσ2h3

3ηmR2F
1þ 3a

p
1� exp � p

3a

RF

4ph2σ
� 1þ bp

� �� �� �� �

ð7Þ
Janssen and Meijer’s theory [11] is frequently used to

evaluate experimental data. We use their assumption that

F ¼ 6pηm g
�
R2 ð8Þ

where γ˙ is shear rate. After substitution for F into Eq. 7 and
its integration, the following equation for coalescence time
tc (see Eq. 1) is obtained

tc ¼ 9Ca2R2

4 �g 1þ 3a
p

� 	 1

2

1

h2c
� 1

h20

� �
þ a

pCaR2
ln

1þ 3a
p � 3a

p exp � p
3a

3CaR2

2ah2c
� 1þ bp

� 	n o

1þ 3a
p � 3a

p exp � p
3a

3CaR2

2ah20
� 1þ bp

� 	n o
0
@

1
A

2
4

3
5 ð9Þ

where capillary number, Ca, is defined as Ca=ηmg˙R/σ.

Coalescence probability in shear and extensional flows

Recently, we have derived the theory of coalescence of
Newtonian droplets dispersed in viscoelastic matrix induced
by shear [39] or extensional [40] flow. The theory is based
on the assumption that the drainage of the matrix between
approaching droplets can be described by switching be-
tween the expressions for spherical and highly flattened
droplets. The expression leading to slower droplet approach
is always used. For the considered viscoelastic matrix, F in
expressions for the Newtonian system has been substituted

with F+τmdF/dt, where τm is the relaxation time of the
matrix. Final equations describing the approach of spherical
and flattened droplets are presented here only. The deriva-
tion of these equations is briefly described in the Electronic
supplementary material.

For shear flow with unperturbed velocity u0=(
�gy, 0, 0),

the following equations describing the dependence of the
droplet distance, h, on the azimuth, ϕ, have been obtained
[39] for spherical

� d h

d f

� �
sp

¼ 2K

3

h

gðmÞ
Q θ; fð Þ þ tm

�gS θ; fð Þ
D fð Þ ð10Þ

and for flattened droplets

� d h

d f

� �
F

¼ 8h3

3KCa2R2

1þ 3a
p 1� exp � p

3a
KCaR2 Q θ;fð Þþtm g

:
S θ;fð Þ½ �

4h2 � 1þ bp
� 	n oh i

D fð Þ Q θ; fð Þ þ tm g
:
S θ; fð Þ½ � ð11Þ

where K is a function of h and p; g(m) is a function of p and h/
R; and D, Q, and S are the functions of azimuth, ϕ, and polar

angle, θ. The definitions of these functions can be found in
Ref. [39] and in the Electronic supplementary material.
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For each initial polar angle, θ0, the solution of the equa-
tion for dh/dϕ constructed by switch between Eqs. 10 and
11, is used to determine the maximum initial angle, ϕM, at
which colliding droplets fuse. Pc can be determined as

Pc ¼ 3

Zp=2

0

ZΦM

0

sinΦ0 cosΦ0sin
3θ0dΦ0dθ0 ð12Þ

For the extensional flow with unperturbed velocity
u0=ε

.(−x, −y, 2z), where ε˙ is the deformation rate, the
following equations describing the dependence of h on the
rotation angle, θ, have been obtained for spherical [40]

d h

d θ

� �
Sp

¼ 2K

3

h

gðmÞ
Qe θð Þ þ tm "

:
Se θð Þ

De θð Þ ð13Þ

and for flattened droplets

d h

d θ

� �
F

¼ 8h3

3KCa2eR
2

1þ 3a
p 1� exp � p

3a
KCaeR2 Qe θð Þþtm "

:
Se θð Þ½ �

4h2 � 1þ bp
� 	n oh i

De θð Þ Qe θð Þ þ tm "
:
Se θð Þ½ � ð14Þ

where capillary number, Cae, for extensional flow is defined
as Cae=ηmε˙R/σ and De, Qe, and Se are the functions of
rotation angle, θ, defined in Ref. [40] and in the Electronic
supplementary material. The collision of the droplets in
extensional flow is followed by their fusion if their
distance decreases below hc until the polar angle θ* is
achieved [40; the Electronic supplementary material]. In
calculating h(θ*), Eq. 14 for flattened droplets is com-
bined with Eq. 13 for spherical droplets in the same
way as for shear flow. Minimum initial polar angle,
θ0

(m), at which h(θ*)=hc should be determined. The
probability of coalescence, Pc, for extensional flow can
be calculated from the equation [38, 40]

Pc ¼ 3
ffiffiffi
3

p

2
cos θðmÞ0 � cos3θðmÞ0

� 	
ð15Þ

ϕM and Pc in Eq. 12 for shear-flow-induced coalescence
have to be calculated numerically by the procedure

Fig. 1 Comparison of the dependence of drop size RL on shear rate,
calculated using Eq. 11 with a=16 for different viscosity ratios p, with
the data of Gabriele et al. [9]; for p=3.3 also with results obtained using
IMI model; for p=0.068 also with FMI model. Newtonian matrix,
σ=2.8 mN/m, Hamaker constant A=5.10−17J, K∞=12.24, hc determined
using Eq. 16, h0=10R. Viscosities: p=3.3, viscosity of the dispersed phase
ηd=735 Pa·s, ηm=223 Pa·s; p=0.67, ηd=110 Pa·s, ηm=165 Pa·s; p=0.18,
ηd=23.2 Pa·s, ηm=129 Pa·s; p=0.068, ηd=7 Pa·s, ηm=103 Pa·s

Fig. 2 Comparison of the dependence of coalescence probability Pc

on droplets size in shear and extensional flow calculated by Rother and
Davis [19] with results of our calculation using FMI, PMI, JH models,
and Eq. 11 or 14 with a=8 and a=16. Shear or elongation rate 1 s−1,
ηm=0.035 Pa·s, ηd=0.0035 Pa·s, σ=1.9 mN/m, Newtonian matrix, A=
5.10−21J, K∞=12.24, hc determined by Eq. 16, h0=10R
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described in Refs. [39, 40]. Numerical calculation is also
necessary for θ0

(m) in Eq. 15. The calculation method can be
found in Ref. [40]. The critical distance for the droplet
fusion, hc, was calculated using the equation [6, 39]

hc ¼ AR

8pσ

� �1=3

ð16Þ

where A is the Hamaker constant. In some cases, hc=5 nm, a
value typical of polymer blends [11, 37], has been used.

The dependence of Pc on system parameters

As the Eq. 7 describing the approach of flattened droplets is
semiempirical, the values of constants a and b should be
determined from the comparison of calculated Pc with an
experiment or with the results of a more fundamental theory.
Unfortunately, the amount of experimental data suitable for
comparison with our calculation is quite limited. Gabriele et
al. [9] determined the dependences of the average droplet

radius, at which coalescence started to be undetectable,
on shear rate for p from 0.067 to 3.3. In the interpreta-
tion of experimental results, Gabriele et al. [9] used the
Janssen and Meijer theory [11] and assumed that the
limit value of R, RL, for which the coalescence started
to be undetectable, was equal to the characteristic radius,
for which ti= tc in Eq. 1. Under this condition, Pc=1/e is
a non-negligible value. Using this approach, Gabriele et
al. [9] found that the slope of the dependence of RL on
g˙ complied with the FMI model for p=0.067 and with
the IMI model having the hc independent of R for p=3.3.
The slopes for p between these boundary values changed
continuously with p. We have tried to use the experimental
data of Gabriele et al. [9] for comparison with our calcula-
tions. Unfortunately, the dependences of Pc vs. R have a long
tail of small but non-zero Pc for the FMI model, and there-
fore, the results of comparison are sensitive to the choice of
the Pc value, for which coalescence is experimentally
undetectable.

Pc vs. R dependences calculated for our model can also
be compared with the calculations of Rother and Davis by
the method of trajectory analysis [19] for the system of ethyl
salicylate drops in diethylene glycol (see Figs. 8 and 10 in
ref. [19]). This system was characterized by p=0.1.

Fig. 3 Comparison of the dependence of coalescence probability P on
droplets size in shear flow (upper plot) and extensional flow (lower
plot) calculated using Eq. 11 or 14 and a=8 with those calculated using
FMI, PMI, and IMI models for the different ratios p of droplet to matrix
viscosity. Newtonian matrix, g˙(ε̇)=0.1 s−1, ηm=1 kPa·s, σ=1 mN/m,
K∞=12.24, hc=5 nm

Fig. 4 Same dependences and parameters as in Fig. 3, with the
exception of σ=5 mN/m

Colloid Polym Sci (2013) 291:1863–1870 1867



The comparison of the dependences of Pc on R calculated
by our method for the Newtonian systems with the data of
Gabriele et al. [9] and Rother and Davis [19] has been used for
the determination of the parameters a and b. The results of our
calculations (not shown for brevity) are only slightly sensitive
to the value of b. It should be mentioned that the term bp has
been added to the exponent to avoid the unphysical behavior
of the expression in Eq. 7 for RF<4πh2σ at p→∞. Therefore,
the value b=1 is used in our calculations.

The value of a affects the shape of the Pc vs. R dependence
more substantially than the value of b. For the proposed
model, Pc has been found to approach, with increasing p, the
values for the IMI model faster for smaller values of a. The
approach of Pc to the values for the FMI model, with decreas-
ing p, is faster for larger values of a. Generally, the decrease in
Pc with R in the region of larger R is much steeper for our
model than for the FMI model, even for large a and small p.

The dependences of RL on g˙ determined experimentally
[9] and calculated under the condition Pc(RL)=0.05 are com-
pared in Fig. 1. For p=0.068, the experimentally determined
slope of the dependence agrees with the slope calculated for
the FMI model. The absolute value of the slope calculated
according to our model is somewhat smaller. For p=0.18, the
absolute value of the slope calculated according to our model
is also smaller than that determined experimentally. For

p=0.67, the slopes calculated using our model and experi-
mentally determined are in good agreement. For p=3.3, the
slopes calculated for our and IMI models agree very well.
However, the absolute values of the calculated slopes are
somewhat larger than those determined experimentally.

The dependences of Pc on R calculated by Rother and
Davis [19] and by our method are compared in Fig. 2. It
should be mentioned that for p<1, our calculation method
leads systematically to a larger Pc than the method of Rother
and Davis in the region of small R [40]. Comparison of
Fig. 2a with Fig. 9 in Ref. [39] shows that the difference
between these methods is smaller if K is calculated using
Eq. (S2) in the Electronic supplementary material than for
constant K equal to K∞. Figure 2 clearly shows that the
calculations using Eq. 7 with a=8 or 16 for the approach
of flattened droplets correspond to the results of Rother and
Davis much better than those using the PMI model. A
decrease in Pc with R in the region of R, where the droplet
flattening starts, is somewhat steeper for our model than for
that of Rother and Davis. The decreasing part of the Pc vs. R
curve (except the region of very small Pc) calculated accord-
ing to the Rother and Davis theory lies between our

Fig. 5 Same dependences and parameters as in Fig. 3, with exception
of g˙(ε̇)=1 s−1

Fig. 6 Same dependences and parameters as in Fig. 3, with the
exception of g˙(ε)̇=0.02 s−1
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calculations for a=8 and 16 for the extensional flow and
corresponds to our calculation with a=16 for the shear flow.

The comparison of the dependences of Pc on R calculated
for Newtonian droplets in the Newtonian liquids in the shear
flow for our model of the matrix drainage with the FMI,
IMI, and PMI models for small, large, and medium p,
respectively, is provided in Figs. 3, 4, 5, and 6 for shear or
extensional rates of 0.02, 0.1, and 1 s−1 and interfacial
tensions of 1 and 5 mN/m. The viscosity of the matrix
ηm=1,000 Pa·s has been considered. We believe that these
parameters are typical of polymer blends in the measure-
ments of their rheological properties. It follows from these
figures that the relations between Pc calculated for the
various models of the interface mobility are similar for the
shear and extensional flows and for all chosen parameters.
For a=8, the dependence for our model is close to the
dependence for the IMI model at p=50. For p=0.02, our
model leads to a somewhat larger Pc for medium R and to
smaller Pc for large R than the FMI model. For p=0.2, Fig. 3
demonstrates that the PMI model apparently overestimates
Pc because, in a certain range of R, this Pc is larger than Pc

calculated for the FMI model at p=0.02. The decrease in Pc

with R is somewhat slower for the PMI model than for our
model at p=1. For p=5, the dependences of Pc on R for our
model and the PMI model are similar. Overestimation of R,
at which Pc starts to decrease for low values of p, in the PMI
model increases with increasing shear or extensional rate
and seems to decrease with σ. The inadequacy of the PMI
model for p>>1 was demonstrated and discussed in our
preceding paper [39].

Figure 4 shows that the increase in interfacial tension
deteriorates the accordance between the AMI and FMI
models for lower Pc (higher R). As it can be seen in
Fig. 5, under higher shear rates, PMI provides results shifted
in comparison with the IMI, FMI, and AMI methods.

It can be concluded that our model of the matrix drainage
between flattened droplets provides a reasonable agreement
with available experimental data in the whole range of p,
and a=8 and b=1 seem to be reasonable values of the
adjustable parameters. However, their values can be cor-
rected after more extensive comparison of this model with
experimental results. It should be mentioned that the above
analysis has shown that the PMI model, broadly used for the
description of the flow-induced coalescence in polymer
blends, has not provided reasonable results in many cases.

Conclusion

A new semiempirical model of the matrix drainage between
flattened droplets applicable in the whole range of viscosity
ratio, p, has been proposed. The model provides a better
agreement of the coalescence probability Pc, calculated

using the procedure developed in our preceding papers
[39, 40], with experimental data [9] and with Pc calculated
using the trajectory analysis [19] than the PMI model so far
broadly used for the description of the flow-induced coales-
cence in polymer blends.
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