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Abstract
The prospective use of human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CM) for cardiac regenerative 
medicine strongly depends on the electro-mechanical properties of these cells, especially regarding the  Ca2+-dependent 
excitation–contraction (EC) coupling mechanism. Currently, the immature structural and functional features of hiPSC-CM 
limit the progression towards clinical applications. Here, we show that a specific microarchitecture is essential for functional 
maturation of hiPSC-CM. Structural remodelling towards a cuboid cell shape and induction of BIN1, a facilitator of mem-
brane invaginations, lead to transverse (t)-tubule-like structures. This transformation brings two  Ca2+ channels critical for 
EC coupling in close proximity, the L-type  Ca2+ channel at the sarcolemma and the ryanodine receptor at the sarcoplasmic 
reticulum. Consequently, the  Ca2+-dependent functional interaction of these channels becomes more efficient, leading to 
improved spatio-temporal synchronisation of  Ca2+ transients and higher EC coupling gain. Thus, functional maturation of 
hiPSC-cardiomyocytes by optimised cell microarchitecture needs to be considered for future cardiac regenerative approaches.
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Introduction

The technology to generate cardiomyocytes from human-
induced pluripotent stem cells (hiPSC-CM) represents a 
great breakthrough for pharmacological tests and disease 
modelling in cardiovascular research [12, 22] and fuels new 
hope for cell-based therapy of patients with heart failure 
[28, 42]. Human iPSC-CM reveal all essential cardiac fea-
tures at the electro-mechanical level but retain a premature 
phenotype compared to ventricular cardiomyocytes of the 
adult heart. In particular, cell morphology and subcellu-
lar microarchitecture remain underdeveloped, lacking the 
typical anisotropic cuboid shape of adult ventricular car-
diomyocytes and the establishment of transverse-axial (t)-
tubular network (aka TATS) of the sarcolemma [29, 46]. 
As a consequence, myofibrils are distributed in a diffuse 
manner across the rather polygonal cell shape leading to 
underdeveloped sarcomeres and inefficient contraction [33, 
58]. Moreover, the absence of t-tubules, which provide the 
structural basis for functional interaction between the sar-
colemmal L-type  Ca2+ channel (LTCC) and the intracellular 
 Ca2+ release channel, the type 2 ryanodine receptor (RyR2), 
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located at the sarcoplasmic reticulum (SR), is the reason 
for inefficient  Ca2+ handling in hiPSC-CM [2, 7]. In adult 
cardiomyocytes, efficient functional coupling between LTCC 
and RyR2 is ensured by close proximity of both channels of 
about 20 nm, a distance that is provided by the dyadic cleft 
between the t-tubular membrane and the SR [15, 49, 50]. 
Depolarization-induced activation of LTCCs leads to  Ca2+ 
influx at the t-tubular membrane, which triggers further  Ca2+ 
release by RyR2s needed for contraction, a process called 
 Ca2+-induced  Ca2+ release (CICR) [5]. The efficiency of this 
excitation–contraction (EC) coupling mechanism is funda-
mentally dependent on the amplification of the initial  Ca2+ 
influx by RyR2-mediated  Ca2+ release and on the spatio-
temporal synchronisation of this  Ca2+ release throughout 
the cell, which is normally ensured by the well-organised 
t-tubular network deep into the cell [4, 9]. Absence or dis-
ruption of the t-tubular network may alter CICR leading to 
a reduction of the EC coupling gain, as known from cardio-
myocytes derived from hypertrophied or failing heart [47, 
57]. In hiPSC-CM, such a well-structured tubular network 
and consequently the formation of dyads are not yet devel-
oped causing abnormal and inefficient  Ca2+ handling and 
EC coupling [61]. So far, the triggers for the development 
of t-tubules in premature cardiomyocytes have not yet been 
identified, and many approaches have been tested to drive 
these novel cardiomyocytes to further structural and func-
tional maturation in vitro. They comprise biophysical and 
biochemical stimulations [36, 45, 59], co-cultures with car-
diac non-cardiomyocytes [8, 19], cell or substrate patterning 
and tissue engineering [27, 40, 43, 46, 51].

Recent research has focussed intensively on the investiga-
tion of the effect of topographical and physical cues on the 
maturation of hiPSC-CM during culture. Cardiomyocytes 
grown on micropatterned substrates enhanced cell align-
ment and improved  Ca2+ handling and contraction [23, 35, 
40, 54]. In a recent study, we reported that single mouse 
iPSC-CM seeded into cuboid 3D micro-scaffolds produced 
strong tubular invaginations and revealed more robust  Ca2+ 
signalling [46].

Apart from environmental parameters, the question arises 
which cellular mechanisms may be involved in tubulogen-
esis. Few proteins have come into the focus of attention as 
potential key players in the process of t-tubule and dyad 
formation, specifically caveolin-3, nexilin and junctophilin. 
While overexpression of caveolin-3 prevented the loss of 
tubular network in cardiomyocytes from pressure overload-
induced failing mouse hearts [24], loss of nexilin, a compo-
nent of cardiac dyads, resulted in a loss of the tubular net-
work and disruption of dyads in ventricular cardiomyocytes 
[30]. Junctophilin-2 expression may be involved in t-tubule 
development and dyad stabilisation in hiPSC-CM [10, 37].

Here, we focus on the potential role of the bridging inte-
grator-1 protein (BIN1) in t-tubule biogenesis [3, 14, 17]. 

As a member of the BAR (BIN1-amphiphysin/Rvs) domain 
superfamily, BIN1 is involved in multiple cellular processes 
including membrane trafficking, recycling and remodel-
ling, cytoskeleton regulation, muscle development, DNA 
repair and apoptosis [39]. BIN1 has been identified in the 
brain, heart and skeletal muscle, and is composed of: (i) an 
amino-terminal BAR domain, which oligomerizes and forms 
a “banana-shaped” molecule to interact with plasma mem-
brane lipids; (ii) a tissue-specific proline-rich middle linkage 
domain; and (iii) a carboxy-terminal SH3 domain interact-
ing with intracellular proteins [15]. BIN1 has not only been 
shown to be indispensable for muscle development, t-tubule 
formation,  Ca2+ homeostasis and fibre organisation of skel-
etal muscle cells [38, 52], but a reduction of BIN1 has also 
been described in diseased cardiomyocytes, thereby corre-
lating with a disruption of the t-tubular network [18, 55].

To induce further maturation of hiPSC-CM, we merged 
two approaches and combined 3D reshaping together with 
BIN1 expression to trigger structural remodelling and matu-
ration. We tested the hypothesis that reshaping hiPSC-CM in 
pre-designed cuboid 3D micro-scaffolds and overexpression 
of BIN1 lead to tubulogenesis and improve  Ca2+ handling at 
the level of EC coupling. Our data demonstrate that a cardi-
omyocyte-specific microarchitecture comprising a t-tubular-
like membrane network is required for efficient EC coupling 
in hiPSC-CM and, thus, for the development of robust and 
mature cardiomyocytes. Our findings open new avenues for 
future hiPSC-cardiomyocytes development and applications 
as cardiac cell grafts.

Methods

Human iPS cells and cardiogenic differentiation

Human iPS cell lines were kindly provided by Dr. Lukas 
Cyganek, Stem Cell Unit Göttingen, University Medical 
Center Göttingen (UMG). Wild-type iPSC line UMGi014-
C clone 14 (isWT1.14) was generated from dermal fibro-
blasts using the integration-free Sendai virus and described 
previously [44]. Two other cell lines were used to replicate 
the representative experiments (ethical approval number 
for all hiPSC lines used in this study: S-455/2018). hiPSC 
were differentiated into cardiomyocytes by modulation of 
the Wnt/β-catenin signalling pathway at 95–100% conflu-
ency as previously described [62]. After differentiation, cells 
were purified by metabolic selection using glucose-free and 
sodium–lactate-supplemented medium to prevent growth of 
non-cardiomyocytes. Finally, cells were maintained in RPMI 
plus B27 with insulin until further experiments. A detailed 
description of the differentiation and purification methods 
is provided in the Supplemental files.
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General methods

Detailed methods for cardiomyocyte preparation from hiPSC 
and culture, 3D micro-scaffold production, SEM imaging, 
AAV6-mediated transduction, immunocytochemistry, PLA, 
live  Ca2+ imaging, cellular electrophysiology, quantitative 
PCR, Western blotting and statistical analysis are provided 
in the Supplemental file section.

Results

BIN1 is successfully expressed in transduced 
hiPSC‑CM

To test our hypothesis whether 3D reshaping induced struc-
tural remodelling, single hiPSC-CM were plated on a pla-
nar surface and in 3D micro-scaffolds with hexagonal and 
cuboid shapes. To recapitulate the rectangular structure of 
adult cardiomyocytes, 3D-cuboid scaffolds were designed 
accordingly to provide a long axis and spatial restrictions to 
further grow in height as described before [46]. Hexagonal 
3D scaffolds with similar surface area were employed for 
direct comparison of cells growing in 3D-confined structures 
without cell elongation [46] (Fig. 1A, B). Adherent cells 
were transduced with an Adeno-associated virus 6 (AAV6) 
vector carrying BIN1 and a fluorescent marker (dsRed), or 
a control vector containing only dsRed. After 5–6 days of 
transduction, cells were utilised for further experiments. 
As shown in Fig. 1C, hiPSC-CM revealed strong levels 
of red fluorescence confirming successful transduction. 
BIN1 expression was significantly boosted at both mRNA 
(p = 0.005) and protein (p = 0.017) levels in hiPSC-CM 
transduced with BIN1 compared to control, which only 
showed low levels of BIN1 protein (Fig. 1D, E). We also 
assessed the effect of BIN1 overexpression on the mRNA 
expression levels of proteins of the contractile apparatus, 
including myofilaments like cardiac troponin T (cTNT), 
myosin heavy chain 6 (MYH6), MYH7 and α-actinin 
(ACTN2), and  Ca2+-handling proteins such as the L-type 
 Ca2+ channel (CACNA1C), RYR2, SERCA2 (ATP2A2) and 
 Na+/Ca2+ exchanger (NCX). The mRNA levels of these tar-
gets remained unaffected by BIN1 overexpression.

3D reshaping and BIN1 overexpression 
lead to adaptations in cell morphology 
and microarchitecture

In comparison to rod-shaped adult ventricular cardiomyo-
cytes, which present parallel-aligned and organised myofibrils, 
2D-cultured hiPSC-CM are rather flat with no defined long 
axis formation. To assess the shape of hiPSC-CM and myofi-
bril structures in 3D micro-scaffolds, the organisation of the 

sarcomeric α-actinin and actin was investigated. As shown in 
Fig. 2A, non-patterned hiPSC-CM revealed a round shape with 
irregular and random orientation of actin filaments through-
out the cell. The distribution pattern of myofilaments in hex-
agonally shaped hiPSC-CM was also similar to non-patterned 
cells. Conversely, hiPSC-CM grown in cuboid micro-scaffolds 
displayed an elongated anisotropic shape with well-organised 
myofibrils and parallel-aligned α-actinin, indicating sarco-
meric units. This remarkable alignment of myofibrils along 
the long axis of the cell in a cuboid scaffold demonstrates the 
great power of reshaping to induce subcellular remodelling 
processes in hiPSC-CM.

In the next step, we investigated the synergistic potency of 
3D reshaping and BIN1 overexpression on triggering the gen-
eration of membrane invaginations forming t-tubules, which 
are critical for proper EC coupling. Immunolabeling of BIN1 
confirmed the expression of BIN1 in transduced hiPSC-CM 
presenting strong sarcolemmal invaginations indicative of the 
development of an early but still unstructured tubular network 
(Fig. 2B, Figures SIA, B). In comparison, hiPSC-CM trans-
duced with the control vector did not reveal any substantial 
levels of BIN1 expression nor plasma membrane invagina-
tions (Figure SIC). For further detailed investigations of the 
origin of the tubular network, cells were recorded using the 
fluorescent membrane dye di-8-ANEPPS in confocal live 
imaging experiments. Since this dye only incorporates within 
the plasma membrane, but not in subcellular membrane com-
partments of intact cells, fluorescence signals of tubular struc-
tures derived exclusively from plasma membrane invagina-
tions. The confocal images showed extensive tubular network 
generation in 3D-reshaped BIN1-overexpressing hiPSC-CM. 
Moreover, statistical analysis confirmed that there was a sig-
nificant dual effect of 3D reshaping and BIN1 overexpression 
on increasing tubule density as assessed by two-way ANOVA 
(F(2, 125) = 20.034, p < 0.05; Fig. 2C, D). Interestingly, 3D 
reshaping without BIN1 overexpression also elicited remark-
able tubule generation compared to control (non-patterned 
cells), but with high variability (Fig. 2D). Adding BIN1 to it 
significantly enhanced t-tubule formation and thereby reduced 
this large variability in all groups. So, the results demonstrate a 
combined effect of reshaping and BIN1 expression with regard 
to t-tubule density. We further confirmed that both 3D reshap-
ing and BIN1 overexpression significantly induced tubular 
membrane network in hiPSC-CM derived from another stem 
cell line with a different genetic background (Figure SII).

Membrane remodelling reorganises the expression 
pattern of  Ca2+ handling proteins and induces dyad 
formation

Since the close proximity of LTCCs and RYR2s is vital for 
efficient CICR and EC coupling, in the next step, we inves-
tigated the influence of 3D reshaping and BIN1-induced 
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membrane invaginations on the expression pattern of these 
 Ca2+ channels. Immunolabeling of BIN1 and LTCC illus-
trated that BIN1 enhanced LTCC clustering along membrane 
tubules (Fig. 3A). This notion is further supported by the 
overlapping fluorescence signal peaks in the merged line 
profiles (right panel). Moreover, double staining of RYR2s 
and LTCCs manifested spatial clustering of these proteins 
relative to each other. The line profiles of both  Ca2+ channels 

showed a higher degree of fluorescent signal overlap in 
cuboid BIN1-overexpressing hiPSC-CM as compared to 
control non-patterned and hexagonally shaped cells (Fig. 3B, 
Figure SIIIA). In line with this experiment, we performed 
highly specific and sensitive proximity ligation assays (PLA) 
to further verify the close localization of LTCCs and RYR2s 
within the BIN1-induced vicinity of t-tubules and SR. Both 
3D reshaping and BIN1 overexpression had a significant 

Fig. 1  BIN1 is successfully expressed in transduced hiPSC-CM. A 
Schematic timeline of cardiogenic differentiation and subsequent 
experimental design. B 3D scaffolds in hexagonal (left images) and 
cuboid (right images) shapes. C Representative images of bright field 
(left image) and dsRed expression (right image) of hiPSC-CM. D 
Quantification of mRNA expression levels relative to control, meas-

ured by real-time qRT-PCR (N = 4–5, *p < 0.05 for BIN1 vs. CTRL). 
The list of primers can be found in Table S1. E Immunoblot of BIN1 
protein expression in transduced hiPSC-CM. Quantification of the 
change in protein abundance of BIN1 (N = 3, *p < 0.05). Data are 
presented as mean ± SE (bar graph) or mean ± SD (box blot), signifi-
cance tested by Student’s t test
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effect on the density of closely located LTCCs and RyR2s 
in hiPSC-CM; however, statistically seen, there was no inter-
action between all shapes as assessed by two-way ANOVA 
(F(2, 139) = 2.598, p = 0.078; Fig. 3C, D, Figure SIIIB). 
Detailed analysis showed that PLA signal density was sig-
nificantly higher in cuboid, BIN1-expressing hiPSC-CM 
compared to non-patterned BIN1-expressing and cuboid 
control hiPSC-CM. This suggests that BIN1 expression 
together with rectangular reshaping of hiPSC-CM may have 
an additive effect on augmenting the probability of forming 
dyadic structures. Overall, these results support the concept 
that BIN1 may serve as a local anchor for stabilisation of 
LTCCs and RYR2s in close proximity in t-tubular and SR 
membranes to trigger the formation of functional dyads in 
hiPSC-CM, promoting co-localization and further functional 
interaction.

Characterisation of  ICaL properties in reshaped 
BIN1‑overexpressing hiPSC‑CM

The spatial rearrangement of LTCCs and RyR2s fuels the 
assumption that enhanced dyad formation may have func-
tional consequences for the EC coupling mechanism. To 
investigate  Ca2+ handling in reshaped and BIN1-overex-
pressing cells, we first characterised  Ca2+ influx via LTCCs 
in more detail. Single hiPSC-CM were patch clamped in 
the whole-cell configuration and membrane  Ca2+ currents 
 (ICaL) were measured using the indicated voltage clamp 
protocols. In each cell, the current–voltage (IV) relation-
ship, the voltage dependence of activation and the voltage 
dependence of inactivation were examined with independent 
voltage protocols. From the IV curve, the current amplitudes 
were measured to assess the peak  Ca2+ current amplitudes 
in dependence of the clamped membrane potential. Total 
membrane current was then normalised to cell capacitance 
to obtain the LTCC current density per cell, a measure to 
compare the different values of different cells and cell sizes. 
Figure 4A illustrates the IV curves of  ICaL recorded from 
hiPSC-CM of the different experimental groups. On aver-
age, the peak  ICaL amplitudes at different potentials were 
not significantly different in the experimental groups. This 
finding was further confirmed by measuring and compar-
ing the voltage-dependent activation and inactivation states 
of  ICaL. From the steady-state activation and inactivation 
curves (Fig. 4D–F), the half-maximal voltages for activa-
tion and inactivation were derived (Fig. 4G and H). Both 
values are required from each cell to characterise the LTCC 
gating kinetics. As expected, our data demonstrate that  V1/2 
of  ICaL activation and inactivation of the different experi-
mental groups were not statistically different from each 
other. To investigate the fast  Ca2+-dependent inactivation 
of  ICaL, the first time constant (τ1) of current decay measured 

at + 10 mV was compared among the different experimental 
groups (Figs. 4F, G). Again, no significant differences were 
detected.

Characterisation of  Ca2+ spark events in reshaped 
BIN1‑overexpressing hiPSC‑CM

Since  ICaL properties were unchanged in the different experi-
mental groups, we took a closer look at RyR2 function. To 
this end, we measured spontaneous  Ca2+ release events and 
characterised the spatial and temporal properties of  Ca2+ 
sparks. Spontaneous  Ca2+ sparks were recorded in the con-
focal line-scan mode using the  Ca2+-sensitive dye fluo-4 
(Fig. 5A). Interestingly, 3D reshaping of hiPSC-CM resulted 
in a significant reduction of spark frequency (Fig. 5B) and 
spark duration (Fig. 5C). In addition, BIN1 overexpres-
sion significantly reduced spark width (Fig. 5D). Two-
way ANOVA revealed a synergistic effect of 3D reshaping 
and BIN1 overexpression on the temporal (FDHM: F(2, 
132) = 3.534, p = 0.032) and spatial dynamics (FWHM: F(2, 
131) = 3.401, p = 0.036) of the  Ca2+ sparks.

Maturation of  Ca2+ transient dynamics 
in 3D‑reshaped BIN1‑overexpressing hiPSC‑CM

Having shown that 3D reshaping and BIN1 overexpres-
sion elicit structural remodelling, we, in turn, tested our 
hypothesis that structural remodelling also favours func-
tional adaptations. To examine this concept, we recorded 
spontaneous  Ca2+ transients in confocal line-scan imag-
ing using the  Ca2+-sensitive fluorescent indicator fluo-4. 
Representative line-scan images and line profiles of each 
experimental group are summarised in Fig. 6A. Detailed 
analysis of  Ca2+transient kinetics revealed that 3D reshaping 
significantly reduces time-to-peak (TTP, p < 0.001, Fig. 6B) 
and decay times (p < 0.001, Fig. 6C), while BIN1 overex-
pression and 3D reshaping significantly interact to decrease 
the time of full duration at half-maximal  Ca2+ transient 
amplitude (FDHM, F(2, 222) = 8.77, p < 0.001, Fig. 6D) in 
the hiPSC-CM. We further confirmed that both 3D reshap-
ing and BIN1 overexpression also significantly accelerated 
spontaneous  Ca2+ transients at the level of  Ca2+ release and 
reuptake in the second hiPSC-CM line (Figure SIV). Inter-
estingly, cuboid BIN1-overexpressing hiPSC-CM revealed 
the best synchronised  Ca2+ transients compared to any other 
conditions whereas remarkable delays of  Ca2+ release were 
observed in the corresponding control groups (Fig. 6A, 
please refer to the zoomed images). In line with these obser-
vations, time-to-peak (TTP, Fig. 6E), decay (Fig. 6F) and 
FDHM (Fig. 6G) of stimulated  Ca2+ transients were also 
significantly shortened in 3D-reshaped BIN1-overexpressing 
hiPSC-CM, particularly in the cuboid cell group.
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Excitation–contraction coupling gain is improved 
in cuboid BIN1‑overexpressing hiPSC‑CM

Since we observed that  Ca2+ transients were faster in 
3D-reshaped BIN1-overexpressing hiPSC-CM, we also 
investigated EC coupling in more detail by analysing the 
EC coupling gain. This gain provides an assessment of the 
coupling fidelity between LTCCs and RyR2s. L-type  Ca2+ 
currents  (ICaL) and current-stimulated  Ca2+ transients were 
measured simultaneously with the following stimulation pro-
tocol:  INa was inactivated by a voltage ramp from the holding 
potential  (VH) of − 80 mV to − 40 mV, then  Ca2+ release 
was triggered by two separate voltage steps to − 25 mV 
and + 10 mV (please see voltage protocol in Fig. 7A). The 
EC coupling gain was calculated from the ratio of the peak 
 Ca2+ transient amplitude and the corresponding peak  ICaL 
at − 25 mV. The maximal  ICaL and  Ca2+ release amplitude 
at + 10 mV were measured for internal control. Interestingly, 
in 3D-reshaped and BIN1-overexpressing hiPSC-CM, dis-
tribution of the EC coupling gain moved towards higher 
values as compared to control non-patterned hiPSC-CM 
indicating improvement of coupling and, therefore, more 
efficient CICR (Fig.  7B). Moreover, two-way ANOVA 
revealed that both 3D reshaping and BIN1 overexpression 
have statistically significant effects on the EC coupling gain; 
however, no significant synergistic effects were observed 
(F(2, 135) = 2.435, p = 0.091, Fig. 7B). In conclusion, these 
experiments demonstrate that BIN1-overexpressing hiPSC-
CM grown in cuboid micro-scaffolds develop better EC 
coupling leading to a significantly larger amplification of 
the  ICaL-triggered  Ca2+ release compared to non-patterned 
control cells (Fig. 7B).

Finally, dependence of  Ca2+ release from the filling state 
of the SR was determined in 1 Hz-stimulated patch-clamped 
cells. Fractional release of  Ca2+ from the SR was determined 
by normalising the peak amplitude of paced  Ca2+ transients 
to the peak amplitude of caffeine-induced  Ca2+ transients 
(Fig. 7C, D). At constant triggering, on average 50% of the 
SR  Ca2+ content was released per twitch, indicating similar 

 Ca2+ release properties and SR  Ca2+ loads in the different 
groups of hiPSC-CM (Fig. 7D, E). This was further reflected 
by similar activities of the NCX in these cells assessed as 
integrated inward membrane currents (∫INCX) during pro-
longed caffeine application (Fig. 7F). The expression pattern 
of the two major proteins for  Ca2+ removal, i.e. the reuptake 
of  Ca2+ into the SR via SERCA2 and the extrusion of  Ca2+ 
through the NCX, in non-patterned and 3D-reshaped BIN1-
overexpressing hiPSC-CM is shown in Figure SV. SERCA2 
expression revealed a dense network lining sarcolemmal 
BIN1 expression (Figure SVA) indicative of a tight associa-
tion of the SR and the sarcolemma in BIN1-overexpressing 
hiPSC-CM. In contrast, NCX staining revealed a dotted dis-
tribution pattern over the entire sarcolemma (Figure SVB).

A comparison of the presented data is summarised in 
Table 1 to illustrate the specific effects of shape (cuboid/
hexagon), BIN1 expression and combined effects on hiPSC-
CM structure and function compared to non-patterned con-
trol cells.

Discussion

Despite their cardiogenic properties, hiPSC-CM differ from 
adult cardiomyocytes in many structural and functional 
details, which are generally summarised and connoted as 
immature features. The term immaturity in this context is 
inspired and derived from the immature characteristics of 
prenatal or neonatal cardiomyocytes. Despite distinct differ-
ences in the development, differentiation and properties of 
native or stem cell-derived cardiomyocytes, the concept of 
immaturity conveys the idea that, in compliance with native 
cells, further maturation of hiPSC-CM towards an adult 
phenotype is possible. Since the immaturity of hiPSC-CM 
limits their application for clinical purposes, current research 
focuses intensively on the development of efficient matura-
tion strategies to achieve an adult-like phenotype that may 
be best suited for a cell-based therapy of the failing heart.

In this study, we focussed on the combined effects of 
changes in cell shape towards more adult morphology and 
molecular enhancement of BIN1 expression on  Ca2+ han-
dling and, thus, the basis of EC coupling in hiPSC-CM. In 
line with previous work [46], our data demonstrate that 3D 
reshaping induces structural reorganisation at the level of the 
subcellular microarchitecture in hiPSC-CM. Cuboid cells 
display parallel-aligned myofibrils, well-organised sarcom-
eres and a tubular membrane network reminiscent of early 
t-tubules. Since hiPSC-CM not only attach to the bottom 
surface but also to the walls of the scaffolds, resulting in an 
increase in cell height [46], the additional mechanical strain 
on the cell membrane may play a role in t-tubule biogen-
esis in 3D-reshaped hiPSC-CM, for which the triggering 
mechanism remains to be elucidated. In this context, passive 

Fig. 2  3D reshaping and BIN1 overexpression lead to adaptations in 
cell morphology and microarchitecture. Immunolabeling of α-actinin 
(green, A), BIN1 (green, B), actin (magenta) and DNA (DAPI, blue) 
in BIN1-expressing, non-patterned, cuboid and hexagonally shaped 
hiPSC-CM. White boxes indicate the area of magnification. C Rep-
resentative images of confocal live cell imaging of the sarcolemma 
using di-8-ANEPPS to visualise the tubular membrane network. 
White boxes illustrate the skeletonized images of the analysed regions 
of interest (ROI). D Statistical analysis of the tubule density within 
the ROIs in different experimental groups of hiPSC-CM. Two-way 
ANOVA was conducted to examine the synergistic effect of BIN1 
expression and 3D reshaping on tubule density. N = 4, n = 19–31 
cells; *indicates comparison between different shapes, and # between 
BIN1-overexpressing and shape control cells; p < 0.05. Data are pre-
sented as a box plot and whiskers show SD

◂
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resistance of the walls of the scaffold in conjunction with 
membrane stretch during contraction may activate mecha-
nosensitive pathways such as, e.g. ion channels of the TRP 

family [56], piezo channels [21, 60] and/or integrin-depend-
ent outside-in signalling pathways [20] to elicit specific gene 
programmes for membrane remodelling.

Fig. 3  Membrane remodelling reorganises the expression pattern 
of  Ca2+ handling proteins and induces dyad formation. A Repre-
sentative confocal images of the expression pattern of BIN1 (green) 
and LTCC (magenta) in a BIN1-expressing hiPSC-CM (left image; 
centre image: magnification of the ROI) and intensity profiles of 
the depicted ROI in the centre image. B Immunolabelling of RYR2 
(green) and LTCC (magenta) and intensity profiles from the ROIs 
(white boxes) demonstrating spatial alignment of both ion channels 
relative to each other. C Representative confocal images from PLA: 

green signals indicate the sites of interaction between RYR2 and 
LTCC in dyad microdomains (< 40 nm). Nuclei are stained in blue. D 
PLA signal density was measured as a fraction of cell area occupied 
by fluorescence signals. Two-way ANOVA was conducted to examine 
the effect of BIN1 expression and 3D reshaping on LTCC-RyR2 clus-
ter density. N = 4, n = 18–30 cells; * indicates comparison between 
different shapes; # indicates comparison between BIN1-overexpress-
ing and shape control cells; p < 0.05. Data are presented as a box plot 
and whiskers show SD
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Fig. 4  Characterisation of  ICaL properties in reshaped BIN1-overex-
pressing hiPSC-CM. A, D, F, I Representative  ICaL traces triggered 
by the indicated voltage protocols. B Current–voltage relationship, E 
voltage-dependent steady-state activation and inactivation curves. C 
Analysis of peak current  (Imax, N = 4–5, n = 7–13 cells). G, H Analy-
sis of half-maximal voltage-dependent  (V1/2) activation and inactiva-

tion (N = 4–5, n = 6–13 cells). I, J Analysis of the time constant of 
the  Ca2+-dependent inactivation of  ICaL (τ1) at + 10 mV fitted with a 
bi-exponential function (N = 7–8, n = 20–32 cells). Two-way ANOVA 
revealed no significant differences between the experimental groups. 
Data are presented as a box plot and whiskers show SD
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In addition to morphological remodelling by changing 
cell shape, we also overexpressed BIN1 in the hiPSC-CM. 
Previous reports suggested a possible role of BIN1 in the 
generation of membrane tubular networks [14, 41, 52]. 
Our findings demonstrate a strong induction of membrane 
invaginations by BIN1 overexpression already in non-pat-
terned control hiPSC-CM, and even more so in cuboid cells, 
revealing a new level of membrane remodelling. Since BIN1 
serves as a local anchor for LTCCs to stabilise their expres-
sion and localization at t-tubules [17], t-tubule formation is 
strictly followed by a subcellular rearrangement of LTCCs 
and RyR2s. The localization of LTCCs and RyR2s switched 
from a diffuse distribution to a more organised and striated 
expression pattern in cuboid BIN1-overexpressing hiPSC-
CM leading to increased formation of dyads, i.e. subcel-
lular microdomains where LTCCs and RyR2s are enriched 
for better functional interaction [11, 3]. In contrast to non-
patterned control cells, the distance between both types of 
 Ca2+ channel was reduced to less than 40 nm in 3D-reshaped 
BIN1-overexpressing hiPSC-CM, reminiscent of the nar-
row dyadic cleft of adult, i.e. mature cardiomyocytes. This 
close vicinity is indispensable for the functional interaction 
of LTCCs and RyR2s via rapid diffusion of  Ca2+ ions, thus 
ensuring efficient EC coupling.

One hallmark of immaturity in hiPSC-CM is their spon-
taneous contractile activity. Although varied mechanisms 
underlying this autorhythmicity have been hotly debated, 
the interplay between so-called membrane and  Ca2+ clock 
mechanisms may provide a plausible explanation. At the 
molecular level, hiPSC-CM expressed all essential  Ca2+ 

handling proteins contributing to  Ca2+ influx, release and 
removal [61] to a similar degree in non-patterned and 
3D-reshaped cells. While the membrane clock depends on 
the alternating activity of sarcolemmal ion channels, spon-
taneous  Ca2+ release from the SR is key to the  Ca2+ clock 
mechanism [26, 34, 53]. Therefore, we measured  Ca2+ cur-
rents and both spontaneous and  Ca2+-triggered  Ca2+ release 
events, respectively.

Electrophysiological evaluation of the LTCC-dependent 
 Ca2+ current revealed no difference in its properties and 
kinetics among the different groups of hiPSC-CM, but  Ca2+ 
signalling differed at the functional level pointing to a more 
mature  Ca2+ handling in the cytoplasm. One indicator for 
this in structurally remodelled hiPSC-CM was the reduction 
in spontaneous  Ca2+ release events from the SR. While non-
patterned control cells revealed a high frequency of  Ca2+ 
sparks and related spontaneous  Ca2+ release events at resting 
conditions, their occurrence was significantly decreased in 
cuboid BIN1-overexpressing hiPSC-CM. Detailed analy-
sis of spontaneous and  Ca2+-triggered  Ca2+ release events 
revealed faster  Ca2+ transients in 3D-remodelled cells irre-
spective of the shape both at the level of  Ca2+ release from 
the SR (TTP) and  Ca2+ reuptake via SERCA2 and extrusion 
via the NCX (FDHM), which is in accordance with previ-
ous studies of either BIN1-overexpressing or 3D-reshaped 
iPSC-CM [16, 46].

In dysfunctional cardiomyocytes originating from differ-
ent models of cardiac disease [1, 13], loss of the t-tubular 
network and significantly decreased dyadic units are highly 
prevalent. Moreover, cardiomyocytes in which t-tubule 

Fig. 5  Characterisation of  Ca2+ 
spark events in reshaped BIN1-
overexpressing hiPSC-CM. A 
Representative line-scan image 
of a spontaneous  Ca2+ transient 
and  Ca2+ sparks. Analysis of 
the number of spark events 
per 50 µm and second (B), 
full duration at half maximum 
(FDHM, C) and full width 
at half maximum (FWHM, 
D) in the different groups of 
hiPSC-CM. Statistical differ-
ences were tested by two-way 
ANOVA (N = 3, n = 17–30 
cells); *indicates comparison 
between different shapes; # 
indicates comparison between 
BIN1-overexpressing and shape 
control cells; p < 0.05. Data 
are presented as a box plot and 
whiskers show SD
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abundance is reduced reveal a decline in both BIN1 and 
LTCC abundance and significantly delayed  Ca2+ transients 
[16]. Furthermore, the maladaptive remodelling processes 
leading to heart failure generally result in abnormal  Ca2+ 
handling and specifically in desynchronised  Ca2+ transients 
in the affected cardiomyocytes with the consequence of 
severely reduced EC coupling and decreased contractile 

force [32, 57]. Hence, a well-structured tubular membrane 
network and the formation of functional dyads are essential 
for robust  Ca2+ handling in cardiomyocytes, and therefore 
represent a major goal to achieve in hiPSC-CM [29]. In non-
patterned control hiPSC-CM, the early phase of the  Ca2+ 
transient, which is initiated by diffusion-dependent acti-
vation of the RyR2s via  Ca2+ influx through the LTCCs, 

Fig. 6  Maturation of  Ca2+ tran-
sient dynamics in 3D-reshaped 
BIN1-overexpressing hiPSC-
CM. A Representative line-scan 
images and plot profiles of 
spontaneous  Ca2+ transients 
in the different experimental 
groups. Analysis of time-
to-peak (TTP; B, D), and 
full duration half maximum 
(FDHM; C, E) of spontaneous 
and stimulated  Ca2+ transients, 
respectively. Statistical differ-
ences were tested by two-way 
ANOVA (N = 3–4, n = 33–49 
cells); *indicates comparison 
between different shapes; 
#indicates comparison between 
BIN1-overexpressing and shape 
control cells; p < 0.05. Data 
are presented as a box plot and 
whiskers show SD
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revealed strong desynchronization at the onset of the  Ca2+ 
transients. This pattern can be best explained by inward 
propagation of the released  Ca2+ from the peripheral cell 
membrane towards the cell centre rather than true CICR. In 
contrast, cuboid BIN1-expressing hiPSC-CM demonstrated 
a spatio-temporally synchronised onset of  Ca2+ release from 
the SR. Due to the many BIN1-induced membrane invagi-
nations, LTCCs are also located deep in the centre of the 
cell. As a consequence, sarcolemmal depolarization and 
LTCC-mediated  Ca2+ influx lead to local CICR via junc-
tional RyR2s simultaneously throughout the entire cell and 
not only at the cell periphery.

This improvement of junctional CICR was further cor-
roborated by the significantly enhanced EC coupling gain in 
cuboid 3D-reshaped, BIN1-overexpressing hiPSC-CM. Our 
data demonstrate that despite similar levels of expression 
of the  Ca2+ channels and  Ca2+ influx currents,  Ca2+ release 
from the SR was significantly greater in these cardiomyo-
cytes due to shorter  Ca2+ diffusion distances and, thus, a 

more effective EC coupling gain. This increased gain is an 
important measure for amplification of the cytosolic  Ca2+ 
signal through RyR2-mediated  Ca2+ release from the SR 
and, therefore, confirms that structural remodelling leads 
to robust EC coupling, indicative of important functional 
maturation processes at the level of single hiPSC-CM.

In summary, our data provide strong evidence that struc-
tural remodelling of hiPSC-CM at the level of cell mor-
phology and membrane organisation leads to optimization 
of the functional interaction between LTCCs and RyR2s, 
the key players of EC coupling in cardiomyocytes. In this 
context, the role of BIN1 as important steering wheel for 
membrane invaginations and consequently for the develop-
ment of a more mature  Ca2+ handling machinery suggests 
that BIN1 may also represent a promising target for the treat-
ment of heart failure. Potential therapeutic effects of BIN1 
gene therapy have already been tested at the preclinical level 
with preliminary success [31, 63]. With regard to hiPSC-
CM-based cell replacement therapy, the combination of 

Fig. 7  EC coupling gain is 
improved in cuboid BIN1-
expressing hiPSC-CM. A Volt-
age protocol for  ICaL stimulation 
(upper panel),  Ca2+ transients 
with corresponding line-scan 
image and line profile (middle 
panel) and recordings of  ICaL 
(lower traces). B EC coupling 
gain measured at − 25 mV 
(N = 7–8, n = 19–29 cells) and 
distribution curves. C Stimula-
tion protocol (upper panel), 
 Ca2+ transient (line-scan and 
line profile, middle panel), and 
current traces (lower traces) 
to measure fractional release. 
Evaluation of (D) SR content, 
E fractional release and F NCX 
activity in hiPSC-CM (N = 5–6, 
n = 9–24 cells). Statistical com-
parison by two-way ANOVA. 
Data are presented as a box 
plot and whiskers show SD. 
*indicates comparison between 
different shapes; # indicates 
comparison between BIN1-
overexpressing and control 
cells; p < 0.05
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cardiomyocyte-specific BIN1 induction and tissue engineer-
ing approaches employing micropatterning of cells [6] may 
advance the development of cardiac patches and enhance 
the therapeutic potential of these cells for the treatment of 
patients with heart failure.

Limitations of the study

Here, we have addressed different levels of structural 
remodelling in the context of the rather complex devel-
opment of fully mature cardiomyocytes from pluripotent 
stem cells that is in addition accompanied by some tech-
nical limitations. Our experimental model served primar-
ily the identification of specific cues and features that are 
needed to drive hiPSC-CM to further maturation. In this 
context, one significant success in the maturation process 
is already a reduction in variability, as seen from our data. 
In the presented form, the tool of reshaping is not suited 
for in vivo experimentation, but importantly, the gain of 
knowledge that both longitudinal shape and t-tubule for-
mation are required for functional maturation, will have to 
be considered for the preparation of cell grafts. In future 
studies, the impact of the composition of the extracellular 
matrix (ECM) and its stiffness [25] as well as the effect of 
outside-in signalling [23] on the functional maturation of 
these cells must be taken into account. More physiological 
growth surfaces may also permit prolonged culture times 
and, thus, a more effective functional maturation [48] of 
these cells. Therefore, it will be interesting to expand our 

newly developed experimental model for reshaping single 
cells and analysing EC coupling properties to multicel-
lular hiPSC-CM preparations with similar cellular char-
acteristics. Instead of BIN1 overexpression by molecular 
engineering, it will be interesting to find more natural 
mechanisms to enhance endogenous BIN1 levels not only 
for the functional maturation of hiPSC-CM but also for the 
treatment of diseased adult cardiomyocytes with reduced 
t-tubules and EC coupling.
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