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H.-J. Schnittler Structural and functional aspects 
of intercellular junctions in vascular
endothelium

Although a wide heterogeneity of
endothelial cell-to-cell junctions exists
in situ, they should be considered in
general as adherens type junctions in
which gap and tight junctions are
morphologically inserted.

Under certain pathological condi-
tions, such as wound healing, angio-
genesis and many types of inflamma-
tion, the interendothelial junctions have
to be dissociated and reorganized in
which proteins of the junctions are
crucially involved. These important
mechanisms predict a sophisticated
regulation of junctional proteins. The
present paper describes the organiza-

tion and functional aspects of the
occludin/ZO-1 complex typically
found in tight junctions, the cadherin/
catenin complex of the adherens junc-
tions and the connection of these pro-
tein complexes to the dense peripheral
band via actin filaments. In addition,
special attention has been drawn on the
function of junction-associated proteins
with respect to their role under fluid
shear stress and interendothelial gap
formation during inflammation.
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Abstract  Cell-to-cell-junctions of
endothelial cells are specialized and
differentiated areas of the plasma
membrane. The main functions include
the separation of the intravascular 
and extravascular compartments, the
mechanical connection of the cells, and
the maintenance of the cell polarity.

Introduction

The endothelium has to be considered as a wide spread tissue
lining the entire surface of the heart and the vessels. It signi-
ficantly contributes to a wide variety of cardiovascular func-
tions, which include the regulation of permeability, blood pres-
sure, coagulation, transmigration of leukocytes, exchange of
oxygen, carbon dioxide, nutritients and metabolites. For
proper function of the endothelium, integrity is required, i.e.,
mainly ensured by endothelial cell-to-cell junctions.

Morphologically, endothelial cell-to-cell junctions of the
blood vessels primarily consist of an extended adherence junc-
tional zone in which tight junctions and gap junctions are
inserted (12, 66, 67). Adherens junctions are common to all
endothelial cells, but tight and gap junctions appear to be
graduated within different vascular segments (66, 67). Both,
tight and gap junctions are frequent in endothelial cells of large
vessels and arterioles. In capillaries and postcapillary venules

tight junctions are staggered or interrupted, respectively, and
gap junctions are diminished or even absent (66, 67). Whereas
gap junctions form channels between adjacent cells allowing
intercellular communication, the adherens type junctions
mechanically hold the cells together and the tight junctions are
responsible for sealing properties between adjacent cells (1,
57, 76). The notable heterogeneous appearance of the endothe-
lium within different organs and vascular segments also
reflects wide variations in endothelial functions (66, 67).

Pathophysiological reactions such as inflammation (change
of paraendothelial permeability and extravasation of leuko-
cytes), wound healing, and angiogenesis (both associated with
migration and proliferation) cause a dissociation and re-
arrangement of endothelial cell-to-cell junctions. With respect
to these pathophysiological reactions, changes in the molecu-
lar interactions between proteins of the cell-to-cell junctions
are required to allow cell migration, proliferation and changes
in paraendothelial permeability. Junction-associated compo-
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nents seem also to be involved in cellular signaling. For all
these reasons, the molecular and functional analyses of
endothelial cell-to-cell junctions are one of the primary sub-
jects of current endothelial cell research.

Molecular organization of interendothelial junctions

The organization of cell-to-cell junctions is primarily mediated
by integral membrane proteins (cell adhesion molecules) that
display homophilic or heterophilic binding to integral mem-

brane proteins (cadherins, occludin, PECAM-1, a2/b1 and
a5/b1-integrins) of adjacent cells or extracellular matrix com-
ponents. At the cytoplasmic face the integral cell adhesion
molecules are connected to cytoskeletal filament systems
(actin filaments, intermediate filaments) via intermediate pro-
teins, such as catenins, a-actinin, ZO-1, ZO-2,  desmoplakin,
(for details see below and compare Figs. 1 and 2). The occur-
rence of such a wide variety of intermediate proteins might be
related to specific and differentiated responses of the junctions
to diverse stimuli. This assumption is supported by the obser-
vations that intercellular junctions are rich in signaling pro-
teins of several signaling pathways (e.g., p100, p120cas, rab 13,
VASP, p125FAK) and that components of junctions serve as pro-
tein kinase and protein-phosphatase substrates and contribute
to transcriptional control (2, 3, 5, 10, 14, 17, 23, 25, 33, 44, 50,
65, 68, 69, 74, 75, 83, 85).

The tight and adherens junctional complexes are connected
to the dense peripheral band (DPB) that is found at the cyto-
plasmic face along the junctional borders of adjacent endo-
thelial cells in situ and in highly confluent endothelial cultures
(Figs. 1 and 2) (16, 58, 79, 81). The DPB mainly consists of
filamentous actin, myosin, and a-actinin (16, 58, 59, 79, 81)
which provide the molecular machinery for generation of con-
tractile force (9, 59). Immunoelectron microscopy of endo-
thelial cells using antibodies directed to actin and myosin
revealed an extension of the DPB from the upper part (apical

Fig. 1 Scheme illustrating the molecular organization of endothelial tight
and adherens junctions (compare with Fig. 2). Adherens junctions are
common to all endothelial junctions consisting of Ca2+ dependent cad-
herins, catenins, and others as illustrated. These protein complexes are
connected to actin filaments that together with myosin filaments builds
up the dense peripheral band (DPB) along the endothelial junctions. Tight
junctions appear to be heterogeneous distributed in endothelial cells
within the vascular system but its components, such as occludin and 
ZO-1, can be found. The DPB is a highly dynamic structure that might be
involved in regulation of tight and adherens junctions. PECAM-1 a mem-
ber of the Ca2+ independent immunoglobulin superfamily is also present
at the junctions and is involved in transmigration of leukocytes. (Gap
junctions and integrins are not included).



cell surface) to the lower part (basal, close to the basement
membrane) of the junctions (59) (Fig. 3). Evidence has been
provided that connection of tight and adherens junctional com-
plexes to actin filaments (component of the DPB) seems to be
substantial for immobilization of the protein complexes and,
thus, for junctional stability and function (for review see 73).
The DPB is a highly dynamic structure which is considerably
disintegrated after endothelial cell activation by proinflamma-
tory agents and under wound healing conditions (16, 26, 38,
63, 71, 72, 79, 81, 82) and therefore might provide an regula-
tory link between the different types of cell-to-cell junctional
proteins.

Endothelial tight junctions

Tight junctions in general are supposed to fulfill at least two
functions. First, they contribute to the maintenance of cell
polarity (1, 76), and second they seal adjacent cells inhibiting
uncontrolled paracellular exchange of small molecules,
macromolecules, and water (8, 57, 76, 78). However, the seal-
ing properties of tight junctions vary between endothelial cells
of different locations. The limited occurrence of endothelial
tight junctions in postcapillary venules (66, 67) facilitates
reabsorption of filtered fluids and might also be the reason for
an increased permeability at these locations during inflamma-
tion (31, 41).

Occludin, a unique integral membrane protein appears
exclusively at tight junctions in epithelial and non-activated
endothelial cells in a continuous band (Figs. 1 and 2). Occludin
does not display sequence homologies to other known cell
adhesion molecules (15), and the presence of two hydropho-
bic extracellular loops that are nearly uncharged probably
plays a central role in building and maintaining sealing fea-
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Fig. 2 Immunocytochemical localization of junction-associated proteins
in endothelial cells of confluent cultures of the human umbilical vein 
(a, c, d, e, f) and of the right ventricle of the pig heart (b). Actin filaments
(a, b) are marked with rhodamine labeled phalloidin (specifically labels
actin filaments, but not actin monomers). Myosin (a1), VE-cadherin (c)
plakoglobin (d), occludin (e), and ZO-1 (f) are labeled with appropriate
antibodies. (a) Actin filaments are restricted to the margins of endothelial
junctions (arrowheads) in highly confluent cultures of endothelial cells (a)
and in low pressure segments of the cardiovascular system, here demon-
strated for endocardial endothelial cells of the right ventricle of the pig
heart in situ by confocal laser microscopy (b). Myosin is seen in a sar-
comere-like pattern (a1), (arrows). Together with actin filaments, myosin
provides the molecular base for contraction. Whereas VE-cadherin and
plakoglobin (g-catenin) are components of the adherens junctions,
occludin and ZO-1 are typically components of tight junctons, although
ZO-1 has also been described to occur in adhesion junctions. Note, in
unstimulated endothelial cells, all proteins of the tight and adhesion junc-
tions are localized in a continuous band along the endothelial borders.

Fig. 3 Staining of actin (A) and myosin (B) at interendothelial junctions
in endothelial cells of the rat skin by immunogold labeling (10 nm). Note,
the immunoreaction of actin and myosin along the junctions from the
apical pole down to the basement membrane. These structures are
generally designated as dense peripheral band (DPB) and build a bridge
between tight and adherens junctions that might be important for regu-
lation of junctions under pathological conditions. Asterisks indicate labels
close to the plasma membrane, (taken from 59).
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tures of tight junctions. Based on sequence analysis, it has been
assumed that the hydrophobic loops of adjacent cells bind in
a homophilic interdigitating manner (for review see 1), and
phosphorylation of occludin seems to play a central role in
occludin adhesion (55). At the cytoplasmic face, occludin is
directly or indirectly linked to the following proteins: the
zonula occludens protein-1 and -2 (ZO-1, ZO-2) (20, 70), cin-
gulin (7), the 7H6 antigen (not in endothelial cells) (84), and
rab 13 (83). The molecular organization and functional role of
these molecules in building, maintaining, and regulating tight
junctions is beginning to be unraveled (for review see 1, 76).
ZO-1 binds directly to the carboxyterminus of occludin and
seems also to be associated with cadherin based adherens junc-
tions as well as with spectrin a component of the membrane
cytoskeleton (27). In contrast to epithelial tight junctions,
endothelial cells express a ZO-1a-isoform, lacking 80 amino
acids at the C-terminus (80). This isoform seems to be more
plastic due to attachment to the underlying actin filament
cytoskeleton than epithelial ZO-1. Such a plasticity might
significantly influence the physiologically dynamic nature of
endothelial tight junctions in response to pathological stimuli
such as increased permeability in inflammation.

The detailed molecular organization of tight junctions is
still unknown, but two models, the protein- and the lipid-
model, have been hypothesized (78). The former is based on
protein-protein interactions comparable to the organization of
adherens type junctions. The high electrical resistance and the
sealing properties of tight junctions in this model are thought
to be mediated by interaction of the hydrophobic extracellular
domains. The lipid model focuses on the presence of cylindri-
cal inverted lipid micelles (assumed to be the tight junction
strands) that are thought to be initiated and stabilized by
occludin and associated proteins (57, 78). Experimental evi-
dence supporting the lipid model has been obtained by deter-
mination of lateral diffusion of fluorescent phospholipids
between adjacent cells in combination with a photobleaching
technique (19, 78). Diffusion of phospholipids was demon-
strated between adjacent cells that had developed tight junc-
tions. This indicates a continuous phospholipid flow between
at least the outer leaflets of the plasma membrane which is
consistent with the lipid model of tight junctions (19, 78). In
any case, tight junction formation and maintenance require
occludin and occludin-associated proteins as well as the bind-
ing to the underlying actin filament system (40).

Adherens junctions in endothelial cells

Adherens junctions mechanically connect endothelial cells
and provide the structural base for interendothelial mechani-
cal stability. Adherens junctions consist of integral membrane
proteins that belong to the Ca2+ dependent cadherin family
with the subtypes VE-cadherin (35, 36), P-cadherin (37), N-

cadherin (58), and E-cadherin (54). At the cytoplasmic face,
cadherins are associated with actin filaments of the DPB
system via a-, b-, g-actinin and a-actinin (25, 29, 32, 45, 52).
Whereas b- and g-catenin are connected directly to cadherins,
a-catenin provides a link to the actin filament system via a-
actinin (32) (Fig. 1). Further proteins, such as vinculin, p120cas,
and the vasodilator-stimulated phosphoprotein (VASP) are
also localized along the cell-to-cell junctions (22, 86) and
might be important to specific responses of the junctions to
certain stimuli. A central role of the Ca2+ dependent cadherins
and g-catenin (plakoglobin) in mechanical stability of
endothelial cells has been recently demonstrated (64). Deple-
tion of extracellular Ca2+ to concentrations < 10-7 M caused a
disapperance of both cadherins and catenins from cell-to-cell
junctions, whereas the Ca2+ independent platelet endothelial
cell adhesion molecule-1 (PECAM-1) remained unchanged
(Fig. 4). Under resting conditions intercellular integrity was
completely maintained, but the application of shear stress,

Fig. 4 Staining of confluent cultures of human umbilical vein endothe-
lial cells with antibodies directed to vascular endothelial cadherin (VE-
cadherin), plakoglobin (g-catenin), and platelet endothelial cell adhesion
molecule 1 (PECAM-1) before (a–c) and after (d–i) extracelluar Ca2+

depletion (addition of 3 mM EGTA resulting in a final concentration of <
10-7 M). Note the absence of VE-cadherin and plakoglobin after Ca2+-
depletion but PECAM-1 remains unchanged. Importantly, there  is no
dissociation of cell-to-cell junctions even after 180 min following Ca2+

depletion as indicated by the continuous staining of PECAM-1 (partially
taken from 64).



using a cone and plate rheological system (60), caused a
marked dissociation of cell-to-cell junctions (Fig. 5). This
shows a crucial role of the cadherin/catenin-complex in
interendothelial cell adhesion in fluid shear stress and that
PECAM-1 (independent from the cadherin-catenin-complex)
is not able to compensate for the loss of cadherin-cadherin-
interaction under these conditions. An important role of plako-
globin (g-catenin) has been demonstrated in interendothelial
adhesion under the load of fluid shear stress (64). Knock out
of plakoglobin in cultured endothelial cells by microinjection
of antisense oligonucleotides caused a depletion of plakoglo-
bin in confluent cultures of endothelial cells within 24 h, but
leaves cadherins, a-catenin, b-catenin, and PECAM-1 un-
affected (64). Under resting conditions cell-to-cell-junctions
were observed as a continuous uninterrupted structure, but the
application of fluid shear stress caused interendothelial gap
formation between plakoglobin depleted cells (64) (Fig. 6).
The data indicate a crucial role of plakoglobin in maintaining
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Fig. 5 Cultured human umbilical vein endothelial cells stained by sliver
nitrate to visualize endothelial cell-to-cell junctions in Nomarsky optic
under Ca2+ depletion and shear stress. Cells exposed to shear stress in
normal Ca2+ concentration (a) or after Ca2+ depletion under resting
conditions (b) did not display any intercellular gaps or disturbances of
endothelial integrity. In contrast, Ca2+ depletion and shear stress (c)
caused a dissociation of cell-to-cell junctions within minutes. These data
indicate a central role of the Ca2+ dependent cadherin-cadherin interaction
to ensure intercellular integrity under mechanical loads of fluid shear
stress.

Fig. 6 Confluent cultures of porcine endothelial cells after depletion of
plakoglobin by microinjection of antisense oligonucleotides (a, b) under
resting conditions (b) and after exposure to fluid shear stress (a). Cells are
stained with phalloidin-rhodamine to visualize interendothelial gap for-
mation. Note, cells do not display intercellular gaps after plakoglobin
depletion (b) but large gaps are visible (arrows) after shear stress of
6dyn/cm2. This indicates that plakoglobin is essential to maintain
endothelial integrity under mechanical loads of fluid shear stress.
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cell-to-cell junctional integrity under shear stress and further
supports the hypothesis that plakoglobin might be essential in
maturation of endothelial cell-to-cell junctions (36). More-
over, plakoglobin may contribute together with b-catenin to
transcriptional control and gene regulation. This was con-
cluded from the observation that both proteins are translocated
into the nuclei in developing xenopus blastomers (10) and that
b-catenin binds to transcription factor LEF-1 (3). In addition,
b-catenin (compare Fig. 1) binds to growth factors (25) and
has also been suggested to play a role in translocation of ZO-1
to tight junctional complexes (49).

Recently a further adherens junction-associated protein,
desmoplakin, was identified in interendothelial junctions in
cultured human umbilical vein endothelial cells (77). Desmo-
plakin is a well-known component of desmosomes in epi-
thelial cells and is linked to keratin intermediate filaments (for
review see 13). However, vascular endothelial cells in general
do neither express keratin (for exceptions see 28) nor do they
display desmosoms. Therefore, the presence of desmoplakin
at endothelial junctions might be important to link endothelial
intermediate filaments of the vimentin-type (typical interme-
diate filaments of the vascular endothelium) to the junctions
and subsequently may contribute to endothelial and inter-
endothelial mechanical stability.

Further junction-associated proteins

A special feature of interendothelial junctions is the presence
of platelet endothelial cell adhesion molecule-1 (PECAM-1),
a member of the Ca2+ independent immunoglobulin super-
family (compare Figs. 1 and 4). PECAM-1 is also expressed
in platelets, monocytes, neutrophils, and some T-cells (for
review see 8a) but is not found in epithelial junctions. It is
probably involved in mediating inflammatory responses such
as monocyte-endothelial interactions. Moreover, PECAM-1 is
a ligand for av/b3-integrin (47), which is known to be involved
in angiogenesis (4). a2/b1 and a5/b1 integrins have been
shown to be localized at interendothelial junctions as well
(34) and may also be involved in angiogenesis. These proteins
are members of the integrin superfamily that typically medi-
ate cell-substrate adhesion of adherent cells and might serve
as signal recognition molecules as known from various inte-
grins. The specific role of integrins at interendothelial junc-
tions is still unknown.

Functional aspects of tight and adherens junctions in
endothelial permeability

Increased endothelial permeability during inflammation can
be caused by certain agents, such as histamine, thrombin,

bradykinine, serotonin, cytokines, peoxides, prostacyclins
(38). Whereas histamine and thrombin cause a quick increase
in endothelial permeability, polypeptide mediators, such as
cytokines, are long lasting and require de novo and/or
increased transcription as well as protein synthesis (38). It
should be noted that increase in permeability caused by
cytokines seems to be the result of various, in concert acting
mediators that are released from cells of the mononuclear
phagocyte system (MPS) and other leukocytes after stimula-
tion (e.g., by bacteria, viruses, parasites, cytokines). Toxins,
such as clostridium botulinum C2- and clostridium difficile
C3-toxin and E. coli hemolysin, similarly increase endothelial
permeability (24, 71, 72). All these agents act via different sig-
naling mechanisms, but the final result is the local dissociation
of tight and adherence junctions (11) and a reorganization of
the actin-containing microfilament systems (16, 26, 38, 46, 63,
71, 72, 79, 81, 82). Although formation of transcellular holes
in frog mesenteric capillaries have been described after stim-
ulation with the Ca2+ ionophore A 23187 (42) or application of
VEGF (53), increased permeability in situ and in cultured
endothelial cells is mainly correlated with formation of gaps
between adjacent endothelial cells (for review see 38).

Activation of endothelial cells by thrombin caused dissoci-
ation of intercellular junctions (gap formation) (38) and was
shown to be accompanied with phosphorylation of b-catenin
and g-catenin (48). Proteinkinase C inhibitors prevented the
phosphorylation of b-catenin and g-catenin and inhibited
increase in permeability (48). This suggests that catenins are
activated by phosphorylation, which seems to be critical for
junctional stability and integrity. In addition, an increase in
permeability provoked by supernatants of virus activated
macrophages or recombinant human TNF-a in the presence of
H2O2 (10 µM) was associated with interendothelial gap for-
mation and caused redistribution of the adherens junction-
associated protein VE-cadherin, a-catenin, b-catenin, plako-
globin (g-catenin), and PECAM-1 in cultured human umbili-
cal vein endothelial cells (11, 61, 62) (Fig. 7).

Both, tight and adherens junctional complexes (see above)
are linked to actin filaments of the DPB. Such a linkage might
be important under circumstances when both tight and
adherens junctions have to be cleaved (e.g., interendothelial
gap formation caused by proinflammatory mediators, tumor
cell extravasation, diapedesis of leukocytes). It has been
shown that gap formation in general is associated with both,
the dissociation of the DPB and a reorganization of actin fila-
ments and associated proteins (16, 26, 38, 63, 71, 72, 79, 81,
82). Actin filaments are regulated by Rho proteins, small GTP-
binding proteins, that are probably the top of several signaling
cascades (21, 39, 43). Whereas activation of Rho is required
to cadherin-dependent formation of cell-to-cell junctions in
epithelial cells (6), inactivation of Rho proteins plays a criti-
cal role in interendothelial gap formation and is associated
with increase in endothelial permeability (24). This has been



demonstrated using clostridium difficile toxin B that inacti-
vates Rho by glycosylation at threonine 37 (30). Clostridium
difficile toxin B induced permeability could not be blocked by
elevation of cyclic nucleotides which act as earlier signaling

molecules (24). Rho proteins also activate a tyrosine kinase
(51) that in turn causes phosphorylation of several proteins
including pp125FAK (51), which has been shown to be local-
ized at focal contacts and cell-to-cell junctions (74). Thus,
actin filament dynamics might be modulated via cell-to-cell
junction-associated proteins. This is consistent with cell sig-
naling responses localized at the junctions. On the other hand,
if preexisting actin filaments are directly depolymerized, a
dissociation of cell-to-cell junctions can be observed. This has
been shown in cultured endothelial cells by application of
clostridium botulinum C2-toxin (72). Clostridium botulinum
C2-toxin is highly specific to ADP-ribosylate actin monomers
(ADP-r-actin) and, therefore, causes actin filament net depoly-
merization and in turn increases endothelial permeability by
interendothelial gap formation (72). The same effect could be
directly obtained after microinjection of ADP-r-actin in
endothelial cells. Under these conditions indirect effects of
actin filament alteration can be largely excluded and show that
actin filaments are not only essential in endothelial cells for
functionally competent interendothelial junctions (unpub-
lished observation).

Evidence has been provided that also contraction of
endothelial cells is involved in interendothelial gap formation.
In confluent cultures of skinned endothelial cells it has been
shown that contraction, mediated by an actin-myosin-filament
sliding mechanism, can be inhibited in endothelial cells using
N-ethylmaleimide-modified S1-cross bridges (S1-NEM) pre-
pared from skeletal muscle myosin. S1-NEM binds to actin
filaments like the whole myosin molecule but is not able to
dissociate in the presence of ATP and Ca2+. Incubation of S1-
NEM to skinned endothelial cells inhibited interendothelial
gap formation (58, 59) which suggests that actin-myosin fila-
ment sliding mechanism is involved in interendothelial gap
formation. In addition, it has been shown that gap formation
induced by proinflammatory agents requires myosin light
chain phosphorylation (18, 59, 82) which is a prerequisite for
contraction in smooth muscle and non muscle cells. These
results suggest a contraction of endothelial cells as a mecha-
nism to cause gap formation. It has to be verified if contrac-
tion or microfilament reorganization or both is critical in
interendothelial gap formation before or after activation of
cell-to-cell junctional proteins.
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Fig. 7 Visualization of plakoglobin redistribution following stimulation
with culture supernatants of filovirus activated monocytes/macrophages.
Culture supernatants of activated monocytes/macrophages containing
proinflammatory agents such as TNF-a. (A) A continuous band of plako-
globin immunoreactivity is seen in untreated cultures and (B) in cultures
treated with culture supernatants taken from uninfected monocytes/
macrophages. (C) Gap formation and redistribution of plakoglobin
(arrowheads) is seen in endothelial cultures treated with culture super-
natants of filovirus activated monocytes/macrophages. Under these
conditions an increase in paraendothelial permeability was measured; for
details see (8). (D) A redistribution of junction-associated proteins was
also observed after treatment of endothelial cultures with recombinant 
TNF-a (10 ng/ml) and H2O2 (10 µM). These phenomena demonstrate that
the increase of endothelial permeability is associated with a redistribu-
tion of junction-associated-proteins. Fig. 7 was reproduced from (8).
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