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Abstract Based on Monte Carlo simulation of the con-
tact line as a long-range elastic model, we develop tools
relating substrate traps, trapping time and trapping
length. We demonstrate the possibility of retrieving
some information on the substrate topography from
measurements of contact line motion, near the thresh-
old in forced spreading or near the advancing angle in
spontaneous spreading.
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Introduction

The dynamics of wetting plays a key role in many prac-
tical phenomena where a liquid has to wet a surface,
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such as in the chemical, automotive or glass industries.
Both liquids and solids can vary extensively, as can the
spreading processes. The liquid may be, for example,
a paint or a lubricant, which has to cover a surface,
such as textile, metal, wood or glass. An adhesive, ink
or colourant is required to wet and to stick to the cor-
responding substrate. Another example is the surface
treatment, where a substrate is wetted with a coating
for a certain application, such as window coating to
avoid water and dust deposit. Wetting is also important
in agriculture, where pesticides have to spread rapidly
on plants to maximise their action. It also plays an
important role in life science: the rise of sap in plants,
the wetting of the eye cornea, adhesion of parasites on
wetted surfaces, insect motion on water, etc.

Each application needs precise understanding of the
wetting details, such as the spreading velocity, the wet-
tability properties of the surfaces and the liquid proper-
ties, in order to control or modify the liquid/solid pair to
obtain the desired wetting behaviour. The driving force
for wetting is the out-of-balance surface tension arising
from the non-equilibrium shape of the drop on the
solid. For a given system under a given set of conditions,
the dynamic contact angle θD appears to be a function
of the velocity of the moving contact line, θD = f (vCL).
In drop spreading, a third parameter, the dynamic base
radius R, is sometimes introduced.

In forced spreading (where the contact line is made
to move by an external force), for a given configuration
and force, a characteristic contact line velocity and a
characteristic dynamic contact angle are observed for a
given system. Upon varying the conditions, other sets of
velocities and angles are observed. It is widely believed
that there is a unique relationship between vCL and
θD. Experimentally, this relationship is a monotonically
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increasing function for advancing contact angles and
monotonically decreasing for receding angles.

If, on the other hand, we deposit a drop on a solid,
which leads to spontaneous spreading, θD will relax
from 180◦ towards its equilibrium value. The contact-
line velocity decreases from its initial value to 0 at
equilibrium. Here, it is obvious that only one unique
velocity can exist for each value of θD. Forced spreading
and spontaneous spreading are both examples of mov-
ing contact lines, and as such, they should be described
in some universal way.

This relationship is experimentally shown to be well
described by theoretical models considering the energy
dissipation occurring via different mechanisms. First,
the hydrodynamic model, based on continuum fluid
dynamics, considers the dissipation due to flow in the
edge of the droplet [1, 2]. Second, the molecular-kinetic
theory neglects this mechanism and prefers to consider
the friction dissipation between liquid and solid at the
contact line, at an atomic level [3, 4]. Current experi-
mental observations seem to give support to both mod-
els, depending on the kind of liquid, on the wettability
as well as on the timescale of the process.

In practice however, it is almost impossible to deal
with perfect solid surfaces. There are always some phys-
ical defects (roughness) or chemical heterogeneities ei-
ther at the microscopic or macroscopic scales. It is now
understood that these defects will induce some pinning
of the three-phase contact line [5]. Theoretically, only
one equilibrium configuration exists. In practice, even
small irregularities on the solid, chemical or geometric,
induce metastable configurations, having a contact an-
gle that differs from the true equilibrium contact angle.
This phenomenon is called contact angle hysteresis, i.e.
the value of the static contact angle depends on the
history of the system. The angle varies according to
whether the liquid tends to advance across or recede
from the solid surface. The limiting angles obtained just
prior to the movement of the contact line are known as
the advancing and receding contact angles. The values
for the advancing and receding contact angles tend to
be reproducible and are often used to characterise the
solid substrate.

The situation is thus as follows. Once we have het-
erogeneities, we know that there will be some hystere-
sis. Here, we address the complementary question: Can
we infer the type of heterogeneities from the hysteresis
measurement?

Using Monte Carlo simulation of the contact line
as a long-range elastic model, we exhibit relations
between substrate traps, trapping time and trapping
length. The Monte Carlo method has the advantage of
being sufficiently fast so that the long-range interaction

within the line [6, 7] can be taken into account and
updated at each time step. Qualitative results and in-
sight into contact angle hysteresis can thus be obtained.
Other aspects have been uncovered using hydrodynam-
ics [8], molecular dynamics [9] or a Ginzburg–Landau
phase field [10].

The model used in simulations is defined in Section
“Forced spreading simulation”. The corresponding con-
tact line velocity and contact line roughness exponent
are analysed in Section “Macroscopic observables”.
Traps, trapping time and trapping length are analysed
in Section “Traps, trapping time and trapping length”.
Tools for the inverse problem, inferring the substrate
from contact line motion, are developed in Section
“Inferring the substrate from contact lines”. The fea-
sibility of using these tools for experimental data is ex-
plored in Section “Experiments”. Concluding remarks
are given in Section “Conclusion”.

Forced spreading simulation

We start at time t = 0 with a straight line of length N at
position 0 in the spreading direction, h(0) = (0, 0, . . . 0).
At time t = 1, 2, . . . , the line will be described as h(t) =
(h1(t), h2(t), . . . hN(t)), with hi ∈ R and i ∈ Z/NZ, cor-
responding to periodic boundary conditions. The line
represents the contact line of a liquid spreading on a
disordered substrate, made of delta-function dots of
random wettability at integer coordinates (i, k) on top
of a uniform substrate of wettability μ. The disorder
ξ(i, k) is present only in the half space in front of the
initial line, k ∈ Z+. The elastic energy of the contact
line is inherited from the liquid surface tension, leading
to a long-range interaction [6, 7] between hi and h j

decreasing as the inverse squared distance |i − j|−2 as
|i − j| → ∞. This leads to a Hamiltonian

H = J
N∑

i, j=1

(hi − h j)
2

1 + d(i, j)2
−

N∑

i=1

μi(ξ, hi) (1)

where d(i, j) = min
(|i − j|, N − |i − j|) and

μi(ξ, hi) =
∫ hi

0
dhi

⎛

⎝μ −
∑

k∈Z+

δ(hi − k)ξ(i, k)

⎞

⎠

= μhi −
int(hi)∑

k=1

ξ(i, k). (2)

The disorder ξ(i, k) is an independent random vari-
able at each site (i, k), with a Gaussian distribution of
mean 0 and variance b 2. The model has an approximate
scale invariance, which allows to fix one parameter:
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Fig. 1 Contact line after 104

MCS/S, with N = 100,
b = 3.0 and μ = 0.15. Dots
indicate points where
ξ(i, k) > 1.2 b
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J = 1. The different regimes will be obtained by varying
the remaining two parameters μ and b .

We then run a Monte Carlo dynamics obey-
ing detailed balance with respect to the measure
exp(−H)

∏N
i=1 dhi: At each Monte Carlo step, a site i

is chosen at random uniformly in {1, . . . , N}; then, a
tentative move δhi is drawn from a Gaussian distri-
bution of mean 0 and variance 1. This move would
lead to a change �H of the Hamiltonian. The move
is accepted with probability min(1, exp(−�H)). Then,
N such Monte Carlo steps make up a unit of time or
Monte Carlo step per site (MCS/S). Figure 1 shows a
small sample. Note that there is disorder at every point
of integer coordinates (i, k), but only peaks of disorder,
obstacles to wetting, are shown.

Contact angle hysteresis occurs when the spreading
velocity vanishes before reaching equilibrium: At some
advancing angle larger than the equilibrium angle,
there is still a positive drift but peaks of disorder oppose
line motion, in such a way that the velocity is effectively
0 for a macroscopic sample. In order to understand this
stopping mechanism, we analyse the contact line with
a constant drift μ in the limit of a small resulting mean
velocity, corresponding to a contact angle slightly larger
than the advancing angle. We focus our attention on a

strong disorder regime, where the rms deviation of the
disorder, b = 3.0, is not small with respect to surface
tension, encapsulated in the coupling constant J = 1.0.

Macroscopic observables

Contact line velocity

The following quantities are defined in the limit N ↗
∞ (first) and t ↗ ∞ (second):

v(b , μ) ∼ (μ − μc(b))β as μ ↘ μc(b). (3)

The velocity is obtained from a linear fit of h̄(t) =
1
N

∑
i hi(t) = a + vt for N = 50,000 and t ∈ [105, 106]

MCS/S, see Fig. 2. Near the threshold, for μ be-
tween 0.09 and 0.14, the simulation was run twice with
different compilers and random number generators,
hence the two markers for each μ in the figure. Beyond
μ = 0.2, the velocity is very close to linear in μ along
the slope starting on the right part of the plot. Below
μ = 0.13, relaxation is very slow and sample dependent.
Whenever N < ∞ and μ > 0, the velocity in the limit
t ↗ ∞ will be positive but will tend to 0 as N ↗ ∞ for

Fig. 2 Velocity v(b , μ) for
b = 3.0 and N = 50,000, in
per MCS/S
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μ ≤ μc. The results favour β = 1 for the model at hand,
with μc(3) 
 0.12.

The threshold in forced spreading allows to compute
the advancing angle in spontaneous spreading, in the
corresponding model. For the model at hand, sponta-
neous spreading implies [5] adding a term

J
L

∑

i

h2
i (4)

in the Hamiltonian Eq. 1, where L is the length perpen-
dicular to the substrate. The spreading coefficient when
the contact line reaches h̄ then becomes

μ − 2Jh̄/L = μ − 2J cot θ (5)

with cot θ = h̄/L. Spontaneous spreading stops at the
advancing angle, where the contact line velocity van-
ishes, μ − 2J cot θa = μc, instead of the true equilib-
rium, μ − 2J cot θeq = 0. Therefore,

cot θeq − cot θa = μc

2J
(6)

cot θa

cot θeq
= 1 − μc

μ

 0.88 (7)

which is compatible with data from spontaneous spread-
ing simulations [5].

From

v ∼ μ − 2Jh̄/L − μc ∼ cot θa − cot θ (8)

and dθ ∼ vdt, the time to reach the advancing angle is
given by a mildly divergent integral:
∫

dt ∼
∫

dθ

cot θa − cot θ
= +∞ (9)

Contact line roughness

The contact line roughness exponent ζ is defined by

lim
t↗∞ lim

N↗∞
〈(hi+ j − hi)

2〉 ∼ j2ζ as j ↗ ∞. (10)

The initial condition is a straight line. At short
times, say until 103 MCS/S, 〈(hi+ j − hi)

2〉(t) thermalises
in the same way as in the absence of disorder, lead-
ing to 〈(hi+ j − hi)

2〉(t) ∼ log( j). Then, at longer times,
the correlation becomes 〈(hi+ j − hi)

2〉(t) ∼ j2ζ(t), with
a dynamical roughness exponent ζ(t) which converges
slowly to a stationary value. Figure 3 shows ζ(t) for
μ = 0.14, slightly above threshold. The fit yields ζ =
ζ(∞) 
 0.41. The roughness exponent ζ was computed
for a similar model with Langevin dynamics by Rosso
and Krauth [11] who found ζ = 0.388 ± 0.002 at the
depinning threshold, μ = μc.

More sophisticated models have been considered,
see e.g. [12–15], but here we focus our attention on
the relation between contact line trapping and substrate
topography, see the following sections, for which the
linear-elastic long-range model with disorder is already
very rich.

Traps, trapping time and trapping length

Trapping analysis from a set of contact lines

A given point of the contact line at time t, say hi(t), will
be considered as “trapped” for a duration τ if for a fixed
small ε ≥ 0, we have

Vτ
i (t) = hi(t + τ) − hi(t) ≤ ε. (11)

Fig. 3 Contact line roughness
exponent as a function of
time for b = 3, μ = 0.14 and
N = 105
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Similarly, a portion of the contact line of length 


starting at i will be considered as trapped at time t for a
duration τ if
⎧
⎨

⎩

Vτ
i−1 (t) > ε

Vτ
i+ j (t) ≤ ε for 0 ≤ j < 


Vτ
i+
 (t) > ε.

(12)

This portion of contact line faces a portion of sub-
strate where the rescaled deviation from average wet-
tability is

−�ξ = − 1√




−1∑

j=0

ξ
(
i + j,

[
hi+ j (t)

] + 1
)

(13)

where [·] denotes the integer part.
Figure 4 is taken from a simulation where 100 contact

lines were stored at time intervals of T = 104 MCS/S.
The times t and τ in Eqs. 11, 12 and 13 are taken as
multiples of T. For each such τ , we collect all events
obeying Eq. 12, and the corresponding Eq. 13. The
number of events is 3,693.

It is remarkable that the events collapse on a two-
dimensional surface. This implies that fixing one co-
ordinate, the other two are function one of the other,
which may provide a clue to the inverse problem.

Trapping analysis from sojourn times

The idea is that the line is blocked at some scale by
some kind of large deviation of the noisy substrate.
Here, we describe one possibility of analysing this
phenomenon.

A grid of squares was used with size one (namely,
the same size as the substrate-noise grid). Every 100
MCS/S, the position of the line was registered with
respect to the grid. More precisely, each square of the
grid has a counter initially set to 0. The counter of a
square of the grid is increased by one if at the time
of measurement the line passes through this square.
One obtains at the end a histogram of the time the
line has spent in every square. Given a threshold, one
can determine the squares where sojourn time is larger
than this threshold. The positions of these squares are
then plotted (in red) in Fig. 5 for μ = 0.15 and for
μ = 0.19. The grid has a width N = 20,000 and a length
corresponding to the distance travelled by the contact
line during the run: approximately 250 for μ = 0.15 and
approximately 500 for μ = 0.19.

The substrate is filtered horizontally using a Gaussian
filter of standard deviation l. Given a threshold, one
can determine the squares where the filtered substrate
is larger than this threshold. The positions of these
squares are then plotted (in black) in Fig. 5.

For convenience, the thresholds are not fixed in
absolute value but as fractions of the maximum
value, called facsej and facsubf, respectively.
Hence, there are three parameters: l, facsej and
facsubf.

Contact angle hysteresis can thus be seen as a collec-
tive effect of the traps (in black) blocking the contact
line (in red where blocked). The analysis requires a
non-zero mean velocity, here μ > 0.12 as can be seen
in Fig. 2, corresponding to a contact angle slightly larger
than the advancing angle. The contact line may be seen
as an exploration device, doing a more precise job at

Fig. 4 Trapping time, length
and disorder. N = 20,000,
μ = 0.14
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Fig. 5 In black is the
substrate filtered above a
threshold defined by
facsubf = 0.5 and l = 100.
In red is the sojourn time
filtered above a threshold
defined by facsej = 0.3 and
l = 100. Bottom μ = 0.19, top
μ = 0.15

smaller velocities (μ = 0.15 compared to μ = 0.19). It
does not work at, or very near, the transition μc 
 0.12,
where the velocity vanishes and the correlation length
is expected to diverge.

Inferring the substrate from contact lines

Let us now consider the problem of estimating the
substrate topography to a given scale using the motion

Fig. 6 True substrate ξl, k
(left) and reconstructed ξ̃l, k
(right)
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Fig. 7 Correlation Ci, j( ξ, ξ̃ )

between true and
reconstructed substrates

of the contact line on it. It is the inverse problem.
The reconstruction is done as follows, using data from
simulations. We have 100 lines, each made of 20,000
points. At each of the 2.106 x, y points, a velocity Vτ

xy is
computed, like in Eq. 11. Then,

τxy = max{τ ′ : Vτ ′
xy < ε}. (14)

The matrix τ is lacunary: Only 3,693 matrix elements
are non-zero, like in Fig. 4. Summing over 
 and i allows
to build an empirical distribution function of a random
variable ω distributed like τ . At each (x, y), a consistent
random guess for ξxy = �ξ defined by Eq. 13 at x, y is

ξ̃xy = α log(βωxyτxy) (15)

where α and β are normalising constants and ωxy is an
independent drawing of ω.

Figure 6 shows a region of the true substrate and the
same region of the reconstructed substrate. Similarities
are easy to localise. In order to compare quantitatively
the digital image

(
ξl, k

)
of the substrate used in the

Monte Carlo simulations to its inferred image ( ξ̃l, k ), we
use the digital cross-correlation measure defined as [16]

Ci, j
(
ξ, ξ̃

) = 1

NL

N−1∑

l=0

L−1∑

k=0

ξl, kξ̃l+|i|, k+| j| (16)

where ξ̃x,y = 0 if x ≥ N or y ≥ L. This is a standard
technique to estimate the likeness of two digital images.
This measure is able to tack, very well, all changes in an
image. It is scale insensitive. Its maximum over i and
j achieves maximum similarity of the involved images.
When images are almost identical, up to a scale factor,
this maximum is achieved for i = j = 0. This is what

Fig. 8 Reconstructed
substrate
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Fig. 7 exhibits: The maximum is near the origin i = j =
0, and the decrease from the centre is monotonic.

Experiments

A glass slide of 2.5 cm width was cleaned with sul-
fochromic acid. Then, perfluorodecyltrichlorosilane
spots were deposited using a plastic Pasteur pipette
rinsed with isopropanol. The spot size was about a few
millimetre. This glass slide was penetrated and removed
at a constant speed of 0.24 mm/s in a glass cell filled with
water.

The camera provides 20,000 successive contact lines,
each line consisting of approximately 600 points. At each
of the 20,000 × 600 corresponding points with coordi-
nates x, y on the substrate, a velocity Vτ

xy is computed
as in Eq. 11. Then, the set of trapped sites is constructed
as in Eq. 12. Using the derived empirical distribution,
each site is revisited and a most likely random height
is generated using Eq. 13. The reconstruction is done
in the same way as for data from simulation, Section
“Inferring the substrate from contact lines”. The sub-
strate reconstructed in this way from the contact lines
is shown in Fig. 8.

Conclusion

The three-phase line observed during drop spreading
is modelled by a series of partition variables with long-
range interactions decreasing as the inverse square dis-
tance. The disorder is made of delta-function dots of
random wettability given by a Gaussian distribution
with mean 0 and variance b 2. For a strong disorder, we
observe using Monte Carlo simulations that the speed
of the three-phase line is proportional to the wettability
above a certain threshold. The contact line roughness
exponent is shown to be approximately equal to 0.4. It
is also possible to compute the trapping time for each
portion of the contact line.

From the motion of the contact line, we propose
a tool to estimate the substrate topography which is
validated by our simulations. We show that this tool can
be applied to analyse experimental data.
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