
Introduction

The network structure of gels and gelation processes
have been studied in relation to the physicochemical
aspects using various experimental approaches [1, 2, 3, 4,

5, 6]. Gel properties have been established by means of
swelling behavior, rheological properties, scattering be-
haviors, and so on. Such approaches postulate, more or
less implicitly, that the network structure should be
sufficiently homogeneous. However, it has become
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Abstract The three-dimensional (3-
d) network structure of the gel
composed of rigid rod-shaped pro-
tein (fibrin gel) in a hydrated state
was elucidated from a real space
observation by confocal laser scan-
ning microscopy. It was ascertained
that two the length scales that char-
acterize the gel network (diameter of
polymer chain and typical mesh size
of the gel network) can be deter-
mined quantitatively by a 3-d box-
counting analysis and a 3-d Fourier
transform (FT) analysis to obtain
the power spectra. Turbidity mea-
surements were employed for the
determination of average fiber di-
ameter. Self-similar structure of the
gel network was found to be realized
in the range between those two
scales. The fibrin gels formed by
larger amounts of thrombin showed
a smaller fractal dimension that,
deduced by the box-counting meth-
od, was in good agreement with the
result from 3-d FT analysis and with
a recent dynamic light scattering
study (Kita R. et al. (2002) Bio-
macromolecules 3:1013).
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clear that the microscopic network structure is quite
inhomogeneous due to the frozen network structure by
gelation and that such a local inhomogeneity affects the
macroscopic nature of the gel [4]. Therefore, the rela-
tionship between the local inhomogeneity and various
macroscopic properties should be clarified at the mo-
lecular scale. However, the significance of local inho-
mogeneity has not yet been clarified.

Real space observation of the network structure is
one of the direct approaches for studying the charac-
teristics of gels. The knowledge of network structure at
the elementary chain length scale can give insight into
gel formation and properties without using the statistical
average values. Many researchers have attempted to
study the gel networks using scattering [1] and rhe-
ological measurements [2, 3]. These techniques are in-
deed powerful methods to study the network structure,
although they yield averaged values for gels. Scanning
electron microscope (SEM) is useful for observation of
the network structure directly, but it may include some
artifacts during sample treatments. Moreover, the use of
SEM and atomic force microscopy (AFM) are restricted
in observing the surface of samples as these methods can
only observe the 2-dimensional structures.

Hirokawa et al. reported a direct observation of
poly(N-isopropylacrylamide) gel using confocal laser
scanning microscopy (CLSM) and constructed a 3-d
structure of that gel [7]. Although they revealed the
structural inhomogeneity of the gel, the observed images
were not of the polymer network itself due to the limi-
tation of the optical resolution, but they showed its
domain structure with concentration fluctuation.
Blombäck et al. also studied the properties of fibrin gel
by CLSM and gave the polymer diameter and a per-
meability index in combination with the permeation and
turbidity measurements, but quantitative analyses of the
network structure were not carried out [8]. There are
many theoretical and experimental studies on the phys-
icochemical properties of gels and network structure
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]. A self-similar structure of gel
network on a specific time and space scale has been
discussed using scaling theories based on a lattice per-
colation model [9, 11]. It should be mentioned that the
characteristics of cross-linking (such as branching
number at the cross-linking point, length of orientation
of branching chains) are important features for studying
the properties of gel network [6]. However, few studies
have been reported on the 3-d network structure of gels
deduced from direct observation at the molecular level,
keeping the specimen in solvated states.

Fibrin, which is a rod-shaped polypeptide, is con-
verted from fibrinogen by thrombin with a specific
cleavage of small peptides. A spontaneous aggregation
of fibrins (monomer unit) forms the fibrin gel and this
gelling process has been studied extensively [12, 13, 14].
In the present study, a real space observation of fibrin

gels formed under different thrombin concentrations
was performed with CLSM in order to investigate the
3-d network structure of hydrated fibrin gels. By cor-
recting the fiber diameter using turbidity measurements,
the network structure was determined free from the
blurring by fluorescent light. The sparse network struc-
ture of fibrin gel was clearly demonstrated. The results
are also analyzed by a fractal concept, because a
self-similar structure of gels is one of the important
parameters for characterizing the network structure [14].
The reason for selecting the fibrinogen–thrombin solu-
tion to study the gel network structure is that the
diameter of networking chain and the mesh size of
the network are on the micrometer scale. These char-
acteristics are suitable for the direct observation of
network using CLSM [8]. The present techniques make
it possible to analyze the characteristics of cross-linkages
of rigid rod-like polymers and the process of network
formation, including growth of fibers and branching.

Experimental

Bovine fibrinogen (clottability 97%), from Sigma-Aldrich, was
dissolved in a 0.15 M phosphate buffer solution (PBS) at pH 7.4.
The final fibrinogen concentration of 0.22 g/100 mL was used for
all measurements. The solutions were gelled by adding bovine
thrombin with a final concentration of 0.02 NIH units/mL (sample
A) and 0.00125 NIH units/mL (sample B). Sample A had faster
gelation kinetics compared to sample B and the gelation dynamics
of these samples was studied in detail in a recent report [14]. In
order to carry out the CLSM measurements on the equilibrium
state of fibrin gels, 100 lL of sample solutions were poured into
dishes, with a glass bottom of 120 lm depth, immediately after
fibrinogen and thrombin were mixed. The dishes were capped and
incubated at 37 �C for more than 5 h (samples A) and 12 h (sample
B) to accomplish complete gel formation. Then, the fibrin gel
networks were stained by pouring 3 mL of 0.17 mM fluorescein
isothiocyanate (FITC) in 0.15 M PBS (pH 8.0) into the dishes and
leaving for about 12 h. They were washed thoroughly with fresh
PBS to remove excess FITC for about 24 h. In order to prevent
photo-bleaching of FITC, 50 mM of p-phenylenediamine was
percolated into the fibrin gel by adding it to the fresh buffer [15].

A confocal laser scanning microscope (LSM510, Carl Zeiss,
Germany) was used to obtain the sliced images. AnAr-ion laser, with
wavelength 488 nm, was used for the excitation of FITC. The emis-
sion of 505–530 nm from FITCwas detected through a filter system.
The 256 images focused on the z-axis plane were stacked in every
0.1 lm depth in the z-axis. The observed areas of CLSM were
randomly chosen for the respective samples and consisted of
25.6·25.6·25.6 lmwith the resolution of 512·512·256 pixels. Eight
sets of 3-d images were obtained for each sample and all measure-
mentswere averaged for eachof these eight sets.Resultant 3-d images
were more blurred in the z-direction than in the x- and y-direction
because the resolution in focal depth is smaller than in the xy-plane.
In order to reduce this effect, we assumed a point spread function and
performed a deconvolution on the images. The real averaged fiber
diameters were adopted as the threshold values to obtain the bina-
rized images,whichwere determinedby the turbiditymeasurement as
a function of wavelength k according to Carr et al. [16].

The binarized images were used to analyze the network struc-
ture. The distribution of the fiber diameter was obtained by the
procedure that several sizes of spheres were fitted to cover the
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sectional area of all fibers. Also, the network structure was
analyzed using a 3-d box-counting method [17, 18] and a 3-d
Fourier transform (3d-FT). In the 3-d box-counting method, 3-d
images are divided into smaller cubes of certain size and the fractal
dimension Df of objects (gel network) is defined as

NðRÞ � RDf ð1Þ
where R is the cube size (length) that divides the whole observed
region and N(R) is the number of the cubes with size R that con-
tains any part of the objects. Since the source data is a digitized
image, the whole image size L cannot always be divisable by R. In
such a case, we distribute the cubes randomly and N(R) was cal-
culated as follows:

NðRÞ ¼ ðL=RÞ3N 0ðRÞ=Nt ð2Þ
where Nt is the total number of randomly distributed cubes and
N’(R) the number of cubes that contain any parts of the objects
among Nt cubes. Nt was set in the order of (L/R)3 or more.
Homemade programs were used in all the procedures, and the re-
liability of the program was verified by using simple lines and Koch
curve. A power spectrum of the 3-d image, P(u, v, w), was calcu-
lated as

Pðu; v;wÞ ¼ jF ðu; v;wÞF �ðu; v;wÞj ð3Þ
where F(u, v, w) is the Fourier transform of the original image and
F*(u, v, w) is the complex conjugate of the Fourier transform.
P(u, v, w) is proportional to the scattered light intensity by normal-
izing with k=(u2+v2+w2)1/2. Here, u, v, and w are the spatial fre-
quency in the x), y), and z-directions, respectively [19].

Results and discussion

Figure 1 shows a typical observation of the 2-d sliced
image of the fibrin gel network (sample A). The inside of

the network structure could be observed clearly in
the hydrated state. The bright lines correspond to the
polymers (fibrin fibers) that are parallel, relative to the
sliced interface, and the bright spots indicate the fibrin
fibers crossing the interface. Because it was observed
that fibrin(ogen) adsorbed on the glass surface and
formed a different network structure from the bulk
structure, we measured only the images more than
20 lm apart from the glass surface to avoid such an
effect.

Figure 2 shows the 3-d images constructed from the
stacked sliced images and also the typical 2-d source
images. It can be observed that sample A has a denser
network consisting of fine fibers with a shorter cross-
linking distance. On the other hand, the slowly grown
gel (sample B) with a smaller amount of thrombin has a
sparser network consisting of coarse fibers and a longer
cross-linking distance. These structural images are con-
sistent with the previous study [20]. Detailed structure of
the cross-linking point of fibrin gel has remained a
problem, since judgments of the cross-linking point are
difficult on a sliced image [8] (as can be seen in Fig. 1)
and SEM images. The present 3-d images can reveal the

Fig. 1 Sliced image of the network structure of fibrin gel in the
hydrated state for sample A. The bar indicates 10 lm

Fig. 2 Typical source images (small figures) and 3-d images
constructed from the stacked sliced images for sample A (top)
and sample B (bottom). The bars in the sliced images and the bold
lines on x-, y- and z-axis indicate the length as 5 lm
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existence of the cross-linking points clearly. It seems that
multiplicity of branching from the cross-linking points is
not extensive.

The histograms of fiber diameter distribution deter-
mined by the 3-d images are illustrated in Fig. 3. The
average fiber diameters, d, determined by turbidity mea-
surements as d=0.11 lm (sample A) and d=0.16 lm
(sample B) are also shown as arrows. The width of the bar
in the histogram corresponds to 1 pixel, i.e., 0.05 lm.
Sample A showed a relatively sharper distribution with a
smaller average fiber diameter. On the other hand, sample
B showed a broader distribution without a distinct peak.
These characteristics may closely relate to the gelling
mechanism. The typical mesh sizes of the gel network,
which were determined by the 3-d box-counting analysis
mentioned below, were 4.9 and 11 lm, for samples A and
B, respectively. These typical mesh sizes are ca. 50 and 70
times larger than the average fiber diameters for samples
A and B, respectively. The result clarifies the sparse net-
work structure of fibrin gel quantitatively. Although
computer analysis for specifying the cross-linking point is
still difficult, quantitative analyses are now in progress on
the important parameters such as the distribution of
branching number, the number density of cross-linking
points, the length between cross-linking points, and so
on.

Figure 4 shows the double logarithmic plots of N(R)
as a function of R as the results of the 3-d box-counting
method for samples A and B. N(R) can be divided into

three regions. In the central region, a power law be-
havior was observed and the slope of the power law was
above 3 and not an integer. This result indicates that the
network structure has a self-similar nature and a fractal
one. The fractal dimension, Df, was obtained by a least
squares fit to Eq. 3 at the central region as Df

=1.46±0.01 and 1.54±0.02 for samples A and B, re-
spectively. Here, ± denotes one standard deviation.
These values are in agreement with those obtained by
the dynamic light scattering measurements, 1.42 and
1.53 for the samples A and B, respectively [14]. The
double logarithmic plot of N(R) vs. R should have the
slope of )3 where the cube size R is below 1 pixel and
above 512 pixels, because all boxes at those R must
contain the objects. Then, the straight lines having the
slope of 3 and passing the data points of R=0.05 lm
(1 pixel) or R=25.6 lm (512 pixels) were drawn in
Fig. 4. These two lines cross the regression lines, and the
crossing points are considered to be the average fiber
diameters dA and dB and also the characteristic mesh
sizes of networks SA and SB. Here, the subscripts A and
B refer to the samples A and B, respectively. The reason
for this assumption is that the network structure behaves
as a mass fractal between these two length scales and the
system should be regarded as a 3-d object in the scales
below the fiber diameter and above the mesh size. The
crossing points were dA=0.12 lm and dB=0.15 lm,

Fig. 3 Histograms of normalized distribution of the fiber diameter
for samples A and B. The arrows indicate the average fiber
diameters, determined by turbidity measurements, which corre-
spond to 0.11 and 0.16 lm for samples A and B, respectively

Fig. 4 Double logarithmic plots of N (R) vs. R for the samples A
(s) and B (h). In the central region, samples A and B have slopes
of 1.46 and 1.54, respectively, which were determined by a least
squares fitting using the data range 0.4 £ R £ 3.2 lm for sample A
and 0.35 £ R £ 5.1 lm for sample B. The dashed lines were
extrapolated to the regression lines
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which were in good agreement with the average fiber
diameters determined by the turbidity measurements.
The typical mesh sizes evaluated by the crossing points
were SA=4.9 lm and SB =11 lm. These results indi-
cate that a slow gelation process (sample B) yields a
relatively sparse network structure, as can been seen in
the 3-d images (Fig. 2). Fibrin gel formation proceeds in
a stepwise manner: that is, in the first step fibrin and
protofibril are formed from fibrinogen and, in the suc-
ceeding step, the lateral aggregation of protofibrils forms
fibrin fibers and these form a three dimensional network
consisting of fibers [14]. Protofibrils develop well in the
first step, interact, and form the embryo of the gel net-
work. Succeedingly, the network structure develops to-
gether with the lateral aggregation (growth). In the slow
gelation process, rearrangement of mobile fibrin fibers is
likely to occur and the lateral growth of fibrin fibers
proceeds well. This rearrangement may effectively result
in a larger mesh size. It should be mentioned that further
studies are required to confirm whether the observed
power law behavior is the real nature of the gel or an
apparent nature in terms of the box-counting method.

Figure 5 shows the double logarithmic plots of the
normalized power spectra P(k) of the averaged radial
distribution function as a function of wavenumber k
determined by 3-d FT, for samples A and B. In the very
high frequency range corresponding to the average fiber
diameter, it is expected that the Porod law should hold
[21]. However, in our experimental condition, it could
not be observed because of the restriction of image
resolution. The appearance of the peak in P(k) indicates

the existence of a characteristic length of network
structure. Furthermore, in the region greater than the
peak wavenumber (but lower than the maximum wave-
number 20p lm)1), the power law behavior of the
spectra against the wavenumber P(k)�k)D holds well
suggesting the self-similar structure of the network. The
fractal dimension relates to the power law exponent. The
fractal dimensions were obtained as 1.47±0.05 and
1.66±0.05 for the samples A and B, respectively, in
agreement with the results by the box-counting method.

The solid curves in Fig. 5 are the fitted functions
derived by Ferri et al. [21]. Fairly good fittings were
obtained. Ferri et al. assumed a spatial structural factor
and a form factor for the case that the cylindrical seg-
ments, with diameter d and length l, bonded together in
an end-to-end manner and a blob, of length of n, is made
of assembly of segments. Moreover, they assumed a self-
similar structure of the fibrin gel. According to their
formulation, the scattered intensity R(k) as a function of
k is described as

RðkÞ ¼ KcMf1� b exp½�ðcnkÞ2�gf1=½1þ ðkn=pÞ2�ðD=2Þ

þ ðl=nÞDgf1=½1þ k2d2ðl=32dÞ1=2�ða=2Þg ð4Þ
Here, b is the parameter that controls the correlation
amplitude of structure factor, a, the exponent by which
the power law behavior of the system is characterized at
the frequency range above the wavenumber corre-
sponding to the diameter of cylindrical segments. D is
the fractal dimension of network structure. K, c and M
are the optical constant, concentration, and molecular
weight, respectively. The fractal dimensions of D from
the fitting were D=1.40±0.02 and D=1.53±0.02 for
samples A and B, respectively. These values are consis-
tent with those evaluated from the k-dependence of
power spectra (1.47 and 1.66). Here, we assumed that
l=d=0.03n, tentatively according to Ferri’s results, and
n was 3.61 lm and 5.34 lm for samples A and B, re-
spectively. When d is fixed at 0.11 and 0.16 lm for
samples A and B, respectively, n values were 3.75 lm
and 5.64 lm and D values were 1.45 and 1.50. The fit-
ting for the sample A looks better than B. This could be
due to the fact that the sample B has a rather sparse
network structure and, therefore, the statistical averag-
ing based on the observed area by CLSM pictures is still
not sufficient. The characteristic lengths corresponding
to the peak position are ca. 3.7 and 5.9 lm for the
samples A and B, respectively, according to the relation
n�4.4/k1, pointed out by Ferri (with k1 being the peak
wavenumber). These values are in agreement with the
values of n obtained by the fitting.

Ferri et al. also showed the existence of three different
regimes delimited by two wavevectors k1 and k2, which
corresponded to the average gel blob size and the aver-
age fiber size, respectively, based on the behavior of the
scattered light intensity as a function of k using low

Fig. 5 Double logarithmic plots of the normalized power spectra
P(k) vs. wavenumber k for samples A (s) and B (h). The solid
curves are the fitted function (see text)
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angle elastic light scattering. Furthermore, in the range
k1<k<k2, a power law behavior was obtained and the
fractal dimension D was determined as 1.3 [21]. Their
experimental conditions were different from our study in
the temperature and thrombin concentration. The
thrombin concentration in their experiment was about
1 NIH units/mL, which was much higher than for
sample A. However, these results imply that more rapid
gelation in fibrin gels at higher thrombin concentration
tends to give smaller D.

In a silica gel, Martin et al. first reported the fractal
dimension deduced from the power law behavior of the
time correlation function by dynamic light scattering
[22]. The fractal dimension was determined by the slope
of the double logarithmic plots of the correlation func-
tion as a function of the delay time, which implies that
the power law decay of the correlation function results
from a self-similar nature of the cluster forming the gel
network. Shibayama et al. also carried out the dynamic
light scattering study for the gelling systems and showed
the relationship between the power law exponents and
the network structure [23]. Usually, the fractal dimension
of gels tends to show a larger value when they are com-
posed of flexible chains and more branching numbers
[24]. It should, however, be noted that the meaning of the
equivalence between the mass fractal dimension and the
fractal dimension determined by the power-law exponent
of the correlation function has not been well provided
theoretically and there still remain controversial prob-
lems [23, 24, 25, 26]. The relatively good agreement of the
fractal dimensions evaluated by the 3-d box-counting
method, power law behavior of power spectra, and fitting
of power spectra by Ferri’s function with the time cor-
relation function of our recent study by dynamic light
scattering, suggests the validity of dynamic light scat-
tering for the evaluation of the fractal dimension.

The sample A, which has a larger thrombin concen-
tration than the sample B, shows a smaller fractal di-
mension. It may simply be that when the mesh size and
fiber diameter are smaller and the distribution of the
fiber diameter is narrower, the result is a denser spatial
filling and a higher fractal dimension. However, this is
not the present case where the stepwise conversion of
fibrinogen proceeds to fibrin gel. The present results
suggest that the orientational ordering of the gel formed
by rigid fibrin fibers may effectively affect the spatial
filling and the fractal dimension. In fact, Lidar et al.
showed that when rods are randomly distributed with
isotropic orientation, fractal dimension depends essen-
tially only on the coverage of rods. Further, when an-
isotropically oriented rods are randomly distributed, the
fractal dimension depends not only on the coverage but
also on the degree of anisotropy, and the fractal di-
mension decreases with the rods becoming more parallel
[27]. Indeed, the orientational ordering seems to be more
anisotropic in sample A, in accordance with the Lidar’s

results. It is very necessary to evaluate the orientaional
order quantitatively based on the real space observation.

It has been reported that the structure of fibrin net-
work varies continuously between fine and coarse clot,
affected by many factors [28]. In the present paper, the
network structure of fibrin was examined under two
different thrombin concentrations. To understand the
network structure of fibrin fully, it is necessary to ob-
serve the network structure of clots formed under dif-
ferent conditions, including pH, ionic strength, and the
concentration of fibrinogen. Such a study will be re-
ported in the near future.

Fibrinolytic and hemostatic kinetics of blood and
various properties of clots (such as mechanical strength,
syneresis, opacity, and clot retraction) are associated
with the structural characteristics of fibrin networks. For
example, remarkable syneresis in fibrin gels should be
correlated with the sparce network consisting of rigid
rod fibers and low multiplicity of branching at the cross-
linking point. The analysis of network structure, which
is represented by fractal dimension, mesh size and
orientational ordering, may be useful for understanding
the physiological phenomena as well as physical
properties of clots formed under various physiological
conditions.

Conclusion

The CLSM measurement, as a real space observation,
was carried out for fibrin gel in a hydrated state and
revealed the 3-d network structure of fibrin gel at the
molecular scale. The characteristics of the structure were
analyzed by digital image processing. The existence of
two characteristic length scales was ascertained by 3-d
box-counting. Moreover, the 3-d box-counting method
yielded the fractal nature of fibrin gel in the scale between
the fiber diameter and typical mesh size of the gel, and the
fractal dimension Df was evaluated. The 3-d FT analysis
was also carried out for the same real space images to
obtain the power spectrum. A self-similar nature was
observed in this spectrum and the fractal dimension was
evaluated by the wavelength dependence. The power
spectrum was also analyzed using Ferrís scattering
function and gave the fractal dimension. The obtained
fractal dimensions from the individual analyses showed
good agreement with each other. The present results
justify the evaluation of the fractal dimension by the
correlation function measurements. Further study on the
orientational order is important and necessary for the
detailed understanding of gels formed by rigid polymers.
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