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Potential role of endothelin-1
and endothelin antagonists
in cardiovascular diseases

Abstract The endothelins comprise a family of three isopeptides ET-1, ET-2 and
ET-3, whereby ET-1 appears to be the most relevant in humans. They act in a
paracrine manner on ETA and ETB receptors. ET-1 plays an important role in the
cardiovascular system. In addition, it modulates vasomotion and growth processes,
and it participates in thrombogenesis and neutrophil adhesion. This review sum-
marizes some of the current literature pertaining to the physiological and patho-
physiological significance of ET-1, focusing the assets and drawbacks of elevated
ET-1 levels. In this regard, modulation of the endothelin system by either receptor
blockade or by inhibition of endothelin converting enzyme is expected to provide
novel therapeutic drug strategies.
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Introduction

Endothelin-1 (ET-1) is an ubiquitous endothelium-derived
peptide with a long-lasting and profound vasoconstrictive
activity. It is a potent antagonist of another endothelium
derived compound: nitric oxide. Although an abundance of
papers on the endothelin family have been published from
1988 to date (about 10500), ET-1 is still an intensively inves-
tigated peptide which plays an important role in the physiol-
ogy and pathophysiology of several organs. This review dis-
plays some of the manifold facts of this fascinating compound
with respect to its effects on the heart and the circulatory
system (see Fig. 1). In addition, some potential therapeutic
options are explored.

Synthesis and regulation

Some ten years after its first description (85), three structurally
and pharmacologically distinct endothelin (ET) isopeptides
are known to exist: ET-1, ET-2 and ET-3, each produced by a
different gene. ET-1 appears to be the most relevant in humans
(50). A pre-propeptide is cleaved to form the big ET-1 (39
amino acids), which is further cleaved by the endothelin-
converting enzyme (ECE) to form the 21-amino-acid active
peptide (68). ET-1 is the only vasoconstrictor known to be
primarily produced by endothelial cells in humans, where it
can be stored in secretory vesicles (70). Furthermore, ET-1 is
present in cardiomyocytes of both normal and failing hearts
(15). Most ET-1 is released abluminally; hence, while the



S. Schmitz-Spanke and J. D. Schipke 291
Effects of ET-1

circulating levels are in the pM range, the effective ET-1
concentration on the effector site is unknown.

Cloning of endothelin receptor cDNA has revealed two
subtypes: ETA receptors, found mainly on vascular smooth
muscle cells and cardiomyocytes (23), and ETB receptors,
located predominantly on endothelial cells and vascular
smooth muscle cells (58). In addition, an ETC receptor has
been cloned (31), although its existence and function remains
controversial.

Based on their susceptibility to the ETA antagonist BQ123,
ETA receptors can be further subclassified as ETA1 and ETA2
receptors (9). ETB receptors can also be subclassified: ETB1
receptors mainly mediate vasorelaxation through the release of
nitric oxide, while ETB2 receptors mediate vasoconstriction
(9). Furthermore, ETB receptors mediate the clearance of 
ET-1 and its subsequent intracellular degrading (16).

An increasing number of agents have been found to con-
tribute to the regulation of the entire ET system. For example,
the induction of ET-1 mRNA and the rate of peptide release is
stimulated by thrombin, transforming growth factor,
angiotensin II, vasopressin, interleukin-1, hypoxia and intra-
vascular shear stress (38, 68). ET receptor density can also
vary, e.g., incubation with ET-1 downregulated ET receptors
(47). In contrast, ischemia and heart failure upregulated ET
receptors (30, 64). Even the expression of ECE mRNA
changes under certain circumstances, e.g., it is increased in
atrial tissue of patients after myocardial infarction (5).

Physiological significance

The biological activities of ET-1 are manifold, involving such
diverse areas as embryonic development, normal postnatal
growth and cardiovascular homeostasis (24, 41). In particular,
ET-1 plays an important role in the cardiovascular system. For
example, it modulates vasomotion and growth processes,
participates in thrombogenesis and neutrophil adhesion, and it
plays an autocrine-paracrine role in the endothelial vasoactive

system (18). Moreover, ET-1 exerts inotropic effects, influ-
ences vascular permeability (11), and appears to modify noci-
ception (65).

Vascular system

Vasomotion is affected by ETA and ETB receptors located on
endothelial and smooth muscle cells (44). ET-1 can activate
ETB1 receptors on the endothelium that release factors, such as
nitric oxide and prostacyclin, which then lead to an initial
relaxation mediated by increased cGMP and cAMP levels in
smooth muscle cells with subsequent inhibition of L-type Ca2+

channels (1). In addition, ET-1 acts in a paracrine manner on
ETA and ETB2 receptors located on vascular smooth muscle
cells, eliciting a longlasting vasoconstriction mediated by
increased intracellular calcium (46) (see Fig. 2). Under
physiological conditions, endogenous generation of ET-1
appears to contribute to the maintenance of basal vascular tone
and blood pressure through activation of ETA receptors on
vascular smooth muscle (74).

Heart

The influence of ET-1 on cardiac function and its mode of
action is still controversial. The cellular basis for the actions
of ET-1 is highly complex; however, alteration in Ca2+ home-

Fig. 1 Physiological and pathophysiological significance of ET-1.

Fig. 2 Schematic of pathways activated by endothelin-receptor subtypes
in the vascular system. G G-protein, PLC phospholipase C, IP3 inositol
1,4,5-triphosphate, SR sarcoplasmatic reticulum



ostasis appears to be central to the cardiac actions of this
peptide (see Fig. 3).

Both ET receptor subtypes are linked via Ga-proteins to
two effector systems: phospholipase C and adenylyl cyclase
(48). In cardiomyocytes, ET-1 appears to stimulate predomi-
nately the phospholipase C pathway via the ETA receptor (81).
Stimulation of the ET receptor results in a phosphatidylinosi-
tol (PI) hydrolysis which leads to production of inositol 1,4,5-
triphosphate (IP3) and diacylglycerol (DAG). IP3 releases Ca2+

from internal stores. This increase in the intracellular free Ca2+

concentration together with elevated DAG levels activates
proteinkinase C (PKC), a key enzyme in regulation of cellular
function, which includes the operation of various types of ion
channels (Ca2+, K+, Cl–) and ion-transport systems that include
the Na+-H+ exchange (79). The latter results in a rise in pHi
and sensitization of cardiac myofilaments to intracellular
Ca2+ (39). Both mechanisms are expected to induce a positive
inotropic effect.

Furthermore, ET receptors regulate adenylyl cyclase activ-
ity (AC). Regarding the manner of this regulation, conflicting
results exist depending on the cell type examined. ET-1 is
reported to inhibit the accumulation of cyclic AMP (cAMP)
via the ETA receptor in guinea pig ventricular myocytes (29,
62). However, in other cell systems, ET-1 can stimulate cAMP
generation. ET-1 stimulates cAMP formation via the ETA
receptor and inhibits it via the ETB receptor in vascular smooth

cells (8). Interestingly, ET-1 increases cAMP levels in neona-
tal rat ventricular cardiomyocytes that solely express the ETA
receptor subtype alone (66).

Subsequent studies have yielded conflicting results con-
cerning the ET-1 action on L-type Ca2+ current (ICaL). ET-1 has
been reported to increase basal L-type Ca2+ current via the ETA
receptor in cardiac cells. The stimulation of the Ca2+ current
appears to be mediated by a sensitive G-protein (4, 42). Other-
wise, ET receptor stimulation causes in guinea pig ventricular
myocytes an increase in ICaL via PKC activation (83). ET-1
consistently decreases the isoprenaline-enhanced ICaL and
PKA-dependent Cl– current in a pertussis toxin sensitive
manner (29, 62). In contrast, ET-1 exerts a dual effect on the
ICaL in rabbit ventricular myocytes (34). At 1 nM, ET-1
increases the ICaL whereas at a higher concentration, ET-1
decreases the ICaL. The same authors find in a later study that
ETA receptor mediates the decrease and ETB receptor the
increase in ICaL (35).

ET-1 activates via its receptor subtypes at least two distinct
intracellular pathways in cardiomyocytes. The ETA receptor
appears to predominate in mediating the positive inotropic
response of ET-1 (45). However, the ETB receptor was also
shown to mediate a positive inotropic effect (3).

Nevertheless, ET-1 induces extremely controversial
responses depending on the experimental setting: ET-1 exerts
in more reductionistic experimental models like cardiomy-
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Fig. 3 Schematic of pathways
activated by endothelin-receptor
subtypes in cardiomyocytes. AC
adenylyl cyclase, G G-protein,
PLC phospholipase C, PI phos-
phatidylinositol, IP3 inositol
1,4,5-triphosphate, DAG diacyl-
glycerol, PKC proteinkinase C
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ocytes and papillary muscles a clear-cut positive inotropic
effect (10). Negative inotropic effects predominate in isolated
hearts and on in situ hearts (12, 36) although positive inotropic
effects have been observed (75). At least two different expla-
nations exist for these controversial findings. The negative
inotropic reactions of ET-1 in the more holistic models are
most likely owing to the ET-induced reduction in oxygen
supply that masks the positive inotropic effect. It should be
mentioned that ET-1 levels in the experimental setting are
relatively high compared with physiological conditions, where
the lower levels exclusively exert positive inotropic effects. On
the other hand, ET-1 decreases cAMP levels in ventricular
myocytes (29, 62), an effect more classically associated with
a negative inotropic response. However, it is imaginable that
ET-1 protects in this way the heart from the consequences of
a sympathetic stimulation, e.g., by preventing potentially
arrhythmogenic shortening of the action potential.

Pathophysiological significance

Upon observing an overactivity of the ET system, the central
question arises: what makes an elevated plasma ET-1 level a
critical indicator for numerous diseases? Some answers to this
question are given below.

CAD/restenosis

The vessel wall is a major target of ET-1. In addition to its
impressive, long-lasting modulation of vascular tone, ET-1
induces proliferation of vascular smooth muscle and the
expression of adhesion molecules (21). Furthermore, ET-1
enhances microvascular permeability and albumin extra-
vasation. These effects seem to be mediated through the
release of secondary mediators like thromboxane A2 and
platelet-activating factor via stimulation of the ETA receptor
(11). Thus, ET-1 appears to play an important role in vascular
diseases like atherosclerosis and in restenosis after percuna-
teous transluminal angioplasty (PTCA) (27). In atherosclero-
sis, ET-1 can lead to vasospasm and to the progression of
atherosclerosis in coronary plaque tissue (86, 87), and it can
promote tissue inflammation in ischemic myocardium. The
inflammatory response, once established, may further impair
oxygenation through edema and coagulation disturbances
leading to myocardial reperfusion injury.

Several processes are involved in the development of patho-
logical restenosis after PTCA, like adhesion of monocytes,
invasion of macrophages, and changes of the phenotype of the
medial smooth muscle cells which lead finally to neointimal
hyperplasie (2). ET-1 seems to be involved in several steps of
this development, with the ET-1 receptor density being upreg-
ulated in coronary arteries after PTCA (37).

Myocardial infarction/heart failure

Although the underlying mechanisms are still unclear, ET-1 is
involved in a variety of both acute and chronic cardiovascular
diseases. For example, ECE-1 and plasma ET-1 levels are ele-
vated in patients who suffered from myocardial infarction (5),
and ET-1 levels at 72 h post myocardial infarction accurately
predict long-term survival. Similar to patients with acute
infarction, ET-1 levels in CHF patients are elevated and corre-
late with the long-term outcome. As a consequence, the big
ET-1 plasma levels were superior in predicting the 1-year
mortality over such well-established predictors as plasma
atrial natriuretic peptide, norepinephrine, NYHA class, age,
and echocardiographic left ventricular parameters (51). Like-
wise, plasma ET-1 levels correlate closely with functional
classes of heart failure and thus become strong and indepen-
dent predictors of mortality in both acute and chronic heart
failure. The predictive power of plasma ET-1 is insofar unex-
pected as circulating ET-1 is degraded by about 80 % after a
single passage through the lung. Thus, an elevated ET-1 level
at 72 h post infarctum speaks for a long-lasting ET-1 release.

In an experimental model of chronic heart failure in rats, the
expression of preproendothelin-1 (ppET-1) mRNA was
markedly increased in ischemic myocardium, and ET-1-like
immunoreactivity was localized in cardiomyocytes, vascular
endothelial cells, macrophages, and proliferating fibroblasts
(61). Several mechanisms may explain the increased ppET-1
mRNA expression in the ischemic myocardium: 1) hypoxia
induces ppET-1 mRNA expression in endothelial cells and in
cardiomyocytes (25, 28); 2) hemodynamic overload results in
mechanical stress which increases ppET-1 mRNA levels (84);
and 3) neurohumoral mediators are activated after myocardial
infarction, e.g., the renin-angiotensin system and the sympa-
thetic catecholamine system, either of which can trigger ET-1
release (19).

Given the complex ET-1 actions, it is not easy to decide
whether increased ET-1 levels are beneficial or deleterious.
Some actions suggest that ET-1 is involved in the healing
process after myocardial infarction, since it exhibits mitogenic
properties (48, 76), releases proinflammatory cytokines (69),
and stimulates proliferation of cardiac fibroblasts and vascu-
lar smooth muscle cells (14, 57). In particular, the ETA recep-
tor seems to be responsible for the scar formation because the
early use of ETA antagonists (LU127043, LU135252,
EMD94246) shows detrimental effects on cardiac function
(26, 56). Unlike other peptides, which act rapidly upon
demand and then vanish, the ET-1 system is probably not
intended to act as an emergency agent, because maximum
upregulation of ppET-1 mRNA requires up to 7 days after
acute myocardial infarction (61).

Besides these beneficial effects, ET-1 seems to be an
important tool in managing the functional consequences of
myocardial infarction. In support of this notion, ET-1 levels



correlate with increased contractility in nonischemic myo-
cardial areas in a canine model of coronary occlusion (33). In
parallel, intravenous infusion of an ETA receptor antagonist
(BQ123) significantly reduced both heart rate and contractile
state in CHF rats (73). In another study, an ET receptor antag-
onist (bosentan) reduced arterial pressure and total peripheral
resistance, indicating that ET-1 participates in the maintenance
of cardiovascular function in chronic myocardial infarction
(59).

In contrast, other animal experiments provide evidence for
detrimental ET actions. The release of ET-1 seems to correlate
with the infarct size (33). Similarly, administration of an ET
receptor antagonist (PD145065) reduced infarct size and
ventricular arrhythmias in anesthetized rabbits (80). In pacing-
induced CHF in pigs, ETA receptor activation appears to con-
tribute to the development and progression of left ventricular
dysfunction (71). Moreover, in rats with myocardial infarction,
a combined ETA/ETB receptor antagonist (bosentan) partially
prevented cardiac remodeling and improved hemodynamics
(13, 54, 78). Long-term administration of ETA receptor antag-
onists (BQ123, LU135,252) also improved survival of rats
with chronic heart failure (53, 72). It is worth mentioning that
the effects of ET receptor antagonists as such on dysfunctional
human hearts remain to be elucidated.

How can the discrepant findings be interpreted? One could
speculate that a low ET-1 level could ameliorate cardiac
dysfunction in a number of ways. It is a fact, however, that
unphysiologically high ET-1 levels are clearly not desirable:
1) ET-1 induces a hypertrophic gene program (myocardial
ANP, BNP, b-MHC, and skeletal a-actin mRNAs) during
chronic heart failure (60), thus, contributing to excessive
hypertrophy. 2) ET-1 contributes to the progression of chronic
heart failure via long-term stimulation of myocardial contrac-
tility. 3) ET-1 drastically increases the peripheral vascular tone
leading to increased preload and afterload and a subsequent
increase in myocardial wall stress (60). 4) ET-1 drastically
increases cardiac vascular tone and further reduces oxygen
supply to the ischemic myocardium.

With this in mind, ET-1 seems to be a “witches brew”, in as
much as it exerts a variety of detrimental effects during
ischemic heart failure. On the other hand, ET-1 is involved in
the healing program. From a teleological point of view, this
discrepancy is unsatisfying, but maybe we have to accept the
possibility that ET-1 is a double edged sword.

Hypertension

In the early stage of ET-1 research, the impressive vasocon-
striction followed by the administration of ET-1 led to the
concept that ET-1 is important in the maintenance of physio-
logical vascular tone and in hypertension. The results of many
studies quenched the initial enthusiasm. For example, the

blockade of ETA receptors had no effect on forearm blood flow
in healthy men (6). In other studies investigating ET receptor
antagonists, hypotensive activity was observed in DOCA-salt
hypertensive rats, in rats under nitric oxide blockade, and in
renal hypertensive dogs, but not in spontaneously hypertensive
rats (52). On the other hand, a combined ETA/ETB antagonist
(bosentan) reduced blood pressure in patients with essential
hypertension (40).

These results suggest that the role of ET-1 in the mainte-
nance of basal vascular tone and blood pressure is still unclear.
Nonetheless, the deleterious prolonged vascular effects of
endogenous ET-1 could play a major role in patho-
physiological situations in which formation of nitric oxide is
impaired. It also appears likely that ET-1 participates in the
adverse cardiac and vascular remodeling of hypertension, as
well as in hypertensive end-organ damage (22).

Potential therapeutic strategies

Relatively few clinical studies have examined the effect of ET
receptor antagonists in cardiovascular diseases in humans
(Table 1), although the experimental findings strongly suggest
that modulating the endothelin system should become a fruit-
ful field for pharmacological interventions. To date, antago-
nists of ETA and ETB receptors and inhibitors of the endothelin
converting enzyme are available as pharmacological tools. On
the other hand, transgenic animal models are available to
investigate additional avenues for therapeutic interventions,
including ET-1 and ETA and ETB knockout mice, and rats in
which either ET-1 and ET-2 or ET receptors can be overex-
pressed (63).

Cardiovascular diseases

The predominantly beneficial effect of blocking ET-receptors
in a variety of cardiovascular diseases seems to result from the
reduction of vascular resistance without increasing heart rate
or neurohumoral activation, as demonstrated by the following
examples (Table 1).

Bosentan increased coronary artery diameter in patients
with coronary artery disease, particularly in vessels with no or
mild angiographic changes. Because coronary flow velocity
was unaffected (82), coronary blood flow and thus oxygen sup-
ply must have increased. In CHF patients already receiving
treatment with an ACE inhibitor, infusion of a combined ECE
and neutral endopeptidase inhibitor (phosphoramidon) and an
ETA receptor antagonist (BQ123) increased forearm blood
flow (43). In another study, patients with symptomatic heart
failure (NYHA III) received oral bosentan in addition to a con-
ventional triple therapy (diuretics, digoxin, ACE inhibitors).
After two weeks, cardiac output had increased and systemic
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and pulmonary vascular resistance had decreased without
counter-regulatory neurohumoral activation or reflex increase
in heart rate (77).

Hypertension

An ETA receptor antagonist (BQ123) increased forearm blood
flow in hypertensive patients, and combining this with the ETB
receptor antagonist (BQ788) resulted in an even greater
vasodilator response in the same patients (6). Likewise,
bosentan significantly lowered blood pressure in patients with
essential hypertension (40). Both studies suggest that ET-1
contributes to the elevated blood pressure in hypertensive
patients and that vasoconstriction is mediated by both ETA and
ETB receptors.

Limitations

Despite the first promising results, many more experimental
and clinical studies need to be completed for several reasons

in order to make intervention via the ET system a safe therapy:
1) Immediate application of results of animal experiments to
humans could disregard considerable differences in the distri-
bution and density of receptor subtypes. 2) The receptor den-
sity might vary greatly between healthy subjects and patients.
For example, in chronic renal failure, an ETA receptor antag-
onist revealed that the contribution of endogenous ET-1 to rest-
ing vascular tone appeared to be reduced (20). Likewise, in
patients with syndrome X, ET-1 caused a less pronounced
reduction of forearm blood flow than in healthy subjects, sug-
gesting an ETA receptor downregulation (55). 3) ET-1 plasma
concentrations in healthy subjects are in the pM range, while
in the experimental setting, concentrations in the nM range are
frequently investigated (11, 17, 32). Hence, these results might
be misleading if one remembers the notion dosis facit
venenum. 4) The strategy on what to antagonize is unclear. For
example, blocking only ETA receptors could well be superior
to simultaneously blocking both ETA and ETB receptors,
assuming that ETB receptors are responsible for ET-1 clear-
ance (16). 5) With respect to bosentan, the long-term impact
of modulating the endothelin system on other organs like the

Table 1 Actions of ET antagonists in patients with various diseases

disease ET-antagonist type Measurement / changes author

essential BQ123 i.a. A BQ123: + 33 % FBF (6)
hypertension BQ788 i.a. B (controls: no significant modification)

BQ123 + BQ788: +63% FBF 
(controls: no significant modification)

essential bosentan A/B Q diastolic pressure, rR HR, no activation (40)
hypertension of sympathetic nervous system or RAS

stable coronary bosentan A/B bosentan: Q systolic blood pressure + (82)
artery disease q HR + Qcoronary diameter

CHF treated with phosphoramidon (combined ECE phosphoramidon: + 52 % FBF (43)
ACE inhibitors and neutral endopeptidase inhibitor) BQ123: + 31 % FBF

BQ123 A

NYHA III bosentan A/B Q MAP, Q pulm. artery mean, Q capillary wedge (77)
(conventional triple therapy) pressure, Q right atrial pressure, q CO,

rR HR, Q systemic and vascular resistance
q plasma ET-1 level, rR other hormones

syndrome X BQ123 intrabrachial A + 20 % FBF (55)

chronic renal failure BQ123 A BQ123: + 11 % FBF (controls + 44 %) (20)
phosphoramidon phosphoramidon: + 68 % FBF (controls + 181 %)
(a combined ECE and neutral ET-1 level: – 35 % (controls: – 36 %)
endopeptidase inhibitor)

migraine bosentan A/B no effect on improvement of headache (49)
compared with placebo

FBF forearm blood flow; HR heart rate; RAS renin-angiotensin system; MAP mean arterial pressure; CO cardiac output; CHF chronic heart failure



liver (67) strongly deserves further elucidation. 6) As long as
the authentic effects of modulating the endothelin system are
not entirely settled, any therapy in combination with other
compounds seems precarious. For example, even if a com-
bined ET-receptor/ACE inhibition might prove beneficial 7) it
should be initiated at a later date.

Conclusion

The physiological significance of the ET system is not yet fully
established and further effects are still coming to light. On the
other hand, interactions with other compounds have been

largely ignored. This can be said in particular of nitric oxide,
a compound with almost mirror-like activities. The manifold
and controversial effects of the ET system make research on it
fascinating yet challenging at the same time. The pathophy-
siological significance of the endothelin system seems even
more uncertain. Thus, despite their anticipated beneficial
effects, any application of agents modulating the endothelin
system will require further research before their routine
clinical usage can be envisioned.
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