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Abstract
Homeostasis is maintained within organisms through the physiological recycling process of autophagy, a catabolic process 
that is intricately involved in the mobilization of nutrients during starvation, recycling of cellular cargo, as well as initiation 
of cellular death pathways. Specific to the cardiovascular system, autophagy responds to both chemical (e.g. free radicals) 
and mechanical stressors (e.g. shear stress). It is imperative to note that autophagy is not a static process, and measurement 
of autophagic flux provides a more comprehensive investigation into the role of autophagy. The overarching themes emerging 
from decades of autophagy research are that basal levels of autophagic flux are critical, physiological stressors may increase 
or decrease autophagic flux, and more importantly, aberrant deviations from basal autophagy may elicit detrimental effects. 
Autophagy has predominantly been examined within cardiac or vascular smooth muscle tissue within the context of disease 
development and progression. Autophagic flux within the endothelium holds an important role in maintaining vascular 
function, demonstrated by the necessary role for intact autophagic flux for shear-induced release of nitric oxide however 
the underlying mechanisms have yet to be elucidated. Within this review, we theorize that autophagy itself does not solely 
control vascular homeostasis, rather, it works in concert with mitochondria, telomerase, and lipids to maintain physiological 
function. The primary emphasis of this review is on the role of autophagy within the human vasculature, and the integrative 
effects with physiological processes and diseases as they relate to the vascular structure and function.
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Abbreviations
AMPK	� 5′ Adenosine monophosphate-activated protein 

kinase
CAD	� Coronary artery disease
eNOS	� Endothelial nitric oxide synthase
FMD	� Flow-mediated dilation
SIRT	� Sirtuins
H2O2	� Hydrogen peroxide
LC3	� Microtubule-associated protein 1A/1B-light 

chain 3
mTOR	� Mammalian target of rapamycin
NO	� Nitric oxide
ROS	� Reactive oxygen species
SOD	� Superoxide dismutase
TERT	� Telomerase reverse transcriptase

TFEB	� Transcription factor EB
VSM	� Vascular smooth muscle

Introduction

Autophagy is a cellular recycling process in response to vari-
ous stressors (e.g. oxidative stress, hypoxia, and starvation) 
by which cells attempt to maintain homeostasis by providing 
recycled metabolic substrates, particularly during times of 
nutrient shortage/starvation. Functionally, autophagy facili-
tates switches in cellular phenotypes, such as the transition 
of smooth muscle cells from contractile to proliferative phe-
notypes [127], and the conversion of circulating monocytes 
to macrophages [166]. The process and signaling cascade of 
autophagy has been well described across many cell types 
in various species ranging from yeast to mammals, is rela-
tively well-conserved evolutionarily, and importantly, dis-
ruption or excessive autophagy underlies the pathology of 
numerous chronic diseases (for reviews, see: [27, 40, 49, 
103, 123]). Broadly, damaged or superfluous intracellular 
components are encapsulated within double-membraned 
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autophagosomes, which fuse with lysosomes, and are subse-
quently degraded by acidic hydrolases into cellular metabo-
lites that are then recycled for use in other physiological pro-
cesses. Within these constraints and throughout this review, 
the term autophagy refers to macro-autophagy, being more 
prevalent than other forms of autophagy- micro-autophagy 
and chaperone-mediated autophagy. Micro-autophagy 
directly envelops vesicles via invaginations within the 
membrane, while chaperone-mediated autophagy occurs in 
mammalian cells and involves direct targeting and transpor-
tation of organelles that express a specific molecular target 
[5, 142]. The focus of this review is on macro-autophagy and 
cardiovascular disease with special emphasis on the role of 
autophagy in vascular health and function.

Autophagy is a key regulator of cardiovascular homeo-
stasis, responding to physiological and pathophysiological 
stimuli (Fig. 1). Autophagy has been studied within car-
diac tissue (e.g. cardiomyocytes), vascular smooth muscle 
(VSM), and cultured endothelial cells [162]. While recycling 
of cellular organelles is generally viewed as a beneficial pro-
cess, insufficient and excessive levels of autophagy can lead 
to premature cell death (apoptosis). VSM and endothelial 
cells are plastic tissues responding to environmental fac-
tors that elicit changes in phenotypes [108, 137] therefore 
autophagy is critical in the maintenance of cellular homeo-
stasis. Surprisingly, far less is known about how autophagy 
influences vascular function, specifically the microvascu-
lature, or how it contributes to vascular pathologies. The 
primary focus of this review is to provide evidence on novel 
roles for autophagy within the vasculature from a functional 
perspective, and relevance to other physiological processes. 

Mechanisms of autophagy

Autophagy is highly sensitive to nutrient conditions and ATP 
levels [30]. Under conditions where nutrients are depleted 
or ATP diminished, autophagy is activated to conserve and 
regenerate metabolic substrates, thereby sustaining homeo-
stasis. The most widely recognized regulators of autophagy 
are the mechanistic target of rapamycin complex 1 
(mTORC1), which acts as a negative regulator of autophagy, 
sensing amino acid levels and inhibiting autophagy when 
levels are high, and 5′ adenosine monophosphate-activated 
protein kinase (AMPK), an energy sensing pathway that 
regulates autophagy by detecting the intra-cellular ratio of 
adenosine triphosphate (ATP) to adenosine monophosphate 
(AMP). Protein kinase B (AKT) regulates mTOR via class 
1 phosphoinositide 3-kinase (PI3K). An integral part of the 
autophagy signaling cascade is the interaction between vari-
ous autophagy related proteins to elongate the double-mem-
brane autophagosome that encapsulates damaged or super-
fluous cells/organelles. It should be stressed that autophagy 
is not a static process, but rather dynamic, responding to 
various physiological stressors. Many of the methods to 
investigate autophagy are predicated on measuring snap-
shots of this dynamic process such as genetic markers or 
protein quantification in response to pharmacological/physi-
ological interventions. With developing imaging technology, 
autophagic flux has become more easily measured and is a 
more robust indicator of the autophagy process. Readers are 
referred to recent reviews on measuring autophagic flux in 
various tissues [43, 72].

Fig. 1   Conceptual overview 
of shear-induced signaling 
pathways to elicit vasodilation 
in health. Laminar shear stress 
confers adaptive autophagy 
within the endothelium and vas-
cular smooth muscle by enhanc-
ing production of NO from 
eNOS, minimizing mitochon-
dria-derived ROS, ultimately 
eliciting NO-mediated vaso-
dilation. NO nitric oxide, ROS 
reactive oxygen species, PI3K 
Phosphoinositide 3-kinase, 
eNOS endothelial nitric oxide 
synthase, L-Arg l-arginine, sGC 
soluble guanylate cyclase, GTP 
guanosine triphosphate, cGMP 
cyclic guanosine monophos-
phate, PKG protein kinase g
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Autophagy and cardiovascular health 
and disease

Autophagy holds an essential role within development 
and progression of cardiovascular disease [12, 38, 39, 
78, 122]. Excessive or insufficient levels of autophagic 
flux contribute to cardiovascular disease pathologies. 
Data from experimental animal models utilizing genetic 
deletions of various autophagy-related genes demonstrate 
structural and functional changes within the developing 
cardiovascular system, including defective development of 
valves and chambers of the heart, as well as development 
of atherosclerotic plaques within coronary arteries [81]. 
Various cardiovascular-related stressors such as aging, 
ischemia–reperfusion injury [93], biological and lifestyle 
factors (such as genetics, smoking, hypertension, and low 
physical activity) impact autophagy related genes, and pro-
teins (e.g. LC3B, Atg12, Atg3), ultimately contributing to 
cardiovascular disease development and progression. Col-
lectively, these factors are associated with an increase in 
reactive oxygen species (ROS), which is holds an impor-
tant role in cardiovascular function in health and disease.

Free radical species, reactive oxygen species 
and regulation of autophagy

Under healthy basal conditions, ROS and reactive nitro-
gen species (RNS) are maintained at physiological levels 
by anti-oxidants, and by superoxide dismutases (SOD’s) 
[153]. NO quenches superoxide in an almost diffusion-
limited manner, and much faster than spontaneous or 
enzymatically facilitated conversion to hydrogen perox-
ide (H2O2) by SOD [55]. Elevations in NADPH oxidase 
expression also generate elevated levels of ROS [33]. 
Overproduction of, prolonged exposure to ROS, or insuf-
ficient production of anti-oxidants ultimately results in 
oxidative stress, altering mitochondrial structure (e.g. 
membrane potential) and function (e.g. respiration, fis-
sion/fusion) resulting in protein modifications/aggregation 
and ultimately cell death [67, 141]. Free radical species 
are well known to modify mitochondrial proteins and 
function creating a precipitous cycle wherein cytosolic or 
mitochondria-derived ROS generate further ROS release 
from the mitochondria [172].

Under pathological conditions where cellular organelles 
are damaged by free radical species, autophagy/mitophagy 
is activated to degrade and recycle damaged organelles. If 
the damaged organelle is efficiently degraded and recycled, 
this results in cellular survival and maintenance of homeo-
stasis. If the organelle is only partially, or incompletely 

degraded, this can result in further oxidative stress, accel-
erated by ROS-induced ROS-release cycle [99, 145, 162]. 
Autophagy is also activated by exposure to endothelial 
shear stress, enhancing phosphorylation of endothelial 
nitric oxide synthase (eNOS) and production of NO, but 
also generating ROS [9]. Thus free radicals and autophagy 
influence the vasculature resulting in adaptive and mala-
daptive outcomes, highlighting the role of free radicals as 
critical regulators of autophagy specific to the vasculature.

Role of autophagy and vascular function 
with health and disease

Autophagy within vascular smooth muscle

The vascular media is a plastic tissue as vascular smooth 
muscle cells (VSMC) may exhibit multiple phenotypes 
in response to environmental factors contributing to the 
development and progression of atherosclerotic plaque [6]. 
Readers are referred to a recent review by Salabei and Hill 
[127] for a comprehensive molecular overview of the role 
of autophagy in VSM.

Autophagy and atherosclerosis

Development of atherosclerosis is associated with VSM phe-
notype switch, smooth muscle cell death, plaque instability 
of arterial wall lesions, and importantly, vascular calcifi-
cation [45]. Activation of autophagy in VSM is generally 
adaptive promoting VSMC survival, plaque stabilization 
[84] and reducing vascular calcification [23, 89]. Osonoi, 
et. al [110] demonstrated that within murine cultured smooth 
muscle cells, genetic deletion of Atg7 (involved autophago-
some formation) increases atherosclerotic burden and results 
in maladaptive arterial remodeling with descending aortic 
ruptures being the most common cause of death [110]. Mac-
rophage autophagy plays a protective role within the early 
phase of atherosclerosis as genetic deletion of Atg5 is dem-
onstrated to accelerate atherosclerosis progression within 
murine models [87, 117]. Inefficient autophagy as a result 
of Atg5 deletion may result in further foam cell develop-
ment and exaggerated inflammatory markers. Conversely, 
enhancement of autophagy within VSM and macrophages 
via trehalose or overexpression of transcription factor EB 
(TFEB) exerts athero-protective effects, reducing plaque 
burden and reductions in inflammatory markers [32, 149].

An important factor predisposing to cardiovascular events 
is the propensity for an atherosclerotic plaque to rupture vs. 
remain stable [4]. Basal autophagy has been demonstrated to 
be important in maintaining the integrity of the fibrous cap 
and restricting lipid accumulation [45, 44, 132, 144, 146]. 
Insufficient or inhibition of autophagy accelerates plaque 
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burden or renders it unstable, while activation of autophagy 
generally maintains stability [32, 44, 65, 87, 132, 147, 159]. 
In this context, arteries continuously exposed to laminar or 
high shear stress are protected against plaque formation 
[65, 147], and intact autophagy (that is, not insufficient nor 
hyperactive) is required for limiting plaque formation within 
these areas, attenuating cell death and release of inflamma-
tory markers [157]. Blood flow within an artery may modu-
late plaque stability through autophagy via endothelial cell 
to VSM transmission [65, 147]. For example, shear-induced 
secretion of platelet derived growth factor (PDGF) isoforms 
by the endothelium act on PDGF receptors in VSM to deter-
mine proliferative/migratory activity and VSM phenotype in 
an autophagy dependent manner [48, 113].

Autophagy is a potent target for the treatment of athero-
sclerosis, as well as for limiting the detrimental effects of 
plaque rupture and release of plaque debris and thrombotic 
factors. This concept is demonstrated by the anti-atheroscle-
rotic beneficial effects (e.g. reduced VSM proliferation) of 
drug-eluding stents containing first and second generation 
mTOR inhibitors such as sirolimus and everolimus [76, 95]. 
Some data suggests that mTOR inhibitor-coated stents result 
in favorable clinical outcomes (reduced neointimal hyper-
plasia or repeat revascularization) when compared to bare 
metal stents chronically [11, 42, 102, 138]. In the short term, 
however, drug-eluting stents may promote thrombosis at 
the level of stent placement, necessitating dual anti-platelet 
therapy. This is due to delayed endothelialization which is 
associated with an increase in platelet aggregation [35, 41, 
58]. Stent placement within blocked arteries is designed to 
limit ischemia of downstream tissue, however deployment 
of the stent may induce localized endothelial injury from 
balloon inflation resulting in plaque rupture and release of 
particles eliciting downstream coronary microvascular dys-
function [52, 70, 71]. Thus, there appears to be both athero-
protective and detrimental effects of autophagy stimulation. 
The specific role of autophagy in mediating these events is 
unclear, and represents a future area of investigation.

Disease severity may play a role in the effectiveness of 
autophagy in drug-eluting stents, however direct evidence 
for this is lacking. For example, Zhao, et al. [168]. utiliz-
ing peripheral blood monocytes demonstrated that acute 
myocardial infarction decreased beclin-1 and LC3II levels 
relative to control patients, or stable angina pectoris. In 
this study, patients with unstable angina pectoris also dem-
onstrate reductions in beclin-1 and LC3II relative to sta-
ble angina and controls, but greater than those with acute 
myocardial infarction. It should be noted that this study did 
not investigate autophagic flux per se and requires further 
investigation. Given this evidence it appears that acute car-
diovascular events and heightened disease severity result 
in reductions in autophagy. On the other hand, it is well 
established that autophagy is beneficial for survival in 

response to ischemia, while reperfusion stimulates excess 
autophagy resulting in more cell death. Overall, the effects 
of autophagy appear to be context dependent [160].

It should be noted that while current generation drug elut-
ing stents containing mTOR inhibitors confer some benefi-
cial effect through autophagy, systemic administration of 
mTOR inhibitors result in side-effects such as dyslipidemia, 
hyperglycemia, hypertension and immuno-suppressive 
effects [77, 95, 132]. Targeting macrophage autophagy 
for treatment of atherosclerosis has emerged as a promis-
ing approach. Activation of autophagy via TFEB in mac-
rophages reverses plaque-induced reductions in autophagy 
and protects against plaque development within animal 
models [32, 135]. Other cardiovascular drugs such as statins 
and calcium channel blockers may induce autophagy. For a 
review on current cardiovascular drugs and their potential 
use in autophagy, readers are directed to a review by Salabei 
and Conklin [124].

Autophagy and hypertension

Hypertension shares an etiological relationship with car-
diovascular disease. Evidence links autophagy to the devel-
opment and progression of systemic arterial hypertension 
independent of effects on cardiac tissue [24, 109, 131, 133, 
170, 171]. Specific to the VSM, increases in autophagy have 
been demonstrated to promote the switch in VSM pheno-
type from contractile to macrophage-like and synthetic/pro-
liferative. At the same time, hypertrophy, proliferation and 
calcification VSM increase contractile tone, subsequently 
increasing peripheral resistance and systemic blood pressure 
[127, 126]. In obese, hypertensive Zucker diabetic fatty rats, 
excessive autophagy is associated with hypertension and 
endothelial dysfunction, while administration of a resvera-
trol analogue ameliorated these detrimental effects, which 
was blocked by co-administration of rapamycin [29]. Induc-
tion of hypertension with angiotensin II activates mTORC1 
leading to hypertrophic responses in vascular smooth mus-
cle [47, 140], while, inhibition of mTORC1 in rats fed a 
high-salt diet ameliorates salt-induced hypertension [75]. 
More recently, McCarthy, et al. [98]. demonstrated that 
autophagic activity is reduced in spontaneously hyperten-
sive relative to normotensive Wistar rats which was associ-
ated with endothelial dysfunction. Interestingly, restoration 
of autophagy with trehalose improved endothelial function 
in SHR independent of improvements in blood pressure. 
Most data examining autophagy in hypertension has been 
collected in large vessels, however as blood pressure and 
organ perfusion are regulated by small resistance vessels. As 
such, the role of autophagy in arterial hypertension within 
the vasculature remains on ongoing area of study.

Pulmonary hypertension is characterized by hyperpro-
liferation of VSM within pulmonary arteries (resistance 
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arteries) leading to reductions in lumen diameter, dramatic 
increases in pulmonary artery pressure, eventually result-
ing in right heart failure. These VSM and microcirculatory 
changes are a result of an over-activation of autophagy. 
Indeed, markers of autophagy are elevated in the lungs of 
patients with pulmonary hypertension, as well as within 
various animal models of pulmonary hypertension [82]. 
Inhibition of autophagy by blocking lysosomal degradation 
within these various models impedes the development and 
progression of pulmonary hypertension [91]. Additionally, 
pulmonary hypertension results in mitochondrial fragmenta-
tion, inducing a hyperproliferative state within VSM [121]. 
Thus autophagy contributes to both systemic and pulmo-
nary hypertension through modulation of VSM phenotypes 
within both large and smaller arteries, although divergent 
effects further highlight the complex, and dichotomous 
nature of autophagy.

Influence of autophagy on endothelial function 
with health and disease

Endothelial function is a critical barometer of cardiovascular 
health influenced by numerous factors including age, oxida-
tive stress, genetics, and lifestyle factors. “Conduit artery” 
(i.e. macrovasculature) refers to the large elastic capacitance 
arteries that conduct blood under relatively high pressure to 
the distal vessels, and include the aorta, and primary arte-
rial branches to visceral organs and somatic tissues. More 
distal to the heart, the composition of arteries changes from 
elastic to more muscular in content, allowing for greater 
vasomotion and regulation of perfusion and blood pressure. 
As arteries branch, both the number and summed cross-sec-
tional area increases, peaking with capillaries characterized 
by low flow, low pressure, but high volume of distribution 
(e.g. microvasculature) [21]. Both the macro- and micro-
vasculature exhibit vasodilation to various pharmacologi-
cal stimuli, as well as shear stress (flow-mediated dilation, 
FMD) with the primary endothelium-dependent mecha-
nism of dilation under physiological conditions being NO 
in health (Fig. 1) [57]. Extensive data from our lab indi-
cates that development of coronary artery disease [88, 116], 
physical (increased intraluminal pressure) [7, 31] or chemi-
cal stressors (e.g. increase in ceramide, or lysophosphatidic 
acid) [14, 36] switches the primary mechanism of microvas-
cular dilation from NO to the H2O2 largely due to an increase 
in mitochondria-derived ROS (Fig. 2) [88, 116]. The specific 
role of autophagy on microvascular function in health and 
disease is an emerging area of research.

Autophagy and endothelial‑(dys)function

The endothelium is a critical regulator of vascular health 
and function and is constantly exposed to varying levels of 

shear stress via blood flow which in turn releases various 
vasoactive compounds to regulate vascular tone and vas-
cular cell phenotype. The autophagy signaling cascade has 
typically been studied within cultured endothelial cells. Cul-
tured endothelial cells are proliferative, and have divergent 
responses to physical and chemical stressors when com-
pared to quiescent cells within the vasculature, and thus 
may exhibit differential autophagy responses as well. Nev-
ertheless, systemically circulating compounds/chemicals, 
as well as processes within endothelial cells themselves 
regulate autophagy and promote endothelial dysfunction. 
As discussed previously, atherosclerosis is a hallmark of 
vascular aging, with endothelial dysfunction as a precursor 
within the development of atherosclerosis. Indeed, oxidized 
low-density lipoprotein [165], advanced glycation end-
products [158], and various lipid compounds may promote 
autophagosome formation within endothelial cells which are 
mediated in part by ROS [56].

Mechanical forces are an important modulator of endothe-
lial autophagy [68]. It is important to note that autophagy 
within endothelial cells serves as a renewal function, pro-
tecting against endothelial cell injury, and plays an integral 
role in mediating the progression of vascular diseases. Shear 
stress generated by the frictional forces (blood flow) along 
the endothelium induces autophagy in a reversible manner 
via mechano-transduction, and is critical for endothelial cell 
alignment [85, 147] NO production, and excessive ROS mit-
igation (Figs. 1, 2) [15, 54]. Shear stress along endothelial 
cells may be laminar (smooth flow) or turbulent/oscillatory, 
and is usually pulsatile in larger vessels that dampens with 
transmission to the microvasculature. High levels of lami-
nar shear stress (> 15 dynes/cm2) promote autophagy within 
endothelial cells, and up-regulate expression of endothelial 
NO synthase (eNOS) while inhibiting expression of the 
potent vasoconstrictor endothelin-1 (ET-1) [46]. This physi-
ological response to shear is sustained suggesting a chronic 
beneficial effect on the vasculature [90]. Pre-treatment with 
rapamycin, an mTOR-dependent autophagy activator, fur-
ther enhances eNOS expression and suppresses ET-1 expres-
sion, while pre-treatment with an inhibitor of autophagy 
(3-MA), enhances ET-1 expression. In contrast, low levels 
of shear stress (e.g. regions of artery curvature, arterial seg-
ments distal to carotid artery ligation) reduce autophagy and 
promote pro-atherogenic responses [147, 167]. Disturbed/
turbulent flow increases autophagosome formation but 
impair p62-mediated clearance of autophagosomes and pro-
motes endothelial dysfunction [85, 147]. Bharath et al. dem-
onstrated that within bovine aortic endothelial cells exposed 
to physiological levels of shear stress, autophagy markers 
increased due to an increased phosphorylation of AMPK [9]. 
These elevations in autophagy indicators and phosphorylated 
AMPK regulate mTOR signaling and thereby autophagy [9, 
163]. Guo et al. [46]. demonstrated that physiological levels 
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of laminar shear stress increase markers of autophagy which 
were associated with up-regulation of eNOS expression, 
and parallel down-regulation of the vasoconstrictor ET-1. 
Importantly, autophagy activation (rapamycin) enhanced 
eNOS expression and reduced ET-1 expression in response 
to shear, while inhibition of autophagy with 3-MA exerted 
the opposite effect. Inhibition of mTOR via rapamycin treat-
ment in transgenic mice (designed to express fluorescent 
labeled human eNOS isoforms), increased eNOS expres-
sion in regions of the carotid artery exposed to low shear 
stress, while reducing maximal eNOS expression at regions 
of high shear stress [19]. The authors attributed the para-
doxical reduction in maximal eNOS expression in areas of 
high shear stress to rapamycin having a shear-stress depend-
ent impact on protein synthesis, however this was not tested 
directly [19].

These findings in cells and animals have been recently 
translated into humans utilizing novel approaches. Park et al. 
[114] demonstrated that the hyperemic response to dynamic 
handgrip exercise elevated primary endothelial cell mark-
ers of autophagy in parallel with NO production within the 
radial artery. In subjects with diabetes, Fetterman et al. [34] 

reported reductions in autophagy along with endothelial 
dysfunction, and impaired eNOS activation) at the level of 
autophagosome-lysosome fusion. The same investigators 
demonstrated within cultured endothelial cells that expo-
sure to high glucose concentrations impaired autophagy 
similar to that observed in vivo, and inhibiting autophagy 
with bafilomycin (inhibits lysosome acidification) abrogated 
insulin-mediated eNOS activation, but did not change basal 
eNOS phosphorylation. Activation of autophagy with sper-
midine improved insulin-mediated eNOS phosphorylation 
in both primary and cultured endothelial cells, but had no 
effect in cells exposed to high glucose [34]. These results 
demonstrate a prominent role for autophagy in vascular 
function both in health and disease, and highlight the role 
for mechanical (shear) and chemical (high glucose) stress in 
contributing to function of the endothelium at least in part 
through autophagy.

While the endothelium releases NO in response to 
shear stress to elicit vasodilation, ROS are also released, 
particularly from within diseased endothelium. H2O2, an 
endothelial derived hyperpolarizing factor, is preferentially 
formed and released from the endothelium of arterioles from 

Fig. 2   Disturbed shear stress, decreases in TERT, as well as eleva-
tions in LPA and ceramide confer maladaptive autophagy. Both 
excessive and insufficient, minimizes NO formation from eNOS, pref-
erentially producing H2O2 and ultimately driving the primary mecha-
nism of vasodilation to H2O2 in response to shear stress. Maladaptive 
autophagy may not sufficiently degrade the cellular cargo, ultimately 

eliciting further elevations in ROS. LPA lysophosphatidic acid, TERT 
telomerase reverse transcriptase, NO nitric oxide, ROS reactive oxy-
gen species, PI3K Phosphoinositide 3-kinase, eNOS endothelial nitric 
oxide synthase, O2

− superoxide, H2O2 hydrogen peroxide, BKCa large 
conductance calcium activated potassium channel, VSM vascular 
smooth muscle
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subjects with CAD, or from non-CAD arterioles subjected 
to telomerase reverse transcriptase inhibition (TERT), cera-
mide, LPA, as well as acute pressure stress in response to 
flow [7, 8, 13, 14, 31, 36, 88, 116]. Shear-induced H2O2 
can damage mitochondrial DNA and enhance superoxide 
generation which sequesters NO by forming peroxynitrite 
a potent inhibitor of endothelial NOS and prostacyclin syn-
thase [112]. Deletion/knockdown of Atg3 in endothelial 
cells reduces NO release and exaggerates ROS production 
[9]. Liu et al. [90] demonstrated using gain/loss of function 
experiments that shear-induced autophagy markers are sensi-
tive to redox status. The authors further demonstrated that 
under flow conditions, endothelial cells were more resistant 
to oxidant-induced injury, but this protective effect was abol-
ished with inhibition of autophagy [90]. Similarly, Bharath 
et al. demonstrated that shear-induced autophagy within 
endothelial cells maintains NO generation via glycolytic 
dependent purinergic signaling [10].

Data from pre-hypertensive spontaneously hypertensive 
rats and obese Zucker diabetic fatty rats suggest that exces-
sive autophagy may contribute to microvascular endothelial 
dysfunction (e.g. reduced endothelium- dependent dilation 
to acetylcholine) demonstrated by reduced phosphoryla-
tion of mTOR concomitant with increased ratio of LC3 II/I 
and p62 within the microvasculature (3rd order mesenteric 
arterioles). Increases in LC3 II/I and elevated p62 indicate 
a high rate of formation of autophagosomes, but impaired 
fusion of the autophagosome with the lysosome, impeding 
the clearance of damaged cargo. These effects were ame-
liorated via activation of mTOR, subsequently suppressing 
autophagy, suggesting at least pre-hypertension is associated 
with impaired autophagic flux [28, 29]. These data highlight 
and provide proof of concept concerning the critical role of 
autophagy within endothelial cells in response to shear stress 
as well as the dual nature of autophagy within the develop-
ment of cardiovascular disease. Future investigations should 
examine the role of autophagic flux in determining the pri-
mary mechanism of microvascular FMD within health and 
disease, as well as the role of autophagic flux in development 
of vascular disease pathologies.

Sirtuins (SIRT) have a broad range of physiological 
effects ranging from cell survival to mediation of signaling 
pathways, with several SIRT proteins identified in humans 
[66]. SIRT1 exerts a variety of cellular effects such as regu-
lation of cell cycle, and longevity effects as a positive reg-
ulator of autophagy [69]. SIRT1 may directly deacetylate 
specific autophagy related proteins critical for the autophagy 
signaling cascade, directly activating the AMPK-mTOR-
autophagy axis, as well as deacetylate eNOS, enhancing 
NO production and promoting NO-mediated endothelium 
dependent vasodilation [96]. Laminar shear stress enhances 
SIRT1-induced eNOS deacetylation; however, it appears 
that a basal level of phosphorylated eNOS via AMPK is 

necessary for this interaction [17]. Within the context of 
vascular regulation by autophagy, Liu et al. demonstrated 
that physiological levels of flow on cultured endothelial 
cells promotes autophagy via SIRT1 activation in a redox 
sensitive manner [90], while administration of the exoge-
nous activator of autophagy, spermidine, exerts its protec-
tive effects on the vasculature independent of SIRT1 activ-
ity [105]. Loss or impairment of another NAD-dependent 
deacetylase sirtuin, SIRT3, results in cardiac hypertrophy, 
accelerated development of angiotensin II induced hyper-
tension, along with elevated mitochondrial superoxide pro-
duction concomitant with reduced eNOS production of NO 
[26]. SIRT3 deficiency or deletion does not impact native 
endothelial function, but does exacerbate angiotensin II 
induced endothelial and cardiac dysfunction [26, 151]. Inter-
estingly, loss of SIRT3 impairs autophagic flux as demon-
strated by reduced autophagosome formation and reduction 
in autolysosome degradation [86]. Conversely, overexpres-
sion of SIRT3 enhances autophagy, specifically, mitophagy 
and results in reduced mitochondrial ROS, and decreased 
fibrosis [151]. Collectively, these findings further highlight 
the role of autophagy as a critical regulator of vascular 
function, and highlight the role for upstream modulators of 
autophagy on vascular function. The interplay and role for 
SIRT and autophagy on cardiovascular function remains an 
ongoing area of investigation.

Aging, endothelial dysfunction and autophagy

Advancing age is associated with exaggerated ROS con-
comitant with reductions in NO bioavailability, directly 
impacting the health and function of the vasculature [134]. 
Vascular aging is characterized by stiffening of conduit 
arteries, endothelial dysfunction, atherosclerosis, and 
increases in cardiovascular disease risk [100]. Several lines 
of evidence demonstrate that autophagy mediates some of 
these age-associated maladaptive responses. Within primary 
endothelial cells from older adults, autophagy markers are 
reduced relative to young adults [79]. Furthermore, athero-
sclerotic plaques are found in regions of low shear stress, or 
within the curvature of arteries, and enhancing autophagy, or 
increasing shear stress in these areas is generally beneficial 
[10, 9, 19, 46, 65, 114, 147]. Enhancing autophagy within 
the vasculature is an attractive target for treatment of car-
diovascular disease. LaRocca et al. [80] demonstrated that 
four weeks of supplementation with the autophagy inducer 
spermidine reduced large artery arterial stiffness (assessed 
by carotid-femoral pulse-wave velocity), improved endothe-
lial function (enhanced dilation to intra-arterial acetylcho-
line), and reduced markers of oxidative stress in aged rats. 
These improvements in older rats paralleled elevations in 
proteins associated with markers of autophagy suggest-
ing that enhancing autophagy in a model of cardiovascular 
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aging improves conduit vascular responses, effectively reca-
pitulating a younger cardiovascular phenotype. This same 
group demonstrated that primary endothelial cells harvested 
from the brachial artery of older adults exhibit reductions 
in autophagy markers that are associated with markedly 
reduced endothelial function [79]. In a parallel mouse 
model, trehalose, a non-reducing natural disaccharide that 
induces autophagy through nuclear translocation of TFEB 
and inhibition of cellular glucose transport [25], restored 
endothelium-dependent dilation and reduced markers of oxi-
dative stress [79]. Kaplon et al. [63] translated these findings 
into humans, demonstrating that trehalose supplementation 
improved both endothelium-dependent and independent 
dilation within the microvasculature (reactive hyperemia), 
but not within conduit arteries. Although these studies dem-
onstrate improvement in vascular health through enhance-
ment of autophagy, they should be interpreted with caution 
as concentrations of trehalose used exceeded 100 mmol/L, 
while animal data utilizing i.p. administration demonstrates 
that as little as 1 mM exerts beneficial effects [135]. Addi-
tionally, in the study by Kaplon et al. vascular improvements 
were restricted to subjects who gained less than 5 lb [63]. 
In contrast to these studies, Headland et al [51]. examined 
endothelial function in response to short-term energy restric-
tion (a potent inducer of autophagy), demonstrating that 
brachial artery FMD exhibited no changes in response to 
consecutive days of calorie restriction. It should be empha-
sized that involvement of autophagy within this experi-
mental design is only implied, and examination of conduit 
artery function requires further investigation. Collectively, 
trehalose and caloric restriction represent potential avenues 
for improvement of vascular function, however this area 
requires further investigation.

Caution is warranted when interpreting the influence of 
shear stress on autophagy in cultured endothelial cells as this 
experimental design does not truly mimic the arterial system, 
which is comprised of both straight segments (exposed to 
laminar flow) as well as bifurcations and bulges (e.g. carotid 
sinus). Pestana et al. [115] demonstrated that inhibition of 
starvation-induced autophagy via chloroquine promoted 
NO-mediated vasodilation in a dose–response manner, and 
protected against superoxide generation in HUVEC’s and rat 
aortic rings. These results are in direct contrast to previous 
studies discussed above showing that enhancing autophagy 
elicits NO-mediated vasodilation. Reconciliation of these 
divergent results may depend on how autophagy is activated/
inhibited. In this regard, proximal inhibition of autophagy 
with the class III PI3K inhibitor 3 methyladenine (3-MA) 
(inhibition of elongation of phagophore) may paradoxically 
induce autophagy under nutrient rich conditions, while sup-
pressing autophagy under starvation conditions [62, 154]. 
Conversely, bafilomycin A and chloroquine act more distal 
within the autophagy signaling cascade to inhibit fusion 

of the autophagosome with the lysosome, neutralizing the 
acidic hydrolases within the lysosome, respectively [107]. 
Collectively, these divergent findings of pharmacological 
modulation of autophagy highlight the dichotomous nature 
of autophagy and the necessity to interpret these results 
within the appropriate experimental design. Recently, more 
specific sensors/probes have been developed to more accu-
rately reflect autophagic flux [43, 62, 72].

Integration of autophagy, signaling 
pathways, and future directions as they 
relate to vascular function

Autophagy, mitophagy and the mitochondria

Mitochondrial biogenesis is regulated by peroxisome 
proliferator-activated receptor gamma coactivator 1-alpha 
(PGC-1α), while recycling is mediated by mitochondrial 
specific autophagy (mitophagy), which has a distinct sign-
aling cascade [12, 150]. Mitochondrial function is a key 
regulator of cardiovascular health, as mitochondrial dis-
turbances contribute to development and progression of 
disease. As mitochondria are the main source of cellular 
ATP, optimal function is of key importance to maintain-
ing homeostasis, particularly in response to physiological 
stressors. Upon exposure to shear stress, cultured endothe-
lial cell mitochondria release ATP and enhance intracellular 
calcium signaling [161], ultimately eliciting vasodilation. 
Mitochondria continuously undergo fluctuations in structure 
and function. Mitochondrial fission induced by activation 
of cellular stress pathways and cytosolic proteins permea-
bilize the mitochondrial membrane, changing the morpho-
logical structure to a more spherical shape and fragmented 
organization, forming a small bud that is then tagged for 
encapsulation by an autophagosome. Mitochondrial specific 
proteins mark damaged mitochondria for encapsulation and 
degradation by mitophagy. PTEN-induced kinase 1 (PINK1) 
and Parkin are integral synergistic regulators of mitophagy. 
Depolarized mitochondria causes PINK1 to accumulate on 
the outer membrane, recruiting Parkin, which marks dam-
aged mitochondria for mitochondrial specific autophagy [53, 
106]. Conversely, mitochondrial fusion activated by various 
GTPases prevents autophagic degradation of mitochondria 
and are associated with repair of damaged mitochondria, 
however the exact mechanism for this is unclear.

Damage to mitochondria, whether structural or func-
tional, alters mitochondrial respiration in favor of produc-
tion of ROS such as superoxide, H2O2, as well as reactive 
aldehydes such as 4-hydroxy-2-nonenal through lipid peroxi-
dation [59]. Mitochondrial damage starts a vicious cycle of 
ROS-induced ROS-release [172]. Aging itself is associated 
with elevated basal levels of ROS [59], as well as alterations 
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to mitochondria structure and function [143]. Mitophagy 
selectively degrades damaged mitochondria, thus limiting 
ROS production and accumulation in response to pathophys-
iological stressors. Attenuated or impaired formation of new 
mitochondria, and accumulation of damaged mitochondria 
are a cornerstone in the development of chronic diseases 
associated with aging, such as heart failure [64, 73].

Vascular effects of mitophagy

Mitochondria are critical in the development and function of 
the cardiovascular system, providing ATP for maintenance 
of vascular homeostasis. PGC1α is expressed in endothe-
lial cells and helps protect against oxidative stress, limiting 
inflammation and maintaining/improving NO bioavailabil-
ity [22]. Given that mitochondrial dysfunction is associated 
with vascular dysfunction and atherosclerosis [12, 83, 88, 
152] autophagy/mitophagy generally has a protective role 
in response to stress in VSM and the endothelium (Tables 1, 
2). Mitochondria-derived ROS promote damage and deg-
radation of mitochondrial DNA, contributing to inflamma-
tion and progression of atherosclerosis. For example, within 
VSM, mitochondrial fission has been demonstrated to play a 
critical role in limiting intimal hyperplasia weakening mito-
chondrial membrane integrity and enhancing mitochondria-
derived ROS formation [148]. In further support of this, 
expression of the key regulator of mitochondrial fission, 
dynamin-related protein 1 (DRP-1) is upregulated within 
vascular calcification formations, while inhibition of DRP-1 
in VSMC limited the phenotype transition [118]. Mitochon-
drial fusion as a result of phosphorylation of the outer mito-
chondrial membrane protein mitofusion-2 suppresses VSMC 
proliferation and phenotype switching, ultimately mitigating 
ROS-induced damage [169].

Elevations in mitochondria-derived ROS have been dem-
onstrated to contribute to endothelium-dependent vasodila-
tion [16, 88, 152]. Mitochondria-derived H2O2 is the pri-
mary mechanism for FMD in patients with CAD, and loss 
of PGC1α is implicated in contributing to CAD pathology. 
Data from our laboratory demonstrate that upregulating 
PGC1α in isolated arterioles from patients with CAD cre-
ates a unique FMD phenotype mediated by both NO and 
H2O2, protects against acute exposure to increased intralu-
minal pressure and is important for exercise-induced protec-
tion against vascular stress. Conversely, in non-CAD tissue 
inhibition of PGC1α switches the primary mechanism of 
FMD to H2O2 [61, 60]. Inhibition of mitochondrial fission 
within rat aorta and mesenteric arteries, attenuates the vaso-
constrictor effects of ET-1 [18], while exposure to a high 
glucose induces mitochondria fission and fragmentation. 
These increases in fission were associated with enhanced 
mitochondria-derived ROS concomitant to reductions in 
NO signaling [136]. Ultimately, mitochondrial dynamics 

regulate mitochondrial turnover that is intimately involved 
in not only autophagic/mitophagy flux, but also strongly 
influence vascular function.

Autophagy and telomerase

While the vasculature is typically non-replicative, mechani-
cal (e.g. oscillatory/turbulent shear stress) and chemical (e.g. 
oxLDL) injury to the vascular wall elicits replication and 
proliferation that precede atherosclerosis. Continued replica-
tion or division of cells is mediated by specialized structures 
called telomeres, located on the end of chromosomes that 
act to maintain stability and functionality while undergoing 
replication or division [111]. Subsequent release of ROS due 
to telomere dysfunction (shortening/uncapping) necessitates 
that autophagy responds to damaged cellular organelles. Tel-
omerase is comprised of an RNA component, TERC and 
a catalytic component, telomerase reverse transcriptase 
(TERT), that work in concert to counteract telomere short-
ening and maintaining telomere length. Telomerase and its 
subunits have been described as nuclear-specific, however 
more recent evidence has demonstrated non-canonical roles 
for TERT within the mitochondria [128, 129]. TERT may 
be reversibly shuttled from the nucleus and translocated 
to the mitochondria where it exerts a protective effect in 
response to oxidative stress [1, 139]. Administration of anti-
oxidants and statins prevent this shuttle [1]. This movement 
of TERT from the nucleus to mitochondria appears to be 
dependent upon mTOR signaling as dietary restriction and 
administration of rapamycin (activate autophagy via mTOR 
suppression) results in mitochondrial localization of TERT 
and decreased ROS within mouse brain homogenates and 
fibroblasts [101]. Taken together, TERT and autophagy 
hold integral supportive roles within intracellular signaling 
and cell survival in response to physiological stressors and 
there appears to be significant intersections between them 
(Tables 3, 4).

Telomerase and autophagy in the vasculature

In the vasculature, telomere shortening/uncapping induces 
mitochondria DNA damage, ROS production and is 
inversely related to forearm endothelium-dependent dilation 
[104, 120], inflammation, and reductions in NO [130]. Beyer 
et al. [8] examined whether telomerase activity influences 
flow-mediated dilation within the microvasculature in sub-
jects with and without coronary artery disease (CAD). Inhi-
bition of telomerase activity with BIBR 1532 in non-CAD 
vessels had no effect on the magnitude of FMD, but switched 
the mechanism of dilation from NO to H2O2, similar to that 
seen with CAD. Conversely, in CAD vessels treated with an 
activator of telomerase, the primary mechanism of dilation 
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switched from H2O2 to NO identifying a critical role for 
telomerase in flow-mediated dilation phenotype (Fig. 2) [8].

Mechanistic evidence for the cross-talk between 
autophagy and telomerase stems from convergence of sign-
aling pathways regarding metabolism. Data from animal 
models of telomerase deficiency indicate telomere short-
ening impairs glucose tolerance and insulin secretion [74]. 
Overexpression of TERT induces autophagy via inhibition 
of mTOR complex 1 kinase activity under basal and nutri-
ent deprivation conditions, while TERT deficiency impairs 
autophagic flux [3]. Miwa et al. [101] demonstrated that 
within the brain of aged mice, TERT protein expression is 
reduced concomitant with excessive mitochondria-derived 
ROS, while administration of rapamycin, or dietary restric-
tion ameliorated these effects. These autophagic effects 
elicited mitochondrial localization of TERT to reduce mito-
chondria-derived ROS, and more importantly had beneficial 
effects on memory and learning [101]. Caloric restriction 
increases both telomerase activity and autophagy result-
ing in improvements in cardiac function within the heart 
of diabetic rats [94]. Taken together, autophagy and extra-
nuclear telomerase activity appear to share common meta-
bolic pathways with hexokinase 2, the rate limiting catalyst 
for glucose metabolism, demonstrated to be the molecular 
transducer connecting these two processes [119]. Future 
investigations examining the cross-talk between telomerase 
and autophagy within the context of vascular function would 
reveal insight into whether these two pathways run in paral-
lel (e.g. both effect vascular function) or whether telomerase 
acts upstream of autophagy to exert its vascular effects.

Questions, perspectives and future 
directions

Unanswered questions remain regarding autophagy and 
vascular function. These include defining the mecha-
nisms by which physiological stressors and pharmaco-
logical agents positively and negatively influence vas-
cular autophagic flux, as modulation of autophagic flux 
in vascular diseases (macro and microvascular disease) 
may ameliorate disease pathology [37, 107]. As previ-
ously highlighted, one challenge in targeting autophagy 
is its dichotomous nature, whereby the goal is to target 
maladaptive autophagy while maintaining basal cell sur-
vival levels to optimize the beneficial effect. For example, 
trehalose, a natural disaccharide, is implicated in reduc-
ing age and disease-associated endothelial dysfunction 
and atherosclerotic plaque burden in human and animal 
models, possibly through nuclear translocation of TFEB 
[32, 63, 98]. How trehalose/TFEB exert vascular protec-
tive effects remains to be investigated. In addition, whether 
pharmacologically activating autophagy exerts an additive Ta
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effect in conjunction with a physiological stressor that 
induces autophagy remains to be interrogated. Activa-
tion of autophagy via trehalose ameliorates age-induced 
endothelial dysfunction. Whether exercise-induced 
autophagy influences vascular structure and function is 
a future area of exploration, with one group providing 
compelling evidence that handgrip-induced increases in 
shear rate activates endothelial cell autophagy, resulting 
in increases in NO as well as ROS in young adult males 
[114]. How this is altered with aging, disease, or exercis-
ing training or whether further activation of autophagy 
enhances the vaso-protective effects of exercise remains 
to be investigated. Given the evidence that a basal level of 
autophagy is critical to maintain homeostasis, it is unclear 
whether activation of autophagy in healthy individuals 
would impart maladaptive effects. Interrogation of these 
questions would shed light onto the adaptive vs. maladap-
tive role of autophagy within the vasculature.

Within skeletal muscle, autophagy holds a critical role 
in adaptions to exercise. Given that the beneficial effects 
of exercise and physical activity on the vasculature are 
mediated by shear stress, it would be interesting to exam-
ine whether vascular autophagy (endothelial or VSM) is 
involved in the structural and functional adaptations to 
physical activity and exercise training. Cardiac-specific 
exercise induced protection was recently reviewed else-
where, concluding that exercise training would enhance 
basal autophagy and preventing cardiovascular disease in 
otherwise healthy populations, while exercise training in 
diseased populations may mitigate excessive autophagy, 
thereby decreasing the severity of disease [156]. Future 
directions within the field of autophagy in the vasculature 
should focus on the functional role of autophagy, specifically 
delineating the role of autophagic flux in vascular health and 
function in response to physiological stressors.

Conclusions

Autophagy is an evolutionarily conserved recycling process 
critical in the maintenance of homeostasis across organ sys-
tems. The autophagy signaling cascade is complex, and 
historically, autophagy has been examined with a focus on 
cardiomyocytes. Novel translational evidence is emerging on 
the role of autophagy and the functional ramifications spe-
cific to the vasculature system. While autophagy is generally 
viewed as beneficial, excessive as well as insufficient levels 
of autophagy may exert detrimental effects within the car-
diovascular system. Specific to the vasculature, autophagy 
may be the crux in determining vascular health and function 
due to its numerous interactions with other physiological 
pathways in determining cell fate and survival.
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