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Abstract
Heart failure is a clinical syndrome where cardiac output is not sufficient to sustain adequate perfusion and normal bodily 
functions, initially during exercise and in more severe forms also at rest. The two most frequent forms are heart failure of 
ischemic origin and of non-ischemic origin. In heart failure of ischemic origin, reduced coronary blood flow is causal to 
cardiac contractile dysfunction, and this is true for stunned and hibernating myocardium, coronary microembolization, 
myocardial infarction and post-infarct remodeling, possibly also for the takotsubo syndrome. The most frequent form of 
non-ischemic heart failure is dilated cardiomyopathy, caused by genetic mutations, myocarditis, toxic agents or sustained 
tachyarrhythmias, where alterations in coronary blood flow result from and contribute to cardiac contractile dysfunction. 
Hypertrophic cardiomyopathy is caused by genetic mutations but can also result from increased pressure and volume overload 
(hypertension, valve disease). Heart failure with preserved ejection fraction is characterized by pronounced coronary micro-
vascular dysfunction, the causal contribution of which is however not clear. The present review characterizes the alterations 
of coronary blood flow which are causes or consequences of heart failure in its different manifestations. Apart from any 
potentially accompanying coronary atherosclerosis, all heart failure entities share common features of impaired coronary 
blood flow, but to a different extent: enhanced extravascular compression, impaired nitric oxide-mediated, endothelium-
dependent vasodilation and enhanced vasoconstriction to mediators of neurohumoral activation. Impaired coronary blood 
flow contributes to the progression of heart failure and is thus a valid target for established and novel treatment regimens.
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Introduction

Heart failure and atherosclerosis are frequent and frequently 
co-exist, as they develop not only from more or less spe-
cific genetic predispositions but also from life style-related 
risk factors and comorbidities, such as physical inactivity, 
obesity [201] and metabolic syndrome, diabetes, hyper-
tension, but also from environmental pollution [187]. The 

co-existence of predisposing risk factors and comorbidities, 
coronary atherosclerosis and coronary microvascular dys-
function is particularly obvious in patients who have heart 
failure with preserved ejection fraction. The interaction 
between coronary atherosclerosis and heart failure is com-
plex. Coronary atherosclerosis on the one hand can induce 
myocardial ischemia and infarction which then causes heart 
failure. On the other hand, genetic mutations can cause heart 
failure, and coronary blood flow even in the absence of coro-
nary atherosclerosis is then impaired as a consequence of 
heart failure. Then, both heart failure and impaired coronary 
blood flow impact on each other—any form of heart fail-
ure predisposes to myocardial ischemia through increased 
extravascular compression and increased coronary vasocon-
striction in response to neurohumoral activation, and any 
form of myocardial ischemia further impairs left ventricular 
(LV) function (Fig. 1). The coronary circulation in heart 
failure is characterized by morphological alterations (arte-
riolar hypertrophy, capillary rarefication) and functional 
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abnormalities, such as impaired endothelium-dependent and 
metabolic vasodilation, enhanced vasoconstriction to media-
tors of neurohumoral activation, and increased extravascular 
compression. A positive interaction between heart failure 
and impaired coronary vascular function, as evidenced by 
reduced coronary dilator reserve in heart failure, predisposes 
to poor clinical outcome. Comprehensive review articles on 
the coronary circulation in more general [12, 45, 74, 183], 
the coronary microcirculation in more particular, [40, 170, 
273] and on the coronary circulation in specific forms of 
heart failure, e.g., hypertrophy, [10, 26, 31] heart failure of 
hypertensive origin [263] or heart failure with preserved 
ejection fraction [175, 216, 239] already exist. The present 
review attempts a comprehensive analysis of the common 
features of coronary blood flow impairment in the entire 
spectrum of heart failure syndromes and the cause-and-
consequence relationships between heart failure and coro-
nary blood flow. More specifically, this review identifies the 
common grounds of impaired coronary dilator reserve in 
all heart failure as well as the more specific defects of the 
coronary circulation in the different heart failure entities.

Heart failure of ischemic origin

A reduction in cardiac contractile function is the earliest 
and most obvious manifestation of each critical reduction in 
coronary blood flow, whether reversible or not. The critical 

threshold of coronary blood flow is 8–10 µl per g of myo-
cardial tissue and cardiac cycle [91].

Stunned and hibernating myocardium

Stunned and hibernating myocardium are characterized by 
reversible contractile dysfunction during the recovery from 
an episode of myocardial ischemia (stunning) or during still 
ongoing more moderate myocardial ischemia (hibernation) 
[94]. Heart failure can develop from such reversible con-
tractile dysfunction acutely (stunning) or more chronically 
(hibernation), provided the respective coronary perfusion 
territory, the severity and the duration of coronary blood 
flow reduction are large enough [94].

Stunned myocardium Almost by definition, stunned myo-
cardium is reperfused, i.e., in chronically instrumented con-
scious dogs, there is typically an initial reactive hyperemia 
followed by a normalization of myocardial blood flow over 
several hours during which some transmural redistribution of 
blood flow at the expense of subendocardial layers remains 
[99, 100]. Depending on the severity and duration of the pre-
ceding myocardial ischemia, full recovery of regional con-
tractile function occurs over several hours to days [100, 140, 
236]. When reperfusion occurs through a residual stenosis 
in chronically instrumented conscious pigs, coronary perfu-
sion abnormalities and contractile dysfunction persist longer 
and may induce hibernation [238]. Whereas the myocardial 
contractile dysfunction of stunned myocardium is caused by 
increased reactive oxygen species formation and impaired 

Fig. 1   Impairment of coro-
nary blood flow in heart 
failure of ischemic origin, of 
non-ischemic origin and of a 
pathogenesis with ischemic and 
non-ischemic contributions
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excitation–contraction coupling, [94] there is also a coro-
nary vascular stunning component, with an impaired reactive 
hyperemia response after brief coronary occlusion [247] and 
impaired vasodilator responses to intravenous adenosine or 
papaverine, [19] and a particularly impaired endothelium-
dependent coronary vasodilator response to acetylcholine 
[47] in anesthetized dogs and pigs [141]. Whereas the Gregg 
phenomenon (an increase in contractile function in response 
to increased coronary blood flow) is not operative in normal 
myocardium, [207] the coronary autoregulation in stunned 
myocardium appears blunted, predisposing it to a Gregg 
effect, i.e., there is increased regional contractile function in 
anesthetized dogs to intravenous dipyridamole or papaverine 
[223] and in anesthetized pigs to intracoronary adenosine 
[208].

Most importantly, stunning contributes to contractile dys-
function following non-transmural myocardial infarction, 
i.e., there is both an irreversible and a reversible component 
of contractile dysfunction. In anesthetized dogs with 2 h 
coronary occlusion, regional myocardial blood flow recov-
ered to 50% of baseline after 2 h reperfusion and regional 
contractile function recovered back to about 40% of base-
line within 2 weeks. [50] In conscious dogs, which were 
otherwise healthy and without coronary atherosclerosis, 1 h 
coronary occlusion induced severe regional contractile dys-
function which recovered back to > 50% within 4 weeks, but 
there was no recovery after 3 h coronary occlusion. [129] 
In anesthetized dogs, the coronary dilator response to intra
coronary acetylcholine was severely impaired at 30 min rep-
erfusion in the myocardium surviving 1 h coronary occlu-
sion, particularly in its subendocardial layers (Fig. 2) [47].

Stunning in the clinic Pure stunning, i.e., fully reversible 
contractile dysfunction following an episode of myocardial 

ischemia, occurs clinically following percutaneous coro-
nary intervention (PCI) [102, 161, 211] or a protocol of 
exercise-induced ischemia [4, 61, 135] but rarely poses a 
clinical problem, notably does not cause heart failure per se. 
[87] However, stunning may contribute to other myocardial 
ischemia-related heart failure scenarios, e.g., recovery from 
myocardial infarction (see above [24, 210, 240]) or from 
cardioplegic ischemic cardiac arrest. Unfortunately, sequen-
tial measurements of coronary blood flow and its relation to 
contractile function during the recovery from myocardial 
infarction or cardioplegia are not available. There is also 
vascular stunning, a reduced coronary vasodilator response 
to dipyridamole in patients after PCI, [252] but its functional 
importance is not really clear.

Hibernating myocardium Different from stunning with its 
transient nature, hibernation is a sustained state of regional 
myocardial contractile dysfunction which may indeed cause 
chronic heart failure. By definition, hibernating myocar-
dium has reduced blood flow and its contractile dysfunction 
recovers after revascularization [22, 88, 94, 98, 118, 185, 
186]. Hibernation was originally regarded as an adaptive 
response of the myocardium to ischemia, in that contractile 
function was downregulated to match the decrease in myo-
cardial blood flow such that the myocardium could retain its 
viability and contractile function recover after revasculari-
zation [186]. Indeed, evidence for such perfusion–contrac-
tion matching not only during brief episodes of myocardial 
ischemia [14] was provided in a number of experimental 
studies in anesthetized and chronically instrumented con-
scious dogs and pigs, and the adaptive nature of such perfu-
sion–contraction matching was supported by the recovery of 
metabolic perturbations during the progression from early to 
more sustained ischemia over several hours [94, 196]. The 

Fig. 2   Increment in coronary 
blood flow in response to 
intracoronary acetylcholine 
(in % of dilator response at 
baseline) at 30 min reperfu-
sion following either 15 min or 
60 min coronary occlusion in 
anesthetized dogs, in reversibly 
(TTC-positive) and irrevers-
ibly (TTC-negative) injured 
myocardium. Endo: flow to sub-
endocardial layers; Mid: flow to 
midmyocardial layers; Epi: flow 
to subepicardial layers. TTC, 
triphenyl tetrazolium chloride. 
From [47] by permission
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idea of an adaptive downregulation in response to reduced 
blood flow in hibernating myocardium was challenged since 
in some experimental studies, in chronically instrumented 
conscious pigs with coronary stenosis, contractile function 
was reduced but myocardial blood flow was not [212, 213]. 
A heated debate on whether hibernating myocardium was 
an adaptation to persistent ischemia or a result of repeti-
tive stunning followed, but resolved by elegant experiments 
of Canty and colleagues who demonstrated in chronically 
instrumented conscious pigs with coronary stenosis, that 
indeed there is a progression from repetitive stunning to 
hibernation where myocardial blood flow and coronary 
reserve are reduced [55, 57]. When such chronic hibernat-
ing myocardium with reduced regional contractile function 
and blood flow affects both the left anterior descending 
and the left circumflex coronary arteries in pigs, a typi-
cal situation of compensated heart failure develops [56]. 
Hibernation characterized not only contractile function and 
metabolism distal to a chronic coronary stenosis, but also 
the coronary circulation which developed atrophy of larger 
(> 75 µm diameter) and hypertrophy of smaller (< 75 µm 
diameter) microvessels distal to the stenosis [148]. Induction 
of angiogenesis by endothelial nitric oxide synthase trans-
fection in a pig model of hibernation, conversely, improved 
blood flow and contractile reserve [125]. Revascularization 
of chronically hibernating myocardium quickly normalizes 
adenosine-recruitable coronary reserve but recovery of con-
tractile function is more delayed [171].

Hibernating myocardium in the clinic In patients with 
chronic coronary artery disease and contractile dysfunc-
tion, there is solid evidence from studies using positron 
emission tomography (PET) that myocardial blood flow in 
the hibernating regions is reduced [88, 98, 258] but higher 
than in regions which did not recover contractile function 
after revascularization [41, 276]. Dipyridamole-recruited 
coronary reserve is more reduced in patients with coronary 
artery disease and LV dysfunction than in those without 
LV dysfunction [256]. The viability of hibernating myocar-
dium which is then an indication for revascularization is best 
assessed by a combination of imaging of decreased myocar-
dial blood flow and increased glucose uptake by PET [69].

Whereas the prognostic benefit from optimal medical 
therapy vs. that from revascularization in patients with stable 
coronary artery disease and angina is contentious, [18, 137] 
it is particularly the group of patients with coronary artery 
disease and ischemic heart failure who benefit from coronary 
revascularization. In the STICH trial, 1212 patients with 
chronic coronary artery disease and a LV ejection fraction 
of ≤ 35% were randomized to medical treatment of surgical 
revascularization, and those with revascularization had bet-
ter outcome in mortality, cardiovascular mortality and hospi-
talization for heart failure, [104, 259] notwithstanding some 
critical considerations on the value of viability testing in this 

trial [5]. Also, in the otherwise neutral large ISCHEMIA 
trial, in 5179 patients with stable coronary artery disease 
and angina, it was the subgroup of 398 patients with a his-
tory of heart failure or LV ejection fraction ≥ 35 but < 45% 
who had a worse 4-year outcome than patients without heart 
failure or LV dysfunction. Of note, however, this subgroup 
of patients had a better outcome in terms of all-cause mor-
tality, cardiovascular mortality or hospitalization for heart 
failure with coronary revascularization by PCI or coronary 
artery bypass graft surgery than with medical therapy [131]. 
Although pre-specified, this was a subgroup analysis only 
and must be considered hypothesis-generating at this point. 
However, it does support the notion that coronary revascu-
larization is of particular benefit for patients with heart fail-
ure of ischemic origin, supporting the concept of hibernating 
myocardium [94].

Coronary microembolization

Coronary microembolization occurs spontaneously or 
iatrogenically during PCI when atherothrombotic particu-
late debris and soluble vasoconstrictor, thrombogenic and 
inflammatory substances are released from erosion or rup-
ture of an atherosclerotic plaque [117]. Spontaneous coro-
nary microembolization may be clinically silent and become 
only apparent by chance in elevated serum troponin concen-
trations. Direct evidence for coronary microembolization is 
achieved only when it occurs clinically as an acute coronary 
syndrome or during PCI [117]. Repetitive, also repetitive 
clinically silent coronary microembolization may ultimately 
result in diffuse ischemic cardiomyopathy [117].

In animal experiments, coronary microembolization of 
inert particles was historically used to induce acute heart 
failure and cardiogenic shock [2]. Franciosa et  al. then 
introduced the intracoronary embolization of glass beads 
of 400–600 µm in diameter into conscious dogs as a model 
of chronic heart failure, [62] which was subsequently fur-
ther refined by Sabbah et al. who used repeated intracoro-
nary injections of polystyrene microspheres of 70–110 µm 
in diameter to induce a stable situation of chronic heart 
failure in conscious dogs [199]. This heart failure model 
is characterized by LV hypertrophy, patchy myocardial 
fibrosis, and neurohumoral activation, [198, 199] and such 
model was also replicated in sheep [107] and pigs [228]. 
The microembolization-induced heart failure model has 
the advantage of reasonable stability such that therapeutic 
strategies can be studied. Using this model, different treat-
ment regimens, including metoprolol, enalapril [198] and 
cell therapy [228] were tested. With a more limited repetitive 
coronary microembolization using microspheres of 115 µm 
in diameter in conscious dogs, a situation of heart failure 
with preserved ejection fraction, no reduction in end-systolic 
elastance and in ventricular relaxation but with intravascular 
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volume expansion, neurohumoral activation and elevated LV 
end-diastolic pressure was induced [81]. Somewhat surpris-
ingly, most of these studies which intentionally impaired 
coronary blood flow to induce heart failure did not report 
coronary blood flow at baseline before and after repetitive 
coronary microembolization and established heart failure. 
More acutely, coronary microembolization is typically char-
acterized by elevated baseline coronary blood flow through 
reactive hyperemia in the coronary vasculature around the 
microembolized vascular territory and reduced adenosine-
recruitable coronary blood flow through physical obstruction 
of some microvessels, acting jointly to reduce the amplitude 
of coronary reserve; [217] the same elevation of baseline 
coronary blood flow and reduction of coronary reserve is 
seen in patients with peri-interventional coronary microem-
bolization [84]. In one study with repetitive coronary micro-
embolization in dogs, the coronary vasodilator response to 
intravenous acetylcholine was depressed before heart failure 
had developed, and adenosine-recruitable coronary reserve 
was decreased with established heart failure [120].

Myocardial infarction and post‑infarct remodeling

Myocardial infarction results from sustained and severe 
impairment of coronary blood flow after rupture or erosion 
of an epicardial coronary atherosclerotic plaque and/or coro-
nary microvascular obstruction and manifests in injury to 
the myocardium and the coronary microcirculation; reperfu-
sion is mandatory to salvage myocardium from impending 
infarction but inflicts additional injury to the myocardium 
and the coronary microcirculation [93]. Heart failure can 
result from myocardial infarction acutely in the form of 
cardiogenic shock or more chronically as a consequence of 
LV remodeling [97]. Since myocardial infarction affects a 
particular coronary perfusion territory, distinction is needed 
between blood flow to the infarcted and to the non-infarcted 
remote myocardium.

The infarct region The coronary circulation experiences 
massive injury during myocardial ischemia and in the fol-
lowing reperfusion, including increased vascular permeabil-
ity and edema formation, platelet and leukocyte plugging 
and ultimately capillary destruction and intra-myocardial 
hemorrhage [16, 93]. In its extreme form, this coronary 
microvascular injury manifests during reperfusion follow-
ing myocardial ischemia in the form of coronary micro-
vascular obstruction and a no-reflow phenomenon, in both 
experimental animals and patients with reperfused acute 
myocardial infarction [92]. In experimental studies, coro-
nary microvascular obstruction is best quantified by lack of 
endothelial staining with thioflavin, and in preclinical and 
clinical studies, it is quantified as an increased microvas-
cular resistance by measurement of perfusion pressure and 
coronary blood flow or visualized by magnetic resonance 

imaging (MRI) (see Figs. 2 and 3 in [92]). In the further 
time course after acute myocardial infarction, not only the 
myocardium remodels and, if the infarcted region is large 
enough, eventually develops heart failure, [97, 142, 168, 
180] but also the culprit coronary circulation remodels. 
Following the microvascular injury and destruction during 
immediate reperfusion, there is infarct healing with coro-
nary angiogenesis and myocardial revascularization, and 
the disruption of angiogenesis contributes to the develop-
ment of post-myocardial infarct heart failure in mice [215]. 
The post-infarct myocardial revascularization is dependent 
on angiogenic factors, notably vascular endothelial growth 
factor (VEGF), [15, 193] which in turn is increased by para
crine mechanisms involving cardiomyocyte alpha 1 receptor 
activation [279] and beta blockade in rats, [193] and nitric 
oxide in mice, which again is promoted by statins [128] or 
cell therapeutic approaches [112, 127]. Stimulation of angio-
genesis in experimental animals improves LV function and 
attenuates the development of heart failure. [15, 128, 193, 
215, 266] There appears to be a positive feed-back vicious 
cycle between heart failure following myocardial infarc-
tion and an inflammatory dysregulation of the bone marrow 
niche to mobilize cells for myocardial or coronary vascular 
repair in mice and also humans [101].

The remote region In experimental studies, alterations 
in coronary blood flow were also seen in the non-infarcted 
remote myocardium. In pigs with left circumflex coronary 
artery occlusion, cardiac output 2–3 weeks later was reduced 
and there was neurohumoral activation with increased 
plasma norepinephrine, epinephrine, angiotensin, and 
endothelin, reflecting LV dysfunction [77]. In this model, 
exercise-induced coronary vasodilation was preserved but 
attenuated, [77] and increased activation of ATP-dependent 
K channels, [147] maintenance of nitric oxide-mediated 
endothelium-dependent vasodilation [78] and attenuated 
vasoconstrictor impact of angiotensin [145] and endothelin 
[146] contributed to such adaptation of the remote coronary 
circulation in post-infarct left ventricular dysfunction [43]. 
These studies used systemic blockers to address the media-
tor mechanisms; it is therefore unclear, in which cellular 
compartment (myocardial [277] vs. vascular) the activation 
of ATP-dependent K channels occurs.

Coronary microvascular obstruction in the clinic Micro-
vascular obstruction occurs in many patients with success-
fully reperfused myocardial obstruction, ranging from 5 to 
70% depending on the method and parameter and the time of 
its assessment. [92] Not only infarct size but also the extent 
of coronary microvascular obstruction on MRI is a major 
determinant of cardiogenic shock [190]. However, coronary 
microvascular obstruction after successful reperfusion by 
PCI also predicts the long-term development of LV dys-
function [20, 134, 250] and clinical outcome in terms of 
mortality and hospitalization for heart failure [29, 39, 119, 
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191, 255, 268]. Infusion of bone marrow-derived or circula
ting progenitor cells into the infarct-related coronary artery 
in patients with reperfused myocardial infarction increased 
adenosine-recruitable coronary reserve on follow-up in the 
TOPCARE-AMI and REPAIR-AMI trials, [9, 52, 53] and 
this effect was associated with improved LV function and 
clinical outcome [8, 203]. Unfortunately, the clinical value 
of such autologous cell therapy approaches in patients with 
acute myocardial infarction remains uncertain, given the 
lack of a positive large prospective clinical outcome trial 
[139].

Clinically, in patients with uncomplicated reperfused 
acute myocardial infarction, adenosine-recruitable coronary 
velocity reserve (Doppler) is decreased immediately after 
PCI in the culprit and the non-culprit coronary artery as 
compared to propensity-matched controls. [38] The impair-
ment in coronary reserve of the non-culprit coronary arteries 
as measured by PET is more severe in patients with coro-
nary artery disease and heart failure than in those without 
heart failure [253]. Patients with myocardial infarction in the 
absence of significant obstructive coronary artery disease 
(MINOCA) have milder impairment of coronary blood flow 
and coronary reserve than those with classical myocardial 
infarction and obstructive coronary artery disease [149] and 

better outcome on follow-up, including the development of 
heart failure; [173] however, the specific role of coronary 
blood flow impairment for heart failure development in 
MINOCA is not clear at present.

Heart failure of non‑ischemic origin

Dilative cardiomyopathy

Dilated cardiomyopathy in humans arises from genetic 
mutations in sarcomeric or mitochondrial proteins, [195] 
myocarditis [249] or toxic agents, such as ethanol [59] or 
chemotherapy, [83, 241] and from sustained tachyarrhyth-
mias [49, 105]. Pacing-induced heart failure in experimen-
tal animals does not only mimic the clinical syndrome of 
tachycardia-induced cardiomyopathy but is also considered 
as a model of dilated cardiomyopathy, which mimics the 
features of ventricular dilatation and dysfunction, systemic 
congestion, exercise intolerance and dyspnea, neurohumoral 
activation, cardiomyocyte loss and hypertrophy of remain-
ing cardiomyocytes, fibrosis and apoptosis [90]. In con-
scious pigs with chronic supraventricular pacing, there is 
capillary rarefication, reduced myocardial blood flow, and 

Fig. 3   Mechanisms of impair-
ment of coronary blood flow 
in heart failure: mechanical 
extravascular compression 
by left ventricular pressure 
(LVP), attenuated metabolic 
and nitric oxide (NO)-mediated 
endothelium-dependent coro-
nary vasodilation secondary to 
increased formation of reactive 
oxygen species (ROS) forma-
tion, increased vasoconstriction 
to mediators of neurohumoral 
activation (norepinephrine, 
angiotensin, endothelin)
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adenosine-recruitable coronary reserve particularly in the LV 
subendocardium [106, 220, 221]. Reduced baseline myocar-
dial blood flow and adenosine-recruitable coronary reserve 
were also seen in conscious dogs with chronic right ventricu-
lar pacing, but there was no evidence for capillary rarefica-
tion [209]. In early stages of pacing-induced heart failure, 
despite neurohumoral activation and increased plasma con-
centrations of vasoconstrictor substances (norepinephrine, 
angiotensin, endothelin), [123, 162] nitric oxide formation 
may be increased and act to preserve coronary blood flow 
[162, 200]. Also, ATP-dependent K-channel activation may 
contribute to attenuate decreases in myocardial blood flow 
in dogs with pacing-induced heart failure [110, 244, 269]. 
While endothelium-dependent coronary vasodilation is still 
preserved, however, adenosine-recruitable coronary vascular 
reserve is already reduced through increased extravascular 
compression [242]. In an early state of pacing-induced heart 
failure, the vasoconstrictor effect of angiotensin was attenu-
ated and the bradykinin-dependent vasodilator effect of the 
ACE inhibitor enalapril enhanced, supporting the notion of 
an increased nitric oxide formation [163]. Conscious dogs 
with chronic left ventricular pacing and established heart 
failure then had decreased epicardial coronary dilation and 
coronary blood flow response to acetylcholine and less coro-
nary vascular nitrite formation in response to acetylcholine 
ex vivo, suggesting a defect in endothelial nitric oxide for-
mation [227, 265]. The defect of endothelial nitric oxide 
formation in dogs with pacing-induced heart failure also 
impaired the cholinergic coronary vasodilation as part of the 
Bezold-Jarisch or carotid chemoreflex [278]. The reduced 
nitric oxide formation in established pacing-induced heart 
failure in dogs also induced a switch in cardiac substrate 
utilization from free fatty acid to glucose uptake. [189] The 
attenuation of nitric oxide-mediated, endothelium-dependent 

coronary vasodilation in pacing-induced heart failure is sec-
ondary to nitric oxide inactivation by reactive oxygen species 
[157] and NADPH oxidase activity [231, 275]. It is currently 
unclear in which cellular compartment (vascular or myocar-
dial) the responsible NADPH oxidase activation occurs and 
where the increased reactive oxygen species formation origi-
nates; [154] this distinction, however is important to decide 
whether the impaired coronary vasomotion is a consequence 
of heart failure (myocardial origin) or a bystander (vascular 
origin) induced by the conditions leading to heart failure, 
e.g., sustained rapid pacing (Fig. 3). In any event, increased 
endothelial nitric oxide synthase activity [231, 248] by 
statins preserves endothelium-dependent coronary vasodi-
lation in pacing-induced heart failure. Pacing-induced heart 
failure, [221] endothelium-dependent coronary vasodilation, 
[251] and endothelial nitric oxide formation [71] recover 
after termination of chronic pacing over several weeks. The 
relatively fast recovery of the pacing-induced heart failure 
after cessation of pacing is a disadvantage for the study of 
treatment regimens in this model, but it does mimic the clini-
cal syndrome of tachycardic cardiomyopathy particularly 
well [90]. In dilated cardiomyopathy of tachycardic origin, 
the impairment of the coronary circulation plays a particu-
larly prominent role since tachycardia increases myocar-
dial oxygen consumption and decreases diastolic duration, 
thereby increasing the susceptibility to myocardial ischemia 
[14, 89]. In conscious dogs [160, 245] and pigs [123] with 
chronic rapid pacing, the exercise-induced increases in car-
diac output but also in regional myocardial blood flow to the 
left and right ventricle, skeletal muscle blood flow and renal 
blood flow were attenuated (Fig. 4). The decrease in myocar-
dial blood flow at baseline and during exercise in dogs with 
chronic pacing-induced heart failure was associated with a 
proportionate decrease in myocardial oxygen consumption 

Fig. 4   Attenuated increases in 
regional myocardial blood flow 
of the left (LV) and right (RV) 
ventricle in chronically instru-
mented conscious dogs with 
pacing-induced heart failure 
during treadmill exercise. Endo: 
flow to subendocardial layers; 
Mid: flow to midmyocardial lay-
ers; Epi: flow to subepicardial 
layers. Trans: flow to the entire 
transmural region. Data from 
[160]
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and occurred in the absence of myocardial ischemia (net lac-
tate production) [245]. The metabolic coronary vasodilation 
during pacing-induced tachycardia in dogs with established 
pacing-induced heart failure depends on nitric oxide forma-
tion, [229] and nitric oxide formation may inhibit myocar-
dial oxygen consumption in the failing heart [243].

The calcium antagonist amlodipine, [124] but not 
the angiotensin AT1 receptor antagonist valsartan [33] 
improved myocardial blood flow during exercise in pacing-
induced heart failure. Not only extravascular compression 
by increased left ventricular end-diastolic pressure but also 
increased plasma vasoconstrictor concentrations from neuro-
humoral activation limit coronary blood flow in heart failure. 
The muscle metaboreflex-induced sympathetic activation 
during exercise in dogs with pacing-induced heart failure 
induced coronary vasoconstriction, [7] which was abrogated 
by alpha1-adenoceptor blockade with prazosin; [34] prazo-
sin also attenuated resting coronary vasomotor tone in dogs 
with pacing-induced heart failure [232]. Endothelin-A recep-
tor blockade also increased coronary blood flow during exer-
cise in dogs with pacing-induced heart failure [103]. Appar-
ently, coronary vasomotion in established pacing-induced 
heart failure at rest and during exercise is characterized by 
reduced nitric oxide-mediated, endothelium-dependent vaso-
dilation and enhanced vasoconstriction by norepinephrine 
and endothelin.

In clinical dilated cardiomyopathy, impaired endothe-
lium-dependent coronary vasodilation of the epicardial coro-
nary arteries and of the microcirculation in response to intra-
coronary acetylcholine was demonstrated by angiography 
and Doppler velocity flow measurements (Table 1); [27, 138, 
246] an impaired adenosine-recruitable coronary reserve 
was only apparent in patients with chronic, [27, 246] but 
not with acute onset—idiopathic dilated cardiopathy [138].

Decreased coronary reserve, as recruited by intravenous 
dipyridamole, was confirmed for patients with chronic idi-
opathic dilated cardiomyopathy using PET, [159, 224, 254] 

and decreased coronary reserve [159] and the spatial het-
erogeneity of myocardial blood flow [214] were associated 
with poor prognosis (mortality, heart failure progression). 
On MRI of patients with dilated cardiomyopathy, there was 
evidence for an increased extracellular matrix [111, 158] 
in association with reduced myocardial blood flow at rest 
[111] and with reduced angiographic coronary vasodilator 
response to intracoronary acetylcholine [158]. Somewhat 
surprisingly, patients with dilated cardiomyopathy had no 
reduction, but a modest increase in myocardial blood flow 
at rest, but again a decrease in adenosine-recruitable coro-
nary reserve in MRI perfusion imaging [76]. The decrease 
in adenosine-recruitable coronary reserve was, however, 
not sufficient to induce a myocardial oxygen deficiency, 
supporting the non-ischemic nature of idiopathic dilated 
cardiomyopathy [36]. Apart from endothelial dysfunction 
as evidenced by the impaired coronary dilator response 
to acetylcholine, there is also neurohumoral activation in 
patients with dilated cardiomyopathy, [63] and antagonism 
of neurohumoral activation is an essential part of all medi-
cal treatment of heart failure [75, 108]. However, to which 
extent attenuated coronary vasoconstriction, as evidenced in 
the above experimental studies, contributes to the treatment 
success in patients with heart failure is unclear, given the 
systemic effects of such treatment on heart rate, blood pres-
sure and ventricular function which all impact on coronary 
blood flow. Collectively, the clinical imaging data in patients 
with idiopathic dilated cardiomyopathy confirm a depres-
sion of endothelium-dependent coronary vasodilation and a 
reduction of coronary vasodilator reserve.

Hypertrophic cardiomyopathy

Hypertrophy of the myocardium develops as an adaptive 
response to pressure or volume overload or can be the mani-
festation of a genetic disease [167, 264]. In both scenarios, 
the hypertrophy may decompensate into heart failure, with 
or without preserved ejection fraction [26]. Remodeling 
and dysfunction of the coronary microcirculation are typi-
cally involved in hypertrophic cardiomyopathy, even in the 
absence of atherosclerosis [26].

In experimental animals, LV hypertrophy is morpholog-
ically not only characterized by increased cardiomyocyte 
cross-sectional area, but also by decreased capillary density 
and increased intercapillary distances [10, 17]. For myocar-
dial blood flow and its distribution, it is important to distin-
guish between scenarios where the coronary circulation is 
also exposed to pressure or volume overload (supravalvular 
aortic stenosis/banding, hypertension) or where coronary 
perfusion pressure is reduced (aortic valve stenosis). In 
chronically instrumented conscious dogs with banding of 
the ascending aorta at 6–8 weeks of age, LV myocardial 
blood flow as assessed by the microsphere technique was 

Table 1   Measurement of coronary reserve in patients with heart fail-
ure

I. Vasodilator stimulus
 Postocclusive reactive hyperemia
 Adenosine, intracoronary or intravenous
 Dipyridamole, intravenous
 Contrast medium, intracoronary or intravenous

II. Imaging technique
 Angiography, invasive
 Doppler flow velocity, invasive
 Contrast echocardiography, non-invasive
 Single photon emission computed tomography, non-invasive
 Positron emission tomography, non-invasive
 Nuclear magnetic resonance imaging, non-invasive
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increased after hypertrophy had developed after several 
months and even further increased when hypertrophy had 
decompensated to failure, as defined by increased LV end-
diastolic pressure > 18 mmHg [172]. Using the same model, 
again increased myocardial blood flow commensurate with 
the increased myocardial work was seen, and there was no 
depletion of myocardial energy-rich phosphates, not even 
when fractional shortening was decreased in dogs with 
decompensated hypertrophy [65]. This model is, however, 
characterized by decreased adenosine-recruitable coronary 
reserve [17, 109]. During exercise, increases in myocardial 
blood flow were greater in dogs with LV hypertrophy com-
mensurate with their greater increase in myocardial oxygen 
consumption. For the increase in coronary blood flow dur-
ing exercise, dogs with a hypertrophied heart used a greater 
activation of ATP-dependent K-channels than normal dogs; 
[144] however, the subendocardial were less than the sub-
epicardial blood flow increases, reflecting potential suscep-
tibility to ischemia [11, 44]. The relative underperfusion of 
subendocardial layers of hypertrophied myocardium during 
exercise was attributed to increased extravascular compres-
sion, [44] but not to a deficit in nitric oxide bioavailability 
[46]. Coronary blood flow returned to normal after regres-
sion of hypertrophy [109]. Different from the above studies 
which used supravalvular aortic banding, experimental aor-
tic valve stenosis in young dogs also resulted in LV hyper-
trophy several months later, but a more substantial reduction 
of adenosine-recruitable coronary reserve and a subnormal 
increase in blood flow during pacing-induced tachycardia 
particularly in the subendocardium [3]. Likewise, in chroni-
cally instrumented conscious dogs with renal hypertension, 
LV hypertrophy developed and coronary autoregulation was 
impaired such that at the lower range of coronary autoregu-
lation (40–70 mmHg), myocardial blood flow was reduced 
to a greater extent than in normal dogs, particularly in sub-
endocardial layers [80]. In pigs with corticosterone-induced 
hypertension, LV hypertrophy developed over 12 weeks, 
and the dobutamine stress-recruited perfusion reserve on 
MRI was reduced as compared to normal pigs [192]. Vol-
ume overload by severe experimental mitral regurgitation 
in dogs also induced LV hypertrophy after several months 
[28, 274]. Myocardial blood flow at rest and its increases 
during pacing and intravenous adenosine were, however, not 
different between dogs without or with mitral regurgitation 
[28, 274]. Nevertheless, energy-rich phosphates [274] and 
contractile function [28] were impaired in these dog studies 
with chronic mitral regurgitation, thus excluding a role of 
coronary blood flow in these impairments.

Also, in patients with hypertrophic cardiomyopathy, but 
absence of valve disease or hypertension, there are struc-
tural alterations in the coronary circulation; at autopsy, 
remodeling of intramural coronary arteries (< 1500 µm in 
diameter) with intimal and medial hypertrophy and narrowed 

lumen were seen in the majority of cases [136]. Small ves-
sel disease of intramural coronary arteries (20–1000 µm in 
diameter) was also evident in the autopsy of patients with 
hypertrophic cardiomyopathy of various origin, including 
hypertension, with significant luminal narrowing which cor-
related to measures of hypertrophy and presence of fibrosis 
[233]. In young patients with hypertrophic cardiomyopathy 
and sudden cardiac death, there was morphological evidence 
of small vessel coronary disease and patchy myocardial 
scars, supporting the occurrence of ischemia in the natural 
history of hypertrophic cardiomyopathy [13]. Patients with 
hypertrophic cardiomyopathy in the absence of other car-
diovascular disease, notably coronary atherosclerosis, had 
normal myocardial blood flow at rest but decreased coronary 
reserve in response to intracoronary adenosine in Doppler 
flow measurements [122] or to intravenous dipyridamole on 
PET [25, 30, 85, 164, 165]. Patients with chest pain had 
a more pronounced impairment of coronary reserve, [25] 
and the decrease in coronary reserve was related to poor 
clinical outcome. [30, 164] Intravenous infusion of the ACE 
inhibitor perindopilat in type 2 diabetic patients with LV 
hypertrophy improved the dipyridamole-recruitable coro-
nary reserve acutely [85]. Patients with a genotype-positive 
sarcomeric mutation and hypertrophic cardiomyopathy 
had greater reduction in coronary reserve than genotype-
negative patients, and they also had more fibrosis on gado-
linium contrast MRI [165]. Multiparametric MRI appears 
to be of particular value in hypertrophic cardiomyopathy, 
as it can not only determine the severity of left ventricu-
lar hypertrophy and contractile dysfunction, but also the 
attenuation of coronary reserve and the extent of fibrosis 
[179]. As in the experimental studies, coronary blood flow 
is particularly impaired in patients with aortic stenosis when 
LV hypertrophy is associated with reduced coronary perfu-
sion pressure [272]. On PET, the decrease in dipyridamole-
recruitable coronary reserve was related to the severity of 
aortic stenosis and more pronounced in subendocardial than 
in subepicardial layers [188]. The magnitude of coronary 
reserve reduction was related to greater hypertrophy and left 
ventricular dysfunction and also to plasma hs-troponin T 
concentration as an injury marker, [282] and it was a marker 
of worse prognosis on follow-up [280]. The impairment of 
coronary reserve was reversible on transcatheter or surgical 
aortic valve replacement with regression of hypertrophy on 
follow-up [133, 282].

Hypertension not only induces LV hypertrophy but is also 
a major pathogenetic risk factor for coronary atherosclero-
sis; however, an impairment of dipyridamole-recruitable 
coronary vasodilator reserve is evident also in the absence 
of coronary artery disease [166, 204, 205, 225, 226]. The 
reduction in coronary reserve appeared to be specifically 
pronounced with hypertension as compared to other patho-
genesis of left ventricular hypertrophy, [226] and a greater 
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reduction in coronary reserve was associated with ST seg-
ment depression in Holter monitoring [205]. Episodes of ST 
segment depression corresponded to a greater reduction in 
subendocardial than subepicardial dipyridamole-recruitable 
coronary reserve in patients with hypertensive hypertrophy 
in PET [194]. Attenuation of coronary dilator reserve in 
patients with heart failure of hypertensive origin predicts 
worse clinical outcome on follow-up [281]. Chronic ACE 
inhibition with enalapril improved coronary reserve and 
reduced exercise-induced ST segment depression in a small 
group of hypertensive patients [151].

Heart failure of ischemic and non‑ischemic 
origin

Heart failure with preserved ejection fraction

Heart failure with preserved ejection fraction is character-
ized by typical heart failure symptoms with mostly diastolic 
LV dysfunction but preserved ejection fraction. It is typically 
associated with comorbidities, such as obesity, diabetes and 
hypertension [182]. Experimental models of heart failure 
with preserved ejection fraction are available. With a more 
limited coronary microembolization than in the creation of 
heart failure with reduced ejection fraction, dogs developed 
heart failure with preserved ejection fraction [81]. In pigs 
with corticosterone-induced hypertension, heart failure with 
preserved ejection fraction developed and was characterized 
by decreased coronary reserve, [192] but no alteration in 
capillary density [152]. Pigs with chronic aortic banding 
developed LV hypertrophy with both systolic and diastolic 
dysfunction but still had preserved ejection fraction; [51] in 
this model, the increment in coronary blood flow for a given 
increase in myocardial oxygen consumption during pressure 
load was attenuated, suggesting impaired metabolic coro-
nary vasodilation [51]. In a pig model with multiple comor-
bidities (diabetes, hyperlipidemia, renal hypertension), there 
was LV hypertrophy and fibrosis, but ejection fraction was 
preserved; [219] in this model there was increased nitric 
oxide synthase uncoupling, associated with increased reac-
tive oxygen species formation and decreased nitric oxide 
bioavailability. Accordingly, the ex vivo coronary vasodila-
tor responses to bradykinin were reduced [219]. In a mouse 
model of heart failure with preserved ejection fraction, sec-
ondary to a combination of hypertension through systemic 
nitric oxide synthase inhibition and a diet-induced obesity 
and metabolic syndrome, [206] there was an increased 
expression of inducible nitric oxide synthase with a resulting 
substantial increase in circulating nitric oxide which induced 
nitrosylation of proteins, including proteins of the unfolded 
protein response which serve to control protein quality. In 

this model, coronary endothelial function was impaired and 
coronary reserve was reduced [206].

In patients with heart failure and preserved ejection 
fraction, there is LV hypertrophy, fibrosis and microvascu-
lar coronary rarefication even in the absence of epicardial 
coronary stenosis at autopsy [150]. In the myocardium of 
these patients, there are an increased expression of inflam-
matory proteins as well as increased reactive oxygen spe-
cies and decreased nitrite/nitrate concentrations secondary 
to increased vascular expression of NADPH oxidase and 
uncoupling of endothelial nitric oxide synthase [64]. Con-
sistently, patients with heart failure and preserved ejection 
fraction have reduced coronary reserve in the absence of 
coronary artery disease [42, 114, 197, 222, 235] on Doppler 
angiography, [42, 197] PET [222, 235] or MRI [113, 114, 
197]. Almost all patients with heart failure and preserved 
ejection fraction have either coronary artery disease on 
angiography, coronary microvascular dysfunction (increased 
minimal resistance on Doppler) and vasomotor dysfunction 
(impaired dilator response to acetylcholine) or both; [197] 
however, half of these patients have in fact epicardial coro-
nary artery disease. The reduction in coronary reserve pre-
dicts adverse events on follow-up in these patients [113]. 
Collectively, coronary vascular dysfunction is a hallmark of 
heart failure with preserved ejection fraction, predisposing 
to myocardial ischemia. However, the causality of impaired 
coronary blood flow for the development of this heart fail-
ure entity is not established, as the typically predisposing 
comorbidities (obesity, diabetes, hypertension) each and 
in combination predispose also to coronary atherosclerosis 
such that heart failure with preserved ejection fraction and 
impaired coronary blood flow may develop in parallel from 
a common systemic inflammatory activation [175, 216].

Takotsubo

Takotsubo cardiomyopathy is a clinical syndrome which is 
typically precipitated by extreme stress situation with an 
excessive catecholamine release [267] and characterized 
by features of both, myocardial infarction and heart failure 
[126]. Patients experience pain, ST segment alterations in 
their ECG and increased plasma troponin concentrations, 
mimicking acute myocardial infarction, yet their coronary 
circulation is not obstructed on angiography. Severe LV dys-
function with characteristic apical dyskinesis (“ballooning”) 
reflects the cardiomyopathy [70, 132, 177]. The takotsubo 
syndrome typically affects postmenopausal women in stress 
situations and it is reversible. The pathophysiology of the 
takotsubo syndrome is not fully clear, but coronary vascu-
lar dysfunction is definitely involved [260]. Using myocar-
dial contrast echocardiography, a perfusion deficit in the 
dysfunctional region was identified [1, 67] which partially 
recovered during intravenous adenosine challenge along 
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with an improvement of regional contractile function, [67] 
somewhat reminiscent of the Gregg effect seen in experi-
mental studies of stunned myocardium [208]. Both, perfu-
sion and contractile function recovered completely within 
1-month follow-up [67]. On angiography, thrombolysis in 
myocardial infarction (TIMI) flow in patients with tako
tsubo was similarly impaired as in ST segment elevation 
myocardial infarction (STEMI) patients with microvascular 
obstruction on reperfusion [37]. Reduced myocardial blood 
flow reflecting coronary microvascular dysfunction was 
also demonstrated using single photon emission computed 
tomography [202, 270] and PET [32, 58, 121, 270] along 
with alterations in myocardial substrate metabolism sug-
gestive of stunning/hibernation [58, 121, 202] and signs of 
inflammation [48, 267]. Endothelial dysfunction with focal 
or diffuse coronary vasoconstriction in response to intra
coronary acetylcholine was seen a significant proportion of 
takotsubo patients [202]. While the pathophysiology of the 
takotsubo syndrome is not fully clear, the predominance of 
postmenopausal women being affected and the characteristic 
severe stress situations precipitating this syndrome suggest 
an interaction of estrogen deficiency possibly contributing to 
microvascular endothelial dysfunction [230] and increased 
responsiveness of the myocardium and coronary vasculature 
to catecholamines, which may be reflective of a more sparse 
sympathetic innervation of apical than basal myocardium 
[115] with a resulting catecholamine hypersensitivity [176]. 
Both, beta-adrenoceptor-mediated catecholamine toxicity on 
cardiomyocytes [132] and increased alpha-adrenoceptor-
mediated vasoconstriction [95] may then induce a situation 
of transient ischemic dysfunction with subsequent stunning 
[132, 177]. However, at present, it is not fully clear whether 
reduced coronary blood flow is causal for the takotsubo 
syndrome; the only suggestive evidence originates from the 
observation that recruitment of dilator reserve with adeno-
sine improves regional contractile function [67].

Cardio‑oncology

Patients with a cancer history have more coronary ischemic 
events [234] and a higher incidence of myocardial infarction 
[153] than those without. They also have a higher incidence 
of plaque erosion which is, in turn, associated with coro-
nary microembolization, [117] and they have worse clini-
cal outcome [234]. Cancer therapy not only induces toxic 
or inflammatory injury to cardiomyocytes [83, 241] but 
also to the vasculature, including the coronary vasculature 
[82, 178, 271]. Not only anti-angiogenic therapies, but also 
conventional chemotherapy or radiation therapy promotes 
reduced nitric oxide availability and endothelial dysfunc-
tion, predisposes to vasoconstriction and can ultimately 
precipitate angina or myocardial infarction. In a pig model 
of anthracycline cardiotoxicity, coronary arterial structural 

damage and reduced coronary reserve in response to papa-
verine became apparent before a myocardial contractile 
defect, whereas more microvascular structural alterations 
were only seen when also LV dysfunction had developed 
[66]. Whereas this study suggested that anthracycline chem-
otherapy-induced coronary vascular injury might contribute 
to LV dysfunction, the vascular and myocardial contribu-
tion to cardiac toxicity from chemotherapy and radiation 
therapy are clinically more difficult to dissect. Patients with 
pre-existing coronary artery disease have an increased risk 
to develop heart failure from anthracycline [54, 60, 184]. 
Thus, the contribution of an impaired coronary blood flow 
to the development of cancer therapy-induced heart failure 
is not really clear.

The right ventricle in heart failure

The right ventricle is equally involved as the LV when the 
conditions causing heart failure affect the entire heart, such 
as genetic mutations, myocarditis, tachyarrhythmias or toxic 
agents, or when ischemia also affects right ventricular per-
fusion territories. The right ventricle may be less involved 
in failure when pressure or volume overload (hypertension, 
aortic valve disease) affects primarily the LV. The right ven-
tricle, however, is more affected in pulmonary hypertension. 
The failing right ventricle has only recently received more 
attention, [79, 130, 261] and the coronary circulation in right 
ventricular failure has received little attention at all. Yet, 
there are some special considerations to the coronary circu-
lation in the right ventricle, [35] since coronary perfusion 
pressure is above right ventricular pressure throughout the 
cardiac cycle such that extravascular compression and dias-
tolic duration during tachycardia are of lesser importance 
than in the LV. Also, the thinner wall of the right ventricle 
may receive some retrograde perfusion through Thebesian 
veins. On the other hand, coronary autoregulation is less 
pronounced and alpha-adrenergic coronary vasoconstriction 
during sympathetic activation more pronounced in the right 
than the LV. Nevertheless, on the aggregate, the susceptibil-
ity to ischemia is less in the right than in the LV. However, in 
acute right ventricular pressure overload by acute pulmonary 
banding in dogs, there is increased alpha-adrenergic coro-
nary vasoconstriction, increased extravascular compression 
and subendocardial ischemia [72, 73]. With chronic right 
ventricular pressure overload by chronic pulmonary steno-
sis, adenosine-recruitable coronary vasodilator reserve in the 
hypertrophied right ventricle is reduced particularly in the 
subendocardium [155] which impairs metabolic vasodila-
tion during exercise [23, 156]. Patients with chronic pulmo-
nary hypertension have reduced right coronary artery blood 
flow in proportion to right ventricular hypertrophy [257] 
and reduced adenosine-recruitable coronary reserve on MRI 
[262]. A recent NIH consensus workshop recommended 
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directions for future research on the genetic, molecular and 
cellular processes in right heart failure, [130] but further 
research on the coronary circulation in right heart failure 
is also warranted. Arrhythmogenic right ventricular car-
diomyopathy is a relatively infrequent form of human heart 
failure, caused by genetic mutations mostly in desmosomal 
proteins and characterized morphologically by diffuse fibro-
sis and inflammatory infiltration [68]. No specific alteration 
in coronary blood flow has been reported, but as in other 
heart failure entities, adenosine-recruitable coronary reserve 
on PET is reduced [174].

Conclusions and directions for future 
research

Heart failure is almost invariably associated with coronary 
vascular dysfunction, not only in the frequent presence but 
also in the absence of coronary atherosclerosis. Cause-
and-consequence relationships between heart failure and 
impaired coronary blood flow are complex. In stunning and 
hibernation, coronary microembolization, myocardial infarc-
tion and post-infarct remodeling, heart failure is clearly a 
consequence of myocardial ischemia without or with reper-
fusion—these are heart failure syndromes of ischemic ori-
gin. Vice versa, in all forms of heart failure, including hyper-
trophic and dilated cardiomyopathy with underlying genetic 
mutations and in the absence of coronary artery disease, 
increased extravascular compression and coronary vaso-
constriction by the mediators of neurohumoral activation 
(norepinephrine, angiotensin, and endothelin) are clearly 
a consequence of heart failure. The invariably impaired 
endothelium-dependent coronary dilation as well as eventual 
morphological alterations of the coronary circulation could 
be a consequence of heart failure but also a consequence 
of the underlying conditions inducing heart failure (e.g., in 
pressure or volume overload). In some forms of heart failure, 
both ischemic and non-ischemic causes contribute to heart 
failure. In takotsubo cardiomyopathy, the causal contribu-
tion of coronary vascular and myocardial disturbances to the 
heart failure syndrome is not clear. In heart failure with pre-
served ejection fraction, the underlying comorbidities with 
the resulting systemic inflammatory state may cause both 
impairment of the coronary circulation and the myocardium 
in parallel. In aortic stenosis, there is both reduced coronary 
perfusion pressure causing ischemia and pressure overload 
causing LV hypertrophy.

In any form of heart failure, there is a vicious cycle 
between the impairment of myocardial contractile func-
tion and the impairment of the coronary circulation in that 
myocardial ischemia worsens heart failure and vice versa 
(Fig. 5), and it is reflected by the prediction of poor clinical 

outcome from heart failure by the reduction of coronary dila-
tor reserve [116, 237].

Obviously, therapeutic restoration of coronary blood 
flow is of pivotal importance in all forms of heart fail-
ure for which ischemia is causal. For reversible ischemia 
and hibernating myocardium, the jury is still out in which 
clinical condition reperfusion by optimal medical therapy 
or by interventional/surgical revascularization is better. 
For irreversible ischemia and myocardial infarction, pre-
vention of coronary microvascular obstruction is of pivotal 
importance. Unfortunately, interventional approaches 
using protection devices to attenuate coronary microvas-
cular obstruction are of limited value and recommended 
only in cases of large atherothrombotic burden on angi-
ography [117]. Also, pharmacological approaches to 
attenuate coronary microvascular obstruction, i.e., by use 
of adenosine, nitroprusside or calcium antagonists have 
been of limited clinical value [92, 96]. Currently, there 
is no evidence at all for clinical benefit from stimulation 
of angiogenesis through growth factor transfection or cell 
therapy. In heart failure of non-ischemic origin, there is 
no evidence that improvement of coronary blood flow spe-
cifically provides clinical benefit. Nevertheless, the above 
common features of coronary blood flow impairment in all 
forms of heart failure render them a valid target also for all 
established treatment strategies (statins, ACE inhibitors, 
AT1 blockers), but also a potential caveat (beta blockers: 
increased diastolic duration vs. increased vasoconstriction 
[86, 95]) and a worthwhile target in the study of novel 
treatment options, e.g., neprilysin or sodium glucose trans-
porter 2 (SGLT2) inhibition. [6, 21, 143, 169, 181, 218].

Heart failure

Coronary blood flow impairment

Extravascular compression

Endothelium-dependent vasodilation

Vasoconstriction to neurohumoral mediators

Vascular remodeling / rarefication

Fig. 5   Vicious cycle between heart failure and impairment of coro-
nary blood flow by common features of all heart failure entities: 
increased extravascular compression, reduced endothelium-dependent 
vasodilation, enhanced vasoconstriction to neurohumoral mediators 
and (to a variable extent) vascular remodeling and rarefication
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