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Abstract
Despite major advances in prevention and treatment, cardiac and cerebral atherothrombotic complications still account 
for substantial morbidity and mortality worldwide. In this context, inflammation is involved in the chronic process leading 
atherosclerotic plaque formation and its complications, as well as in the maladaptive response to acute ischemic events. For 
this reason, modulation of inflammation is nowadays seen as a promising therapeutic strategy to counteract the burden of 
cardio- and cerebrovascular disease. Being produced and recognized by both inflammatory and vascular cells, the complex 
network of cytokines holds key functions in the crosstalk of these two systems and orchestrates the progression of athero-
thrombosis. By binding to membrane receptors, these soluble mediators trigger specific intracellular signaling pathways 
eventually leading to the activation of transcription factors and a deep modulation of cell function. Both stimulatory and 
inhibitory cytokines have been described and progressively reported as markers of disease or interesting therapeutic targets 
in the cardiovascular field. Nevertheless, cytokine inhibition is burdened by harmful side effects that will most likely prevent 
its chronic use in favor of acute administrations in well-selected subjects at high risk. Here, we summarize the current state 
of knowledge regarding the modulatory role of cytokines on atherosclerosis, myocardial infarction, and stroke. Then, we 
discuss evidence from clinical trials specifically targeting cytokines and the potential implication of these advances into 
daily clinical practice.
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Introduction

Cardiovascular (CV) pharmacology underwent major 
advances in the last decades allowing for a more effective 
prevention of cardiovascular and cerebrovascular events. 
Yet, acute thrombotic complications of atherosclerosis such 
as ischemic stroke and myocardial infarction remain global 
leading causes of disability and mortality. With more than 
32.4 million myocardial infarctions and strokes worldwide 
every year, the potential for intervention is high and requires 
greater efforts [34]. Lipids and inflammation have long been 
considered key drivers of plaque growth and rupture [15, 
146]. While statin-based lipid control effectively reduced 
CV burden in high-risk patients [140], the recent introduc-
tion of Proprotein Convertase Subtilisin/Kexin Type (PCSK) 
9 inhibitors definitively addressed the CV risk related to 
circulating cholesterol particles [144]. Yet, despite optimal 
low-density lipoprotein cholesterol (LDL) reduction, some 
patients still present a residual CV risk and may benefit from 
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additional drugs targeting other pathways involved in athero-
genesis [133].

The inflammatory theory of atherosclerosis was first 
proposed based on histological observation in the early 80s 
[195], while only recently the Canakinumab Antiinflamma-
tory Thrombosis Outcome Study (CANTOS) demonstrated 
the efficacy of specific anti-inflammatory intervention in the 
setting of secondary CV prevention and confirmed inflam-
matory mediators to be crucial participants and effective 
targets in atherogenesis [192]. Cytokines are small soluble 

proteins with major autocrine, paracrine, and endocrine 
immunomodulatory functions. Monoclonal antibodies 
inhibiting cytokines (also referred to as biologic therapy 
or biologicals) and specifically anti-tumor necrosis factor 
(TNF)-α have first proved efficacy in the early 90s in the 
treatment of patients with methotrexate-resistant rheumatoid 
arthritis [65]. Nowadays, anti-cytokine biologicals are the 
top best-selling drugs in the world being used by more than 
8 million patients. Indeed, anti-TNF-α treatments alongside 
other inhibitory antibodies have transformed the pharma-
cological approach to chronic inflammatory diseases such 
as rheumatoid arthritis, psoriasis, and inflammatory bowel 
diseases, all being conditions with increased cardiovascular 
and cerebrovascular risk [36]. Accordingly, targeting these 
small intra- and extracellular mediators emerged as a pos-
sible strategy to further reduce the risk of acute CV and 
cerebrovascular (CBV) events in patients under maximal 
lipid-lowering therapy [145].

This article reviews different biological aspects of 
cytokines with a specific focus on the pathophysiology of 
cardiovascular inflammation. Both basic and clinical evi-
dences of the involvement of cytokines in atherosclerosis 
and its thrombotic complications (i.e., myocardial infarc-
tion and ischemic stroke) will be summarized, and major 
achievements of their specific targeting through inhibitory 
antibody will be discussed.

Orchestrating inflammation: cytokine 
sources and classification

Being produced by nearly every cell type, cytokines are 
leading effectors of immune responses; however, their 
effects depend on targeted cell, making them pleiotropic. 
Downstream signal cascades are indeed differently triggered 
in different cell types, thus making cytokine effects some-
times paradoxical. Even, some cell types (e.g., macrophages) 
may express an opposite cytokine/receptor pattern on the 
same cellular membrane, thus representing the prototypical 
model of cell polarization as a continuum phenomenon [38, 
141]. In addition, cytokine activity is dependent on local 
environment with different cytokines having similar proper-
ties (i.e., redundancy) or showing synergistic effect. Adding 
a further layer of complexity, the old paradigm of “cytokine 
storm” is now outdated since both pro- and anti-inflamma-
tory cytokines are in most cases simultaneously released and 
equally contribute to an effective immune response [117]. 
The impossibility of discriminating cytokines on the basis 
of their source or effect has so far determined a somewhat 
inconsistent nomenclature. A commonly used classification 
is based on their structure: interleukins (ILs), chemokines, 
tumor necrosis factors, interferons, transforming, and 
other growth factors. Sometimes a classification based on 

Fig. 1   Signaling pathways of the main cytokines involved in cardio-
vascular diseases. Four main cytokines have been extensively inves-
tigated in cardiovascular diseases: tumor necrosis factor α (TNF-α), 
interleukin 1 (IL-1), IL-6, and IL-10. The intracellular signaling 
pathways of TNF-α and IL-1 (panel A) converge on two main tran-
scription factors: nuclear factor kappa-light-chain-enhancer of acti-
vated B cells (NF-κB) and activator protein 1 (AP-1). Their overall 
effect is pro-inflammatory. The receptor of TNF-α has two isoforms 
(TNFR1 and -2). The transduction of signal of TNFR1 is driven by 
the TNFR1-associated death domain protein (TRADD), which acti-
vates the mitogen-activated kinases (MAPKs), namely the extracel-
lular-signal-regulated kinases 1 and 2 (ERK 1/2), the cJun-terminal 
kinase (JNK), and the p38. In turn, the MAPKs activate c-Jun and 
phosphorylate the inhibitor of NF-κB (IκB), determining the activa-
tion of NF-κB and AP-1. TNFR1 can also activate the protein-kinase 
C (PKC), that is a Ca2+-calmodulin-dependent kinase, that promotes 
the rearrangement of the cytoskeleton and blunts the contractility of 
sarcomeres in cardiomyocytes. The transduction of signal of TNFR2 
is driven by the TNFR-associated factor 2 (TRAF2) and the endothe-
lial/epithelial tyrosine kinase (ETK). TRAF2 activates the IκB kinase 
α (IKKα), which phosphorylates IκB and activates NF-κB through 
the non-canonical pathway, having a final immune-modulatory effect, 
whereas the canonical pathway leads to apoptosis, increase of oxida-
tive stress, and pro-inflammatory signaling. ETK activates the adap-
tor protein Akt through the phosphoinositol-3-kinase (PI3K), and 
eventually activates NF-κB through the non-canonical pathway. IL-1 
has two main isoforms, IL-1α and IL-1β, which interact with the 
same receptor. The intracellular signaling pathway of IL-1 is driven 
by the myeloid differentiation factor 88 (MyD88), which activates 
multiple kinases, named interleukin-1-associated kinases (IRAKs), 
which in turn activate multiple IKKs and the activation of NF-κB 
through the canonical pathway. The intracellular signaling pathways 
of IL-6 and IL-10 (panel B) converge on two main transcription fac-
tors: NF-κB and the family of signal transducers and activators of 
transcription (STAT). The overall effect of IL-6 is pro-inflammatory, 
whereas IL-10 is the main anti-inflammatory cytokine in humans. 
IL-6 receptor α (IL-6Rα) can be bound to the cell membrane or free 
in a soluble form (sIL-6Rα). The transduction of signal is initiated 
by the binding of the receptor with the glycoprotein 130 (gp130), and 
it may follow two main pathways: the Janus kinase (JAK) pathway 
and the Ras pathway, through the adaptor proteins Shc. and Son-of-
sevenless (SOS). Ras activates the MAPKs’ cascade (namely Raf, 
MEK 1/2, and ERK 1/2), which activates NF-κB through the canoni-
cal pathway. Ras can also activate the PI3K/Akt cascade and NF-κB 
through the non-canonical pathway. JAK phosphorylates Akt, which 
in turn promotes migration of STAT inside the nucleus, where it can 
exert its transcriptional function. The activation of STAT has an over-
all anti-inflammatory effect, and it inhibits the JAK signaling through 
a negative feedback mechanism, mediated by the suppressor of 
cytokine signaling (SOCS). The signaling of IL-10 can be mediated 
by JAK, through the pathway described above, or through the tyros-
ine kinase 2 (TYK2). Both pathways converge on STAT​
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their source may be useful, so that the terms adipokines, 
osteokines, and myokines were coined [121].

Here below, we will summarize the source and general 
function of cytokines with the most relevant cardiovascular 
translational perspective.

Interleukins

Among them, a special interest toward IL-1 is rising. Forty 
years after its discovery, the IL-1 family currently counts 11 
cytokine members and 10 receptors. They include secretory 
molecules with agonistic pro-inflammatory activity (IL-1α, 
IL-1β, IL-18, IL-33, IL-36α, IL-36β, and IL-36γ), receptor 
antagonists [IL-1 receptor antagonist (Ra), IL-36Ra, and 
IL-38], and an anti-inflammatory cytokine (IL-37). Espe-
cially, IL-1α and β are of cardiovascular interest as inducible 
cytokines released by monocytes/macrophages, neutrophils, 
as well as the endothelium and myocardium. However, their 
biology is quite diverse. Whereas IL-1α is active even as a 
precursor once released by necrotic cells, IL-1β requires a 
post-transcriptional activation. The cleavage of pro–IL-1β—
and pro–IL-18 as well—into their active forms is largely 
regulated by the enzymatic activity of caspase-1, ultimately 
depending on inflammasome activation [6]. Intracellular 
pathways transducing IL-1 receptor signaling are summa-
rized in Fig. 1.

Also, IL-6 plays a primary role in the inflammatory pro-
cesses underlying cardiovascular diseases. As an upstream 
pleiotropic regulator of the inflammatory cascade, IL-6 is 
secreted by a wide variety of cells (immune cells, chondro-
cytes, osteoblasts, endothelial cells, skeletal muscle cells, 
smooth muscle cells, pancreatic islet β-cells, among several 
others) and exerts several functions ranging from synthesis 
of acute-phase proteins to activation of endothelial cells, 
pro-coagulant activity, and stimulation of lymphocyte pro-
liferation/differentiation. Surprisingly, the pro-inflammatory 
role of IL-6 has been somewhat challenged by evidence of 
anti-inflammatory and insulin-sensitizing effects [64]. This 
apparent paradox may reflect the broad range of targeted 
cells and the influence of intracellular environment, as well 
as the role of concomitant external stimuli causing an alter-
nate activation of intracellular signaling pathways that may 
lead to both pro- or anti-inflammatory cellular phenotypes 
(i.e., trans- vs. classic-signaling, Fig. 1). Interestingly, dif-
ferent biological effects of IL-6 were ascribed to different 
signal transduction pathways independently of whether IL-6 
binds directly to the membrane-bound IL-6R or its soluble 
form (sIL-6R) with subsequent engagement with the surface 
glycoprotein (gp)130 [37].

IL-10 is generally considered as an anti-inflammatory 
cytokine, rising in the late inflammatory phase and facili-
tating inflammation resolution, tissue clearance, and 
healing [118]. IL-10 is secreted by Th2 lymphocytes and 

macrophages as a self-modulating mediator with deacti-
vating properties [53]. IL-10 holds multiple effects even-
tually downregulating the expression of pro-inflammatory 
cytokines and reducing immune cell reactivity by blocking 
NF-kB and blunting the expression of MHC class II antigens 
and other stimulatory molecules on macrophages (Fig. 1) 
[244]. IL-10 also facilitates humoral immunity by acting on 
B-cell survival, proliferation, and antibody synthesis [109].

Chemokines

Chemokines are small cytokines with chemotactic activ-
ity, orchestrating blood cell migration into target tissues. 
Chemokine classification includes four groups, of which 
CC and CXC types have important roles in cardiovascular 
disease.

Of interest, those axes demonstrated to have diverse 
effects on different molecular pathways, partially due to the 
fact that they can recognize different ligands. For example, 
belonging to the C–C motif chemokine ligand (CCL)5/C–C 
motif chemokine receptor (CCR)5 axis, CCL5 also recog-
nizes different ligands ranging from other chemokines to 
defensins [8]. This allows CCR5 to influence different sys-
tems with both synergistic and modulating effects, and for 
the same reason, it was considered among the most promis-
ing targets for pharmacological interventions [173]. Among 
other chemokines, CXCL16 is also characterized by a role as 
a scavenger receptor for oxidized protein, but especially the 
CXCL12/CXCR4 axis recently attracted the interest for its 
dual role. Indeed, the beneficial role of CXCL12 on ischemic 
myocardium (i.e., promotion of angiogenesis and cardio-
myocyte protection) and injured endothelium is counterbal-
anced by a detrimental role of CXC4 in both myocardial 
recovery and intima preservation [128].

Tumor necrosis factors

The TNF superfamily includes about 20 ligands and 40 
related receptors. The ligands are generally type II trans-
membrane proteins with a shared amino acid sequence in the 
binding site. Although some are active in their soluble form, 
they are usually membrane-bound proteins, and all oper-
ate to activate intracellular signal transduction pathways. 
Depending on their receptor, TNF ligands may have both 
a pro- and an anti-apoptotic behavior [169] (Fig. 1). The 
caspase cascade—ultimately leading to apoptosis—may be 
triggered directly (e.g., death receptor [DR] 4 and 5) or indi-
rectly through the so-called death domains (DD) expressed 
by some TNFRs (e.g., Fas). Pro-survival properties have 
been instead reported for DR4, 5 and Fas, TNFR-associated-
factors (TRAFs), and decoy receptors acting as competitive 
inhibitors. This double-edged role is present ubiquitously, 
with TNFR being expressed in most cell types. Alongside 
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with apoptosis, DD also promotes inflammatory responses 
through the activation of the nuclear factor kappa-light-
chain-enhancer of activated B cell (NF-κB). Under this point 
of view, it is intuitive how TNF can play a crucial role in 
cardiovascular health [232].

Interferons

Among proteins of the interferon (IFN) family, IFN-γ is 
that of major CV interest as 100–10,000 times more active 
than other IFN classes. Furthermore, it can modulate up to 
2300 human genes, mainly through JAKs–STAT pathway. In 
its dimeric form, IFN-γ binds two receptors (IFN-γR1 and 
2), constitutively associated with downstream activation of 
JAK 1/2–STAT1 and other JAK-dependent STAT pathways 
(STAT3, 5b, and others).

IFN-γ is the hallmark of type 1 T helper cell (Th1) acti-
vation, the main T-cell subtype involved in cardiovascular 
disease. The release of IFN-γ activates various cell types and 
triggers a cascade of cytokines that sustain vascular inflam-
matory responses: chemoattractant proteins, adhesion mol-
ecules, TNF-α, and ILs. Due to extremely wide range of 
handled genes, pleiotropic activity of IFN-γ also involves 
detrimental effect on cholesterol transport, characterized by 
upregulated expression of scavenger receptor and suppressed 
cholesterol efflux on macrophage and smooth muscle cells 
[90].

Growth factors

In humans, the transforming growth factor (TGF) superfam-
ily includes about 30 molecules that may be further classi-
fied as TGF-βs (1, 2, and 3), bone morphogenetic proteins, 
growth differentiation factors, activins, inhibins, nodal, and 
anti-Mullerian hormone proteins [99]. Among them, espe-
cially, TGF-β has a clearly recognized role in cell survival, 
differentiation, proliferation, and function, and has been 
implicated in the regulation of inflammatory and reparative 
responses. Synthetized and secreted as an inactive precur-
sor, latent TGF-β is activated by the interaction with throm-
bospondin-1 and integrins [99]. Then, active TGF-β exerts 
its effects by binding to specific receptors (TGF-βRI and II 
types) that trigger a downstream phosphorylation cascade 
targeting Smad transcription factors. Mainly involved in 
fibrotic processes, TGF-β targets several cell types many 
of which are deeply involved with high cardiovascular rel-
evance: monocytes/macrophages, neutrophils, lymphocytes, 
fibroblasts, endothelial cells, and myocardial cells [99]. Of 
growing interest—but without translational implication so 
far—are the other members of TGF superfamily.

The role of cytokines in CV and CBV 
pathology

Recent trials confirmed the long hypothesized “inflamma-
tory theory of atherosclerosis” [145]. Although the athero-
sclerotic process is most likely to begin with the retention 
of modified lipoproteins within the vessel wall, soon after 
monocytes/macrophages and T lymphocytes are recruited 
by the dysfunctionally activated endothelium and engaged 
in the vicious circle involving lipids, oxidative stress, and 
inflammation, eventually leading to the formation of the ath-
erosclerotic plaque necrotic core [138]. The pro-oxidative 
and pro-inflammatory environment, which is soon estab-
lished within the vessel wall, is maintained during the whole 
process of atherogenesis favoring the migration of vascular 
smooth muscle cells from the media to the intima layer of 
the artery with collagen deposition and the formation of a 
fibrous cap isolating the highly pro-thrombotic necrotic core 
from the blood stream [61]. Not only inflammatory cells 
play a role in plaque onset and growth, but they also cru-
cially regulate the late catastrophic phases of this process, 
including atherothrombosis which is the underlying mecha-
nism of most acute cardiac and cerebrovascular ischemic 
events [25]. Similarly, inflammation drives the evolution 
of myocardial infarction after ischemia/reperfusion injury, 
with some degree of intracellular edema appearing already 
during the ischemic phase, while a rapid and intense extra-
cellular edema characterizes the very early phases of rep-
erfusion. In the hours to follow, a progressive resolution of 
the edema is observed, which precedes the invasion of myo-
cardial tissue by inflammatory cells including neutrophils 
and macrophages. Next days are characterized by an intense 
inflammatory reaction that can have deleterious effects on 
the tissues, but is also necessary for the replacement of car-
diomyocyte debris by collagen and extracellular matrix and 
the progressive cardiac healing [108]. Similar processes also 
concern cerebral tissues after an ischemic stroke. Taking 
into consideration their fundamental role in orchestrating the 
inflammatory response by regulating cellular trafficking and 
activation, cytokines have been long investigated as potential 
therapeutic targets in this context (Table 1).

TNF‑α

Atherosclerosis

The most extensively studied cytokine in the setting of 
CV disease remains TNF-α. TNF-α is found in human and 
experimental atherosclerotic lesions where it is thought to 
play a role at all stages of plaque development [35, 198]. 
Indeed, such a cytokine is an important component of par-
ticulate debris and soluble substances collected by coronary 
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Table 1   Summary of major experimental studies testing cytokine-inhibitory drugs in animal models of acute ischemic cardio- and cerebrovascu-
lar diseases

Target Animal model Intervention Phenotype References

TNF-α Rabbit; left circumflex coronary artery 
ligation

Anti-TNF-α Ab Infarct size reduction [17, 137]

Dog; transient closed-chest balloon 
occlusion of the anterior descending 
coronary artery

Etanercept Reduced post-ischemic inflammation 
and infarct size

[93]

Dog; permanent coronary artery 
ligation

Etanercept Reduced infarct size and malignant 
ventricular tachyarrhythmias

[250]

Mouse; permanent coronary artery 
ligation

TNF‐α inhibitor (CAS1049741‐03‐8) Worsened left ventricular function [242]

Rat; permanent coronary artery liga-
tion

Etanercept Reduced inflammation, favorable 
remodeling and preserved ventricu-
lar function

[20, 97]

Mouse; transient coronary artery 
ligation

Etanercept Improved cardiac function and 
reduced infarct size

[77]

Rat; transient coronary artery ligation sTNFR-Fc Reduced infarct size and decreased 
left ventricular dilation

[231]

Rat; permanent coronary artery liga-
tion

sTNF-RII Improved LV end-diastolic pressure 
and reduced left ventricular dilation

[21]

Mouse; transient middle cerebral 
artery occlusion

Anti-TNF-α antibody Reduced stroke size and preserved 
post-ischemic blood–brain barrier 
function

[26]

Mouse; permanent middle cerebral 
artery occlusion

Etanercept and sTNF‐α inhibitor Improved functional outcome with no 
change in infarct volume

[48]

Mouse; permanent middle cerebral 
artery occlusion

TNF binding protein Decreased infarct volume [170, 171]

Rat; transient middle cerebral artery 
occlusion

Infliximab and etanercept Decreased infarct volume [13, 111]

Rat; transient middle cerebral artery 
occlusion

Anti-TNF-α antibody and sTNFR1 Decreased infarct volume and edema [16, 104]

IL-1 Rat; permanent and transient coronary 
artery ligation

Mouse; permanent coronary artery 
ligation

IL-1Ra Reduced infarct size and favorable 
ventricular remodeling

[3, 92]

Mouse; permanent coronary artery 
ligation

IL-1 trap Reduced infarct size and favorable 
cardiac remodeling

[236]

Rat; transient coronary artery ligation
Mouse; transient coronary artery 

ligation

IL-1Ra Reduced infarct size and preserved 
left ventricular ejection factor

[229]

Mouse; permanent coronary artery 
ligation

Anti-IL-1β Ab Reduced left-ventricular dysfunction, 
ameliorated myocardial performance 
and contractile reserve

[227, 228, 254]

Mouse; transient coronary artery 
ligation

Anti-IL-1β Ab Reduced ischemia/reperfusion 
injury, favorable left- ventricular 
remodeling, and blunted coronary 
dysfunction

[101]

Mouse; transient coronary artery 
ligation

Anti-IL-1α Ab Reduced infarct size and preserved 
left-ventricular function

[159]

Mouse; transient middle cerebral 
artery occlusion

Anti-IL-1β Ab Reduced infarct size and ameliorated 
post-stroke neurological outcome by 
BBB preservation

[142]

Mouse; transient middle cerebral 
artery occlusion

Anti-IL-1α Ab Reduced infarct size and ameliorated 
post-stroke neurological outcome by 
BBB preservation

[139]
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aspirate during iatrogenic plaque rupture [124]. Of interest, 
TNF-α from the aspirate was shown to facilitate serotonine-
dependent vasoconstriction and to predict saphenous vein 
bypass graft restenosis risk in diabetic patients [14, 123]. 
In this sense, data from human coronary aspirate promote a 
better understanding of the involvement of cytokines to the 
vulnerable atherosclerotic plaque and may help to find bet-
ter substances antagonizing microvascular consequences of 
coronary microembolization, including the no-reflow phe-
nomenon which was reported to be highly regulated by the 
local inflammatory milieu [78, 124]. Several CV risk factors 
including obesity, diabetes, aging, and smoking associate 
with increased circulating levels of this cytokine suggesting 
its potential role even in the onset of endothelial dysfunc-
tion. Indeed, TNFα can directly increase the expression of 
different pro-inflammatory and pro-coagulant genes [19]. 
Furthermore, by reducing radical scavengers and facili-
tating the production of ROS-generating proteins, TNF-α 
increases vascular oxidative stress [176, 180]. Indeed, by 
acting on endothelial NO synthase, this cytokine was shown 

to decrease NO bioavailability and facilitate vascular dys-
function in different animal models and cohorts of patients 
[42, 180, 248, 251]. Modified lipoproteins were shown to 
dose-dependently stimulate TNF-α release from different 
cell types via different intracellular pathways, including the 
activation of classic pro-inflammatory transcription fac-
tors such as AP-1 and NF-kB [114]. Within the vascular 
wall, TNF-α released in response to oxidized lipids stimu-
lates monocyte differentiation toward the pro-inflammatory 
macrophages M1 and modulates the expression of several 
of their enzymes involved in cholesterol metabolism, result-
ing in increased lipid uptake through acyl-CoA-cholesterol 
transferase 1, and reduced efflux [141]. As a result, this 
cytokine facilitates the accumulation of cholesterol in mac-
rophages and foam cells since the earliest stages of ath-
erosclerosis development, thus initiating a vicious circle 
between macrophage cholesterol uptake and secretion of 
pro-inflammatory cytokines. Accordingly, atherosclerosis-
prone animals deficient for TNFα (double ApoE/TNFα KO) 
express lower amounts of lipoprotein scavenger receptors 

Table 1   (continued)

Target Animal model Intervention Phenotype References

Mouse; middle cerebral artery photo-
thrombosis

IL-1Ra Decreased stroke size and post-
ischemic BBB damage

[237]

Rat; permanent middle cerebral artery 
occlusion

IL-1Ra Reduced infarct size and ameliorated 
post-stroke neurological deficit

[79, 191]

Mouse, permanent and transient mid-
dle cerebral artery occlusion

IL-1Ra Reduced infarct size and ameliorated 
post-stroke neurological deficit

[160, 233]

Rat; transient middle cerebral artery 
occlusion

IL-1Ra Time- and dose-dependent reduc-
tion of infarct size and neurological 
deficit

[46, 135]

IL-6 Mouse; transient coronary artery 
ligation

IL-6R blocking Ab No difference in infarct size, reduce 
post-ischemic ventricular function

[102]

Rat; transient coronary artery occlu-
sion

IL6, sIL6R, IL6/sIL6R complex IL6/sIL6R complex, but not IL6 or 
sIL6R alone, reduced infarct size

[157]

Mouse; permanent middle cerebral 
artery occlusion

sIL-6R When administered together with 
IL-6, sIL-6R increased cerebral 
infarct size

[91]

Mouse; transient middle cerebral 
artery occlusion

IL-6Ra Increased infarct volume and reduced 
post-stroke neurological function

[247]

Rat; transient middle cerebral artery 
occlusion

IL-6 Reduced infarct size [72]

IL-10 Mouse; permanent coronary artery 
ligation

IL-10 No difference in infarct size, but 
decreased ventricular dilation and 
ameliorated function

[115, 129]

Mouse; permanent middle cerebral 
artery occlusion

IL-10 Reduced infarct size [147]

Rat; permanent middle cerebral artery 
occlusion

IL-10 Reduced infarct size [216]

Ab antibody, LAD left anterior descending, IL interleukin, (s)IL-6R (soluble) interleukin 6 receptor, IL-1R interleukin 1 receptor, TNF tumor 
necrosis factor, (s)TNFR (soluble) tumour necrosis factor receptor
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and show less fatty streak formation, as compared to ApoE 
KO littermates when 6 months of age [174, 207]. Of inter-
est, this effect seems to be unrelated to the presence of TNF 
receptor [174, 207] and is accompanied by blunted levels of 
several pro-inflammatory mediators including IL-1β, IFNγ, 
and different adhesion molecules, further proving the deep 
relationships between cytokines [246]. Formation of foam 
cell and recruitment of circulating immune cells also con-
tribute to the formation of the plaque’s necrotic core in the 
later stages of atherosclerosis when TNF-α critically con-
tributes to vascular remodeling. At this stage, TNF-α acts 
on vascular smooth muscle cells (VSMCs) causing their 
migration toward the inner layer of the vessel, facilitating 
their proliferation, and impairing apoptosis: all mechanisms 
contributing to atheroma progression [57, 86]. Furthermore, 
during atherosclerosis, VSMCs shift from a physiological 
contractile phenotype to the so-called synthetic phenotype, 
more prone to migration and extracellular matrix deposition. 
TNF-α can prompt such a phenotypic switching, again con-
tributing to atherosclerosis progression [44]. Accordingly, 
ApoE/TNF-α double KO mice showed reduced vascular 
wall thickness as compared to ApoE KO littermates and 
reduced plaque size [29, 127]. The importance of immune 
cell-derived TNF-α is further demonstrated by an elegant 
experiment, showing that bone marrow transplantation 
from animals lacking TNF-α is able to reduce atherosclero-
sis development in ApoE KO mice [29]. Further data from 
APOE*3-Leiden transgenic mice demonstrated that TNFα 
facilitates the progression of lesions toward an advanced 
phenotype with larger necrotic cores [24]. Similarly, phar-
macological inhibition of TNF-α through neutralizing anti-
bodies or treatment with decoy receptors has shown ability 
to reduce the lesion size in experimental animal models [29].

The latest stages in atherosclerosis are characterized 
by plaque destabilization, endothelial erosion, and athero-
thrombosis; of importance, TNF-α has shown effects on 
all these processes. TNF-α induces the expression of dif-
ferent proteins, e.g., metalloproteinases (MMPs), involved 
in erosion of the lesion’s fibrous cap at the plaque shoulder 
[134], yet whether the absence of TNF-α is able to amelio-
rate outcomes in animal models of plaque destabilization 
remains to be determined. Furthermore, TNF-α also acts 
by destabilizing the endothelial layer through the reduction 
of cell–cell interactions and the formation of intracellular 
gaps via reducing levels of endothelial cadherin [87, 88]. 
Also, TNF-α can disassembly actin polymer with structural 
endothelial changes increasing paracellular passage of mac-
romolecules and disrupting the integrity of the endothelial 
barrier [11, 87]. Finally, TNF-α dose-dependently reduces 
endothelial cell viability causing apoptosis through both cas-
pase-dependent and -independent processes [185, 190]. Loss 
of endothelial integrity favors thrombosis through the expo-
sure of tissue factor in the media layer and the activation 

of the extrinsic coagulation cascade. Here, again TNF-α is 
deeply implicated as it activates NF-kB, thus promoting the 
transcription of tissue factor [81]. Furthermore, this cytokine 
impairs fibrinolysis by reducing thrombus-resolving tissue 
plasminogen activator (tPA) via p38MAPK/NF-kB/plasmi-
nogen activator inhibitor 1 (PAI-1) [222]. TNF-α also posi-
tively modulates thrombosis by increasing the expression of 
endothelial cell adhesion molecules, facilitating platelet acti-
vation and formation of neutrophil extracellular traps (which 
are known to carry pro-thrombotic factors), stabilizing the 
fibrin net, and impairing fibrinolysis [182, 184].

Myocardial infarction

TNF-α tissue levels are increased in the heart after myocar-
dial infarction (MI). High levels of TNF-α have been shown 
to suppress cardiac function via impaired calcium signaling, 
increased inflammation, and oxidative stress [210]. As such, 
TNF-α has been widely studied as a potential therapeutic 
target in animal models of cardiac ischemia/reperfusion 
injury. Antibody-mediated TNF-α neutralization was shown 
to reduce infarct size in animal models of permanent coro-
nary ligation [17, 93]. Similar results have been obtained 
by inhibiting TNF-α through the infusion of soluble TNF 
receptor (sTNFR) 1 that works as a decoy receptor [218]. 
Conflicting results were obtained, instead, when perform-
ing experiments with TNF transgenic or KO animals, show-
ing both reduced and unaltered infarct sizes compared to 
WT littermates [58, 73, 131, 154]. Similarly, also the use 
of animals lacking TNF receptors has not led to unambigu-
ous results [131, 167, 189]. These results are most probably 
due to the onset of compensation mechanisms involving the 
complex net of interleukins and mediators of inflammation 
when the gene is constitutionally deleted [96]. Another pos-
sible explanation resides in the different effects of TNFR1 
and TNFR2, as only the former was able to reduce infarct 
size when knocked out [73]. Accordingly, the downstream 
signaling pathways of the two receptors within cardiomyo-
cytes are very different with TNFR1 eliciting NF-kB through 
ROS and MAPK p38 and JNK while TNFR2 having an over-
all inhibitory effect on this pro-inflammatory transcription 
factor [125, 209]. Such a dual role for TNF-α is even more 
prominent when considering myocardial preconditioning. 
Indeed, in this context TNF- α was shown to be beneficial, 
as cardiac accumulation of this cytokine after coronary 
microembolization reduces infarct size, and such a protec-
tive effect is lost after TNF-α signaling disruption [73, 209, 
212]. Besides its effect in determining infarct size, TNF-α 
also contributes to post-MI cardiac dysfunction, remodeling, 
and onset of heart failure through increased oxidative stress, 
delayed resolution of inflammation, cardiomyocyte apopto-
sis, extracellular matrix, and collagen degradation mediated 
by MMPs, but also adrenoreceptor uncoupling and alteration 
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of mitochondrial function [94, 164]. Again, also in the case 
of post-ischemic remodeling, TNF-α may have dual effects 
depending on the receptor, with animals lacking TNFR1 
showing blunted contractile dysfunction and inflammation 
after permanent coronary occlusion, while those without 
TNFR2 having exaggerated ventricular dilatation, dysfunc-
tion, and inflammation [98, 167, 189].

Ischemic stroke

Similar to what observed in the heart, TNF-α plays pivotal 
roles in the pathophysiology of ischemia and ischemia/rep-
erfusion injuries in the brain during ischemic stroke. Here, 
TNF-α is initially produced after the ischemic insult by acti-
vated resident macrophages (i.e., microglia) [41]. Increasing 
TNF-α levels in the stroke and penumbra areas facilitate 
the recruitment of circulating inflammatory cells that, once 
reached the injury site, get activated and in turn release 
TNF-α, thus promoting a vicious circle involving different 
pro-inflammatory cytokines [50]. Of interest, TNF-α con-
tributes to the dysfunctional activation of endothelial cells in 
the blood–brain barrier (BBB), increasing their production 
of cytokines, ROS, and adhesion molecules, while reduc-
ing their barrier function which is a known determinant of 
stroke outcome [26, 41]. Indeed, TNF-α also up-regulates 
the expression of different metalloproteinases, including 
MMP-9 and MMP-3 that are known to digest the BBB 
regulating tight and adherens junctions such as occludin, 
claudin-5, and vascular endothelium (VE)-cadherin [26]. Of 
interest TNF-α, as well as many other inflammatory media-
tors including MMP-9, has shown also neurotoxic effects, 
thereby potentially increasing direct neuronal damage [82, 
202]. On the other hand, TNF-α also has physiological func-
tions in the brain, including modulation of glutamatergic 
neurons and regulation of cognitive and behavioral networks 
[181, 193]. In accordance with its dual role, genetic or phar-
macological inhibition of TNF-α signaling yielded conflict-
ing evidence in different experimental models of ischemic 
stroke. In rodents undergoing permanent transient middle 
cerebral artery occlusion (pMCAO), global or myeloid cell-
specific TNF-α KO is associated with bigger infarct size and 
worsened post-stroke deficits [49, 132]. Of interest, such 
protective effects seem to be mediated by the transmembrane 
form of this cytokine, while its cleavage and systemic release 
seem to associate with larger lesions [153]. Indeed, phar-
macological inhibition of soluble TNF-α via etanercept or 
specific soluble TNF-α neutralizing proteins associated with 
improved motor function at 1 and 5 days after pMCAO [48]. 
Differently from models of permanent ischemia, results from 
transient MCAO are instead pointing more clearly toward a 
protective role of anti-TNF-α treatments in ischemia/reperfu-
sion brain injury [26, 148, 219, 245].

IL‑1 family

Atherosclerosis

IL-1 family includes a network of 11 cytokines mostly regu-
lating innate immune cells. The role of such mediators in 
CVD has been studied extensively for 3 of them: IL-1α, 
IL-1β, and IL-1 receptor antagonist (IL-1Ra, a physiologi-
cal regulator of IL-1 pathway). IL-1α and β have countless 
physiological effects known to play a role in the pathogen-
esis of numerous diseases including atherosclerosis, myocar-
dial infarction, and ischemic stroke [101, 215, 239]. Those 
cytokines induce the production of several pro-inflammatory 
mediators, including themselves, in different cell types such 
as endothelial cells, immune cells, and VSMCs, thereby 
fueling vascular inflammation through a positive feedback 
loop mechanism [166, 206, 220]. Of interest, cholesterol 
crystals are known inducers of inflammasome activation in 
the atherosclerotic plaque, causing the cleavage of pro-IL-1β 
and favoring the vascular inflammatory microenvironment 
[188]. Furthermore, IL-1 affects redox status of tissues by 
inducing cyclooxygenase 2, prostaglandins, and the induc-
ible form of nitric oxide synthase (iNOS), impairing vasore-
laxation, and affecting the anti-thrombotic properties of the 
endothelium [7, 194, 223]. Furthermore, they directly induce 
the expression of pro-thrombotic mediators such as tissue 
factor and plasminogen activator 1 [22, 60] while also facili-
tating endothelial/ immune cell interactions by increasing 
levels of different adhesion molecules including ICAM-1, 
VCAM-1, and P-selectin, as well as the production of chem-
oattractants such as CCL-2 [33, 149, 224, 241]. IL-1 induces 
the synthesis of platelet-derived growth factor (PDGF) in 
VSMCs, and facilitates their proliferation and migration 
[201, 208]. Platelets harbor IL-1α and can enrich their 
microparticles with IL-1β, thereby facilitating atherothrom-
bosis [30, 103]. As all those processes are known to alter 
vessel wall homeostasis and accelerate the onset of vascular 
dysfunction, IL-1α and β are nowadays considered as pro-
atherosclerotic mediators and several studies assessed their 
therapeutic potential in this setting. In murine atherosclerotic 
models, IL-1 promotes atherosclerosis, while its inhibition 
reduces plaque burden [63, 120, 163, 239]. In pig vessels, 
periadventitial injection of IL-1 induces hyperplasia of the 
media, while IL-1 inhibition can impair intimal thickening in 
response to damage [168, 211]. Accordingly, hyperlipidemic 
mice missing IL-1 receptors show reduced arterial remod-
eling during plaque formation, mainly due to a reduced level 
of MMPs [9]. Increasing IL-1 signaling by abrogating its 
physiological inhibitor IL-1Ra results in increased vascular 
inflammation and structural derangement with the forma-
tion of aortic aneurysms [110]. Of interest, a recent elegant 
study by Libby and coll. disclosed the different contribu-
tions of IL-1 isoforms to the progression of atherosclerotic 
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by investigating the effect of specific IL-1α and/or IL-1β 
antibody-mediated neutralization in ApoE–/– mice early or 
advanced atherogenesis [239]. Specifically, they reported an 
important role for IL-1α in arterial remodeling during early 
experimental atherogenesis, but not in the evolution of estab-
lished plaques, while IL-1β seemed to drive inflammation 
and promote the progression to advanced lesions [239]. In 
this context, we demonstrated that anti-IL-1β neutralizing 
antibodies could modulate atherothrombosis in animals with 
systemic inflammation via reducing neutrophil extracellular 
trap-associated tissue factors [143].

Myocardial infarction

IL-1 isoforms participate in cardiac repair after MI, a pro-
cess initiated by intense inflammatory response and immune 
cell recruitment to clear damaged cells and predispose 
extracellular matrix to the reparative phase, characterized 
by resolution of inflammation, scar formation, and neovas-
cularization [31]. Necrotic and injured cells release danger-
associated molecular patterns (DAMPs) that bind to pro-
miscuous receptors known as pattern recognition receptors 
(PRRs) eventually causing pro-inflammatory activation of 
resident and recruited immune cells, NLRP3 inflammasome 
induction, and IL-1β synthesis [2, 107]. Furthermore, dying 
cells locally release intracellular and membrane-bound 
IL-1α. As a result, local levels of IL-1 cytokines rise and 
participate in the propagation of the inflammatory response 
in ischemic/reperfused myocardium by signaling through 
MAPK- and NF-κB pathways, activating neighboring and 
infiltrating cells through IL-1R, and increasing immune cell 
tissue invasion by increasing myocardial levels of adhesion 
molecules and chemoattractants [107]. Although important 
for an effective healing process, excessive inflammatory 
response associates with adverse cardiac remodeling and 
worsened post-infarction cardiac function. Indeed, several 
experimental studies report IL-1 blockade with anakinra or 
IL-1 trap to modulate ventricular remodeling or infarct size, 
short time after myocardial infarction [2, 3, 221, 236]. Fur-
thermore, also isoform-specific IL-1 inhibition by mean of 
anti-IL-1β and anti-IL-1α neutralizing antibodies was shown 
to reduce inflammasome activation and preserve left-ventric-
ular systolic function [227, 228], even if administered after 
ischemia [159].

Ischemic stroke

IL-1 isoforms are major players in the pathophysiology of 
ischemic stroke. IL-1β is highly expressed in the brain where 
it regulates neurotropism and ion channel expression and 
activity [217, 238]. After an ischemic stroke, IL-1β levels 
acutely increase mainly due to the activation of local micro-
glia and invading macrophages [56, 142]. Similarly, levels 

of IL-1α—released in the ischemic brain by injured cells 
and platelets—raise after 7 days in murine models of cer-
ebral ischemia/reperfusion injury and facilitate neutrophil 
infiltration and BBB damage [51, 139, 199]. Thus, IL-1 
isoforms again play a detrimental role, especially when 
considering short-term outcome; in line with this notion, 
mice lacking IL-1α/β expression show reduced post-stroke 
cerebral damage and neurologic deficit [28]. On the oppo-
site, administration of recombinant IL-1β exacerbated post-
stroke neuroinflammation and worsened tMCAO outcome 
[151]. In keeping with this evidence, pharmacological agents 
modulating IL-1 signaling showed therapeutic potential in 
experimental models of stroke [74, 100]. Central and periph-
eral administration of IL-1Ra ameliorated ischemic brain 
damage after both tMCAO and pMCAO [51, 152, 191, 233]. 
Furthermore, we reported that post-ischemic treatment with 
antibodies neutralizing IL-1α and β reduce stroke size and 
improve post-stroke neurological deficit in mice undergo-
ing tMCAO, by reducing post-ischemic BBB impairment 
through different pathways [139, 142]. Specifically, anti-
IL-1β antibody reduced neutrophil and MMP-2 activity in 
ipsilateral hemispheres as compared to vehicle-treated mice, 
thereby blunting tMCAO-associated vascular endothelial-
cadherin reduction [142]. Instead, post-stroke inhibition of 
IL-1α modulated cerebral injury by blunting endothelial 
activation and expression of adhesion molecules, thereby 
reducing penumbral mononuclear phagocyte content and 
related neurotoxic mediators such as MMPs [139]. Finally, 
a recent study reported neuroprotective effects of sub-path-
ological systemic IL-1α doses before brain ischemia [200]. 
As IL-1α functions locally and circulating levels are hardly 
detectable both under physiological and pathological condi-
tions, properties of systemic IL-1α remain to be determined.

IL‑6

Atherosclerosis

IL-1 is a potent inducer of IL-6 production [230]. IL-6 was 
recognized as a strong mediator of the acute-phase response, 
prompting hepatocytes to produce acute-phase reactants, 
including thrombotic mediators such as fibrinogen and 
plasminogen activator inhibitor, as well as CRP [205]. Dif-
ferently from IL-1, IL-6 has shown a dual anti- and pro-
inflammatory function, depending on whether the classic 
or the trans-signaling pathway is activated, and accounting 
for apparent conflicting results in the literature (reviewed 
in detail here [203]). Within the vascular tree, IL-6 is pro-
duced by endothelial and smooth muscle cells as well as by 
white blood cells and fibroblast [43, 158, 172]. While exog-
enous administration of recombinant IL-6 accelerates plaque 
growth in hyperlipidemic animals [105], its genetic dele-
tion yielded no effect on the early stage of the disease while 
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enhancing plaque progression [204]. Such a late protective 
effect seems to be mediated by the production of endogenous 
cytokine antagonists (i.e., IL-1Ra) and anti-inflammatory 
cytokines, including IL-10 [112, 225].

Myocardial infarction

A similar dual effect was confirmed in experimental models 
of myocardial infarction, where neither IL-6 deletion nor 
recombinant IL-6 administration affected infarct size, left-
ventricular remodeling, or survival in mice after permanent 
left anterior descending artery (LAD) ligation [75]. Com-
parably, in mice with I/R injury, weekly injections with an 
antibody blocking IL-6 receptor did not affect myocardial 
damage and remodeling as compared to control mice [102]. 
Recently, a study hypothesized that such neutral effect could 
result from chest opening and heart puncturing, performed 
to allow LAD ligation: these procedures would significantly 
raise the level of cytokines above the effects of I/R-induced 
cytokine production. Therefore, the authors chose a chest-
closed model of I/R injury and compared the effect of tran-
sient LAD ligation in WT and IL-6KO animals concluding 
that, in the absence of major surgical intervention, IL-6 plays 
a deleterious role in the early phase of reperfusion indepen-
dently of neutrophil influx, IL-1β, TNFα, tissue factor, and 
fibrin [113]. Further studies are needed to fully understand 
what seems to be a “Janus” effect of IL-6 in the development 
of atherosclerosis and ischemic myocardial injury.

Ischemic stroke

Ischemic stroke acutely increases the levels of circulating 
IL-6 in experimental models, highlighting the potential of 
this molecule as a therapeutic target. IL-6 is known to act, 
under physiological conditions, as a neurotrophic factor in 
the central nervous system. Accordingly, current knowl-
edge suggests IL-6t o be protective in experimental stroke, 
especially at later time points, when it would support neu-
rogenesis and functional recovery [84]. Yet, apparently 
contradictory results still generate debates in the field [47]. 
In accordance with the hypothesis that IL-6 trans-signaling 
is detrimental, while the classic one may exert protective 
effects, specific inhibition of trans-signaling mediators 
(i.e., using the chimeric protein sgp130Fc) may represent 
an interesting strategy for stroke therapy [69].

IL‑10

Atherosclerosis and myocardial infarction

Among the so-called “anti-inflammatory cytokines”, IL-10 
is one of the better characterized. IL-10 is expressed in 

atherosclerotic lesions, where associates with low levels 
of iNOS and cell death [156]. IL-10 can inhibit differ-
ent processes involved in plaque progression and rupture 
such as NF-κB-mediated MMPs, TF, and cyclooxygenase 
(COX) expression [18, 116, 240]. In keeping with the 
inflammatory nature of atherosclerosis, pharmacological 
and genetic modulation of IL-10 pathway revealed impor-
tant anti-atherogenic effects for this cytokine in different 
hyperlipidemic experimental models of disease [155, 183, 
186]. Similarly, treatment with recombinant IL-10 resulted 
in inflammation inhibition and reduced ventricular remod-
eling in animals undergoing permanent LAD ligation via 
activation of STAT3, reduced MMP-9 activity, and fibro-
sis [32, 115, 129]. Accordingly, IL-10 deficiency associ-
ates with increased production of TNF-α, reduced NO, 
increased neutrophil recruitment, and myocardial damage 
after I/R injury [249].

Ischemic stroke

As for experimental stroke, also, in this case, the con-
firmed anti-inflammatory effect of this cytokine has shown 
important neuroprotective roles. IL-10 overexpress-
ing animals showed reduced short-term infarct volumes 
and apoptosis after pMCAO [59, 179], while exogenous 
administration of IL-10 demonstrated therapeutic poten-
tials by limiting post-stroke inflammation [147, 175, 216].

Other cytokines

IL-4, mainly produced by leukocytes, has shown dual 
anti- and pro-inflammatory effects and its role in CV dis-
eases remains far from being defined. In animal models 
of ischemic stroke, exogenous IL-4 administration after 
tMCAO ameliorated post-stroke motor and behavioral 
functions, while its effect on stroke size was not always 
clearly detectable [150, 253]. As for atherosclerosis instead, 
IL-4 roles remain quite elusive as experiments employing 
genetic deletion of this cytokine in hyperlipidemic animals 
showed reduced lesion size and inflammation in IL-4 KO 
animals [55, 119], while its endogenous administration led 
to decreased plaque development [106].

IL-17 is produced by different leukocytes as well as 
endothelial cells. In particular, IL-17 production character-
izes a specific CD4 + T helper population known as Th17 
cells, expressing STAT3 and involved in different chronic 
inflammatory diseases including Psoriasis and Crohn disease 
[27]. Whether and how IL-17 plays a role in atherosclerosis 
remains controversial. Different studies on atherosclerotic 
mice using genetic IL-17A deletion, anti-IL-17 antibodies, 
or inhibiting IL-17 receptor showed its pathogenic effect 
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through increased vessel wall chemoattractant levels and 
invasion by leukocytes [68, 80, 214, 235]. On the opposite, 
other studies showed IL-17 to reduce endothelial expres-
sion of adhesion molecules with reduced plaque growth 
[54, 85]. As such, the role of this cytokine on plaque devel-
opment may depend on different parameters including the 
stage of atherosclerosis, or the intensity of cytokine modu-
lation. Similar conflicting results were shown by manipula-
tion of IL-23 in atherosclerotic animals. As described for 
IL-17, also this cytokine is involved in Th17 maintenance 
and chronic inflammatory disease pathophysiology [27]. 
Whereas atherosclerotic-prone animals missing IL-23 recep-
tor showed no modulation of atherosclerosis [67], another 
study recently suggested IL-23 to be protective by reducing 
proatherogenic gut microbiome and preserving intestinal 
barrier function [71].

From bench to bedside: targeting cytokines 
in CV clinical trials

The possibility to employ immune-suppressing drugs for 
the prevention of cardiovascular risk raised from the clini-
cal experience in the treatment of chronic inflammatory and 
autoimmune diseases. As it is well known, these conditions 
are associated with an increased risk of MACE, and the use 
of effective treatments, reducing the systemic inflammatory 
status, was associated with a reduction of the cardiovascular 
risk up to the reference population levels [36]. The large 
majority of this evidence has not been collected with tar-
geted RCTs, but it comes from sub-analyses of registration 
studies, observational cohort studies, and small trials with 
surrogate outcomes. For instance, the treatment with high-
dose methotrexate or cyclosporine for rheumatoid arthritis 
(RA) is associated with a reduced carotid intima-media 
thickness and a reduced number of carotid atherosclerotic 
plaques, compared to the treatment with non-disease-mod-
ifying agents [122]. Similarly, the use of the Janus-kinase 
inhibitor tofacitinib is associated with a reduction of cIMT, 
despite an increase of circulating LDL-cholesterol [130], 
whereas the use of the IL-6 inhibitor tocilizumab is asso-
ciated with an improvement of microvascular endothelial 
function [197].

Analyses of large registries observed a reduced inci-
dence of MACE in patients with RA or other inflammatory 
arthritis treated with anti-TNF-α biologic drugs, compared 
to patients treated with the traditional disease-modifying 
drugs. However, this supposed benefit of TNF-α inhibition 
was limited to the duration of the treatment itself instead, 
was comparable to the benefit obtained using other biologic 
drugs, and was not observed in patients with a poor response 
to the anti-TNF-α treatment [196]. Whether reduced car-
diovascular events in patients treated with anti-TNF-α 

drugs are a direct consequence of TNF-α inhibition or an 
effect of better disease control is still a matter of debate 
[169], although a recent analysis of the FORWARD registry 
reported a reduced incidence of CV events in patients treated 
with TNF-α inhibitors or with the inhibitor of cytotoxic 
T-lymphocytes-associated protein 4 (CTLA-4) abatacept, 
compared to the conventional synthetic disease-modifying 
agents [177].

Nowadays, specific randomized clinical trials (RCTs) 
have demonstrated that addressing cytokines can be an 
effective strategy for the prevention of major cardiovascular 
events in subjects with very-high cardiovascular risk, and 
for the treatment of complications after acute myocardial 
ischemia (Table 2). Nonetheless, this strategy is not yet 
available in clinical practice, mainly because of safety con-
cerns. In this chapter, we will summarize the results of main 
trials performed up to the present time, focusing on expected 
benefits and limitations to their translation into “real-life” 
clinical practice.

Tumor necrosis factor α (TNF‑α)

Inhibition of TNF-α signaling is a successful treatment strat-
egy for many inflammatory and autoimmune diseases, such 
as rheumatoid arthritis (RA), ankylosing spondylitis, and 
inflammatory bowel diseases. Analyses of large registries 
observed a reduced incidence of MACE in patients with 
RA or other inflammatory arthritis treated with anti-TNF-α 
biologic drugs, compared to patients treated with traditional 
disease-modifying drugs. As it is well known, inflammatory 
arthritis is associated per se with a higher risk of MACE, and 
the risk of patients treated with anti-TNF-α biologic drugs 
was reduced to the levels of the reference population. How-
ever, this supposed benefit of TNF-α inhibition was limited 
to the duration of the treatment itself instead, was compara-
ble to the benefit obtained using other biologic drugs, and 
was not observed in patients with a poor response to the 
anti-TNF-α treatment [196]. Therefore, whether reduced car-
diovascular events in patients treated with anti-TNF-α drugs 
are a direct consequence of TNF-α inhibition or an effect of 
better disease control is still a matter of debate [169].

The Randomized Etanercept Worldwide Evaluation 
(RENEWAL) trial combined the results of two trials per-
formed in early 2000s testing efficacy and safety of etaner-
cept, a blocking fusion protein anti-TNF-α, currently 
employed in the treatment of RA, in patients with chronic 
heart failure. No evidence of beneficial effects in terms 
of hospitalization and mortality was found in the etaner-
cept arm [52]; conversely, the phase 2 Anti-TNF Therapy 
Against Congestive Heart Failure (ATTACH) trial reported 
an increased risk of hospitalization for heart failure and 
death for any cause in patients with severe chronic heart 
failure[45]. In light of this evidence, chronic heart failure 
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is considered a contraindication of anti-TNF-α medications 
and this represents a strong limitation to their potential use 
in patients with high cardiovascular risk.

Furthermore, Padfield et al. [178] performed a small pla-
cebo-controlled trial, administering etanercept 10 mg within 
24 h from hospital admission for myocardial infarction. They 
observed a significant reduction of CRP and IL-6 circulating 
levels 24 h after drug administration, alongside an enhance-
ment of platelet activation [178]. In light of this evidence, 
the existing anti-TNF-α medications are not considered safe 
enough for a potential use in patients with very-high cardio-
vascular risk. However, TNF signaling pathways still repre-
sent a potential therapeutic target for residual cardiovascular 
risk; indeed, additional molecular targets belonging to the 
TNF superfamily, such as Tumor Necrosis Factor-Alpha-
Related Apoptosis-Inducing Ligand (TRAIL), Tumor Necro-
sis Factor-like Weak inducer of apoptosis (TWEAK), and 
CD40L, are currently under investigation for the treatment of 
rheumatologic diseases and cancer and the results of ongo-
ing trials are awaited [169]

Interleukin 1 (IL‑1)

IL-1 is the most promising pharmacological target for the 
reduction of residual risk in patients with very-high cardio-
vascular risk, after optimization of traditional risk factors, 
as reported by the over mentioned CANTOS trial [192]. 
This notorious phase III, placebo-controlled, randomized 
trial tested the monoclonal antibody anti-IL-1β canaki-
numab at the dosage of 50 mg, 150 mg and 300 mg every 
3 months in subjects with previous myocardial infarction 
and baseline levels of high-sensitive C reactive protein (hs-
CRP) ≥ 2 mg/L. the primary result was the reduction of hs-
CRP and IL-6 levels in a dose-dependent manner, associated 
with a reduced incidence of the composite outcome con-
sisting in non-fatal myocardial infarction, non-fatal stroke, 
or cardiovascular death for the 150 mg and 300 mg dos-
ages. Separately considering each event, the efficacy was 
confirmed for myocardial infarction and coronary revascu-
larization only, but not for stroke or cardiovascular death. 
Noteworthy, the effect was not mediated by any change 
in circulating lipoproteins. Subsequent post hoc analyses 
reported that canakinumab 150–300 mg was associated 
with a reduced risk of hospitalization for heart failure 
[70], whereas patients with ejection fraction < 50%, treated 
with canakinumab at any dosage, experienced a significant 
improvement in aerobic capacity and left-ventricular func-
tion [234].

Alongside these promising results, the safety analysis 
unraveled an increased risk of death for sepsis or infection in 
patients treated with canakinumab, especially for elderly and 
diabetic patients. By contrast, a reduced mortality for cancer 
was associated with the treatment [192], consistent with a 

large amount of experimental evidence supporting a role of 
the IL-1 cytokines superfamily in induction and progression 
of different cancer types [83]. However, all-cause mortality 
was not affected by the treatment with canakinumab.

Presently, the increased risk of severe infections is the 
main limitation to the potential application of canakinumab 
in the treatment of patients with very-high cardiovascular 
risk. Other common adverse effects reported by the CAN-
TOS in patients receiving canakinumab include neutropenia 
and thrombocytopenia, not associated with increased bleed-
ing risk [192].

Conflicting results were produced by the phase 2 trials 
testing the recombinant IL-1 receptor antagonist anakinra, 
currently approved for the treatment of RA and systemic 
auto-inflammatory syndromes. In the Virginia Common-
wealth University Anakinra Remodeling Trial (VCU-ART), 
anakinra was administered at the dose of 100 mg/day for 
14 days to patients with acute ST Elevated Myocardial 
Infarction (STEMI), demonstrating a significant reduction 
of hs-CRP levels 3 months after the event. This reduction 
was associated with a reduced occurrence of new-onset heart 
failure, although no significant effect on the left ventricular 
was demonstrated [5]. Interestingly, no significant incidence 
of severe infection was associated with the treatment [4]. 
Nonetheless, it demonstrated also a neutral effect of anakinra 
on the recurrence of cardiovascular events, defined as a com-
posite outcome of myocardial infarction, unstable angina, 
ischemic stroke, and symptomatic heart failure [1].

Phase 2 trials employing anakinra have been also per-
formed in patients with acute ischemic stroke. Emsley et al. 
[66] administered anakinra at a loading dose of 100 mg 
intravenously within 6 h from the onset of an acute ischemic 
stroke, followed by a continuous infusion of 2 mg/kg/h for 
72 h, reporting a significant reduction of leukocytes, neu-
trophils, CRP, and IL-6 circulating levels 3 days after the 
event, associated with a reduction in of disability scores 
and mortality after 3 months. An increased risk of infec-
tions was observed among patients randomized to anak-
inra, although none was classified as severe. Furthermore, 
a recent post hoc analysis did not observe an impairment of 
anti-microbial humoral immunity in patients randomized to 
anakinra [162]. Unfortunately, the positive effect of anakinra 
on post-stroke mortality and disability was not confirmed by 
the subsequent, larger, Subcutaneous Interleukin-1 Recep-
tor Antagonist in Ischemic Stroke (SCIL-STROKE) trial 
[213], although the significant reduction of IL-6 and CRP 
circulating levels after 3 days was confirmed. No increased 
risk of infection was associated with the treatment. Results 
of these two studies are not comparable, since the SCIL-
STROKE trial administered anakinra 100 mg subcutane-
ously within 6 h from symptom onset, followed by 100 mg 
every 12 h for 3 days, resulting in a significantly lower 
administered dose than the previous trial. Furthermore, no 
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patient had undergone intravenous thrombolysis in the first 
trial, whereas all the enrolled patients in the latter received 
recombinant Tissue Plasminogen Activator (rTPA). Consid-
ering these results, the efficacy and safety of IL-1 receptor 
blockade for the treatment of ischemic stroke, in addition to 
intravenous thrombolysis, seems questionable.

Interleukin 6 (IL‑6)

The monoclonal anti-IL-6 antibody tocilizumab—currently 
approved for the treatment of RA and cytokine release syn-
drome—was tested in patients with myocardial infarction in 
a phase 2 trials. Kleveland et al. [126] administered a single 
dose of tocilizumab 280 mg intravenously prior to coronary 
angiography to patients with non-ST-elevation myocardial 
infarction (NSTEMI), reporting a significant decrease of hs-
CRP and hs-troponin T compared to placebo, 3 days after 
the procedure. Interestingly, stronger effects were observed 
in patients undergoing percutaneous coronary intervention. 
Conversely, the Short-term Application of Tocilizumab dur-
ing Myocardial Infarction (STAT-MI) trial [39], testing toci-
lizumab 162 mg administered subcutaneously within 24 h of 
hospital admission for myocardial infarction, failed in dem-
onstrating a significant reduction of hs-CRP levels 30 days 
after administration. This trial was underpowered, since 
investigators interrupted the recruitment in advance after 
a futility analysis, revealing a low probability to achieve a 
significant reduction in major atherosclerotic cardiovascular 
events. The evident differences between these trials in terms 
of dosage, time and route of administration, sample size, 
and timing of outcome measurement impede us from draw-
ing any possible outlook about the efficacy of tocilizumab 
in patients with acute myocardial infarction. Overall, since 
none of the trials reported significant adverse events associ-
ated with the treatment, investigation on this topic is still 
ongoing. In particular, the “ASSessing the effect of Anti-
IL-6 treatment in MI” (ASSAIL-MI) trial [12] was recently 
completed, and its results are awaited. Compared to previous 
trials, the ASSAIL-MI enrolled patients with STEMI and 
aimed at investigating, as a primary endpoint, the effects of 
tocilizumab on myocardial salvage, evaluated through car-
diac magnetic resonance imaging.

Future perspectives and conclusions

Advances in the knowledge of cytokines function and the 
development of innovative therapeutic tools are leading the 
way for the future application of cytokine modulation in 
cardiovascular diseases. On one hand, a substantial part of 
research in this area is focused on identifying new and/or 
more specific compounds neutralizing the detrimental effects 
of cytokine activation. IL-1 still represents an interesting 

target for inhibition: directly through humanized monoclo-
nal antibody alike canakinumab (e.g., gevokizumab [40]) 
or secondarily induced by inflammasome inhibition [226].

Additional ongoing cytokine-specific approach relies on 
targeting IL-2 up-regulation, which would exert a beneficial 
effect through expansion of the Th17 lymphocyte population 
[252]. A similar and somewhat “classical” approach is also 
being used in the huge amount of clinical trials targeting 
chemokines [173] and IFN-γ, whereas presently there is no 
prospective for clinical translation of TNF/TGF inhibition.

On the other hand, interesting insights would emerge 
from new approaches, mainly based on post-transcriptional 
inhibition and the use of nanotechnologies. Cardiovascu-
lar medicine is not yet adequately exploring the therapeutic 
potential of small interfering RNA [136, 187] and nano-
particles [23, 76, 89, 95, 165], as in other research fields, 
while even more new technologies are emerging, such as the 
use of CAR T cells [10]. In this regard, the development of 
tissue-specific technologies of drug delivery could help in 
reducing the side effects of anti-cytokine treatment, includ-
ing systemic immune-suppression and the consequent risk of 
infections. Similarly, future studies will help to understand 
the optimal duration of the treatment after an acute event, 
which will be most probably acute rather than chronic to 
maximize the benefits and reduce side effects.

Finally, the concept of cardiovascular lesions (e.g., ath-
erosclerotic and ischemic) should be redefined: no longer as 
local disease but rather local chronic foci of systemic inflam-
mation [243]. This shift of paradigm would also help in con-
sidering other cytokine circuits with therapeutic potential as 
those coming from diet/microbioma [71], brain–bone–mar-
row axis [62], and hypocretin release induced by sleep–wake 
cycle [161].

The amount of evidence herein reviewed suggests the 
high potential for immunomodulatory therapies to deeply 
impact on future CV and CBV pharmacology. Translation 
from bench to bedside is facilitated by the availability of bio-
logicals specifically interacting with different cytokines and 
already approved for auto-inflammatory conditions. Future 
large randomized clinical trials will have the difficult task of 
finding the balance between the risk of blunted host defense 
and CV/CBV benefits of anti-cytokine therapies, with the 
ambitious goal of improving prevention in patients present-
ing with high risk despite the modern standard of care.
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