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Abstract
Resident cardiac macrophages (rcMacs) are integral components of the myocardium where they have key roles for tissue 
homeostasis and in response to inflammation, tissue injury and remodelling. In this review, we summarize the current knowl-
edge and limitations associated with the rcMacs studies. We describe their specific role and contribution in various processes 
such as electrical conduction, efferocytosis, inflammation, tissue development, remodelling and regeneration in both the 
healthy and the disease state. We also outline research challenges and technical complications associated with rcMac research. 
Recent technological developments and contemporary immunological techniques are now offering new opportunities to 
investigate the separate contribution of rcMac in respect to recruited monocytes and other cardiac cells. Finally, we discuss 
new therapeutic strategies, such as drugs or non-coding RNAs, which can influence rcMac phenotype and their response to 
inflammation. These novel approaches will allow for a deeper understanding of this cardiac endogenous cell type and might 
lead to the development of more specific and effective therapeutic strategies to boost the heart’s intrinsic reparative capacity.
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Introduction

For several decades, bone marrow-derived macrophages 
were considered as the only large phagocytes involved in 
homeostasis, tissue healing, and defence against patho-
gens. Emerging evidence has overturned this dogma and 
has shown that resident macrophages (rMacs) are also 
fundamental players in a plethora of functions and cellular 
interactions both in homeostasis and in the modulation of 
the inflammatory response following injury and in tissue 
remodelling. Originating from the yolk sac or fetal liver 
progenitors [45], tissue rMacs inhabit various organs such 
as the bone marrow [58], lungs [76], liver [12], pancreas 
[17], brain [96], and heart [34]. Differently from circulating 

immune cells, rMac retain tissue-specific features. This 
population is made up of macrophages ontogenetically 
older than bone marrow-derived macrophages [95], they 
are evolutionarily conserved [30] and present throughout 
the lifetime. They can proliferate in situ and this process 
is exacerbated during inflammation [41]. In murine cardiac 
tissue, resident cardiac macrophages (rcMac) are reported 
to constitute up to 5–10% of the non-myocyte population, 
a percentage that increases dramatically following cardiac 
damage [50, 89]. With their peculiar spindle-like morphol-
ogy, these resident immune cells take part in a large variety 
of physiological mechanisms which indeed include effero-
cytosis [26] but also immune surveillance, cardiac conduc-
tion [51, 53], bio-storage [60], cardiac regeneration [7, 62], 
hemodynamic interactions [72], coronary development and 
maturation [64]. Besides they are also immune modulators 
following injury or in the disease state where they orches-
trate the production of both pro- and anti-inflammatory sig-
nals [28], release proangiogenic mediators [64], phagocyte 
apoptotic cardiomyocytes (CMs) [26] and promote or inhibit 
the recruitment of circulating immune cells to the injured 
area [10, 63]. This double function was observed in models 
of myocardial infarction (MI), where rcMacs could stimulate 
a persistent inflammatory response leading to maladaptive 
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remodelling and, at the same time, promote tissue healing 
by repressing the inflammatory response [63]. To explain 
this paradox, scientists are currently studying the ability of 
rcMacs to sense various stimuli and respond by modulat-
ing their phenotype. In response to cardiac injury, rcMacs 
alter their gene expression profile and their surface receptors 
which result in a further increased heterogeneity of their 
phenotype. cMac plasticity is characterised by a complex 
polarization process that, in vitro, is often oversimplified 
in M1 or M2 phenotype, where M1 are considered as pro-
inflammatory and M2 as anti-inflammatory macrophages 
[75]. However, this simple macrophage polarization para-
digm does not adequately reflect the complex multicellular 
in vivo situation of the heart. Recent single-cell sequencing 
experiments revealed transcriptional differences in rMac 
subgroups, confirming their diversity and heterogeneity in 
terms of both origin and function [38]. Additionally, tran-
scriptome analysis from Hoyer et al. discovered tissue mac-
rophages response systemically upon remote injuries like 
MI, stroke or sepsis by altering tissue-specific gene expres-
sion. This result highlights the microenvironment of rcMacs 
could be the key to improve systemic immune reaction fol-
lowing injuries [52].

In this review, we summarize the state-of-the-art-knowl-
edge of rcMacs origin, classification, and roles in the context 
of cardiac tissue. We also explore the potential therapeutic 
applications for cardiac macrophage modulation and the 
limitations associated with their in vivo heterogeneity and 
complex response. Finally, we envision how novel findings 
and enhanced knowledge can lead to breakthroughs in car-
diovascular research which might ultimately result in inno-
vative therapeutic strategies.

Origin and characterization of resident 
cardiac macrophages

The onset of new technologies such as genetic fate map-
ping and lineage tracing has allowed to label and trace the 
cells from which rcMacs originate and to monitor their phe-
notypic transition during tissue development [78]. These 
technologies have mostly been applied to murine models 
and they have identified different waves of rcMac forma-
tion [78]. Distinct lineages of rcMacs exist within the ven-
tricular myocardium of the developing heart and playing 
as essential regulators during cardiac development [64]. 
According to their cardiac localization and origin, it is pos-
sible to identify at least two distinct subsets of macrophages, 
CCR2− and CCR2+ (C–C chemokine receptor type 2) [64]. 
CCR2− cells originate from yolk sac progenitors, whereas 
CCR2+ derive from fetal monocyte progenitors, which is 
also reflected in their divergent gene expression profiles [64]. 
CCR2− cells are the first macrophage population appearing 

in the cardiac tissue at embryonic day 12.5 (E12.5), whereas 
CCR2+ inhabits the heart at E14.5. These cells are also con-
fined in different regions of the heart [64]. More specifically, 
CCR2− are mostly found within the myocardial wall and in 
proximity to the coronary vasculature, whereas CCR2+ are 
in the trabecular projection of the endocardium [64]. These 
macrophages remain in the cardiac tissue for their entire life-
span. For their embryonic origin and intrinsic self-renewal 
capacity, CCR2− rMacs are also defined as “resident pop-
ulation”. On the contrary, CCR2+ subset originates from 
haematopoiesis and their number is ensured by recruitment 
of circulating monocytes. For this reason, this subset is 
also defined as “non-resident population” [64]. Clinically, 
the association of CCR2+ macrophages abundance on LV 
remodeling and cardiac function has been shown in patient 
with heart failure [11].

During their development and in response to differ-
ent environmental stimuli and functional responses, mac-
rophages can be activated and functionally categorized 
into certain subgroups including M1, or M2 phenotypes. 
It is important to reiterate that this classification does not 
appropriately depict the in vivo spectrum of macrophage 
sub-populations present in both the healthy and diseased 
myocardium. In vitro this heterogeneity is reduced and the 
stimulation is applied in a more controlled environment, as 
such this simplified definition of M1/M2 is more acceptable. 
M1 or “classical” activated macrophages are pro-inflamma-
tory phagocytic cells involved in the initial stages of inflam-
mation and this phenotype is generally attributed by infiltrat-
ing monocytes [107]. Differently, the M2 or “alternative” 
activated macrophages are anti-inflammatory cells impli-
cated in the resolution of the inflammatory process [88] and 
normally rcMacs in steady-state heart reflect this phenotype 
[107]. In vitro, M1 cells are known to secrete pro-inflam-
matory cytokines such as nitric oxide (NO), tumor necro-
sis factor (TNF-α), and interleukin 12p70 (IL-12p70) thus 
eliciting a robust inflammatory response [110]. On the con-
trary, the M2 in vitro activation leads to anti-inflammatory 
cytokines secretion which includes transforming growth fac-
tor (TGF-β), interleukin 10 (IL-10), and arginase-1 (Arg1). 
These cytokines support the repression of the inflammatory 
response, favour tissue healing and collagen deposition [74, 
110]. The M1 or M2 phenotype is not permanent and can 
change. It was recently reported that rcMacs (mostly M2) 
can transition to M1-like phenotype in aged mice [69]. The 
M1/M2 paradigm was not only proposed based on the acti-
vation status, but it was also confirmed by distinct metabolic 
profiles, alterations in cell morphology [16], gene transcrip-
tion [66] and functional efferocytosis [33, 37, 47, 54].

Another important aspect of macrophage biology is the 
heterogeneity in origin and phenotype following cardiac 
injury or during tissue remodelling. In this context, sev-
eral markers are efficiently used to distinguish infiltrating 
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and rcMacs, unfortunately, they are often not consist-
ently expressed across animal species thus complicating 
the translation of research findings. Transgenic animals 
with fluorophore-labelled macrophages [33] or Cre-loxP 
macrophage reporter mice [99] can be helpful to provide 
informative data of specific cell types and overcome tech-
nical issues associated with antibody combinations. To 
date, one of the most common markers to discriminate 
resident and non-rMacs is CCR2−/+ which is conserved 
in human, rat, and mouse [10, 34]. Other options are 
C-X-3-C Motif Chemokine Receptor 1 (CX3CR1) and 
the major histocompatibility complex class II (MHCII). 
Using these markers, CX3CR1+MHCII− embryonic mac-
rophages were identified in hearts from new-born mice 
and it was demonstrated how they tent to progressively 
diversify by increasing MHCII expression and decreasing 
CX3CR1 expression during aging [79]. In human, HLA-
DR represents human homologue of MHC-II and human 
cardiac macrophages could be subdivided into three dis-
tinct subsets (CCR2+HLA-DRlow; CCR2+HLA-DRhigh; 
CCR​−HLA-DRhigh) based on CCR2 and HLA-DR [11]. 
Alternatively, lymphocyte antigen 6 complex locus C 
(Ly6C) and MHCII were also used to efficiently distin-
guish four distinct subgroups of murine macrophages [39, 
111]. Ly6C−/CCR2−/MHCIIhigh and MHCIIlow were shown 
to label macrophages deriving from the yolk sac, while 
Ly6C+CCR2− and Ly6C+CCR2+ are macrophages deriv-
ing from haematopoiesis [39, 111]. In rats, Ly6C marker 
is replaced by CD43high/low [1], whereas for human sam-
ples the equivalent marker is CD14 [11]. Recently, TIMD4 
(T-cell immunoglobulin and mucin domain containing 4) 

and LYVE1 (Lymphatic vessel endothelial receptor 1) 
were identified as new markers for murine rcMacs [28].

Other common macrophage markers in human, mouse, 
and rat are CD68 [20, 29, 46, 112], MerTK (myeloid-
epithelial-reproductive tyrosine kinase) [38], Mac-3 [70], 
galactose-specific lectin 3 (Galectin 3) [85] and CD163 
[1, 29], these markers, however, do not discriminate 
between resident and non-rMacs. Other options are F4/80 
[8, 105] which is mouse-specific and CD169 [29, 112] 
or CD64 [38] used for rat and mouse tissue [6, 98]. In 
human specimens, EMR1 (epidermal growth factor-like 
module-containing mucin-like hormone receptor-like 1) 
is the homolog of F4/80, and it labels both macrophages 
and granulocytes [4, 48]. CD11b (ITGAM) is also not 
sufficiently specific as it targets monocytes, neutrophils, 
and natural killer cells (NK cells) [70, 113]. A completely 
different set of markers is used to discriminate in vitro 
M1 and M2 macrophages. Inducible nitric oxidase (iNOS/
NOS2) has been considered for several years a standard 
M1 marker [108], while Arg1 or CD206 were used for 
M2 macrophages [109]. Recent studies have identified 
CD38, G-protein coupled receptor 18 (Gpr18), and Formyl 
peptide receptor 2 (Fpr2) as more appropriate options for 
M1 cells, and early growth response protein 2 (Egr2) and 
c-Myc for M2 cells [55] (Fig. 1). In coronary artery dis-
ease (CAD) patients, it has been proven that the majority 
of monocyte-derived macrophages (MDMs) have a round 
shape compared to healthy people with a lower expres-
sion of CD206 and CD163 [32]. To facilitate the reader, 
the markers described in this paragraph are summarised 
in Table 1.

Fig. 1   Summary of the most commonly used markers for phenotypic characterization of resident and bone-marrow-derived immune cells. The 
markers’ abbreviations refer to Table 1
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Role of cardiac macrophages

Over the past decades, the understanding of macrophage 
functions and physiology has been revolutionized. Here, 
we summarize the current knowledge about rcMac func-
tions (represented graphically in Fig. 2) in both health 
and disease and we highlight outstanding areas of 
investigation.

Efferocytosis

Efferocytosis is the process by which apoptotic cells are 
removed by phagocytic cells, as such, it is one of the most 
important roles of rcMacs. Following MI and sudden car-
diomyocyte loss, the immune system reacts and cardiac 
macrophages start the process of removing the necrotic 
cells and to contribute to efferocytosis-mediated cardiac 
repair. A high number of necrotic CMs and/or impaired 

Table 1   Summary of markers commonly used to identify the various monocyte and macrophage subpopulations in different species

Marker name Description Commonly used for 
(human/mouse/rat)

Is used for References

EMR1/F4/80 Epidermal growth factor-like module-
containing mucin-like hormone 
receptor-like 1

h/m Macrophages and granulocytes in 
human Pan macrophage lineage 
marker in mouse

[8, 105]

c-Myc Cellular myelocytomatosis oncogene m Monocytes, M2 macrophages [55]
CCR2± C–C chemokine receptor type 2 h/m/r Resident/non-resident macrophages [10, 11]
TIMD4 T-cell immunoglobulin and mucin 

domain containing 4
m Resident macrophages [28]

LYVE1 Lymphatic vessel endothelial receptor 
1

m Resident macrophages [28]

CD11b/ITGAM/Mac-1 Cluster of differentiation 11b/Integrin 
alpha M/Macrophage-1 antigen

h/m/r Monocytes, macrophages, NK cells 
and neutrophils

[70, 113]

CD14+ Cluster of differentiation 14
GPI anchored TLR4 co-receptor

h Classical/inflammatory monocytes, 
macrophages

[11, 81, 87]

CD163 Cluster of differentiation 163 h/m/r Anti-inflammatory monocytes, mac-
rophages, neutrophils

[1, 29]

CD169 Cluster of differentiation 16/siaload-
hesin

m/r Monocytes, macrophages [6, 29, 98, 112]

CD206/Arg1 Cluster of differentiation 206/Argin-
ase 1

h/m M2 macrophages [109]

CD38 Cluster of differentiation 38 m M1 macrophages [55]
CD43high/low Cluster of differentiation 43/Sialo-

phorin/Leukosialin
r Infiltrating/resident macrophages [1]

CD64/FcrR1 Cluster of differentiation 64
Fc gamma receptor 1A

h/m/r Monocytes, macrophages [6, 11, 38, 98]

CD68 Cluster of differentiation 68/Macro-
sialin

h/m/r Pan macrophage lineage marker [20, 29, 46, 112]

Egr2 Early growth response protein 2 m M2 macrophages [55]
Fpr2 Formyl peptide receptor 2 m M1 macrophages [55]
Galectin 3/Mac-2 Galactose-specific lectin 3/Mac-

rophage-2 antigen
h/m/r Pan macrophage lineage marker [85]

Gpr18 G-protein coupled receptor 18 m M1 macrophages [55]
iNOS/NOS2 Inducible nitric oxidase h/m M1 macrophages [108]
Ly6C± Protein domain of Ly6 complex locus 

C
m Classical (pro-inflammatory)/non-

classical (patrolling) monocytes
[39, 81, 111]

Mac-3 Macrophage-3 antigen h/m/r Pan macrophage lineage marker [70]
MerTK Myeloid-epithelial-reproductive tyros-

ine kinase
h/m/r M2 macrophages, phagocytes [38, 101]

CX3CR1 C-X3-C motif chemokine receptor h/m Non-classical monocyte derived 
macrophages

[79]

MHCII Major histocompatibility complex 
class II

h/m/r Define subgroups of resident mac-
rophages dendritic cells, B cells

[79]

HLA-DR Human homologue of MHC-II h Monocytic lineage [11]
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efferocytosis activity can be responsible for an acute inflam-
matory response, which results in collateral cell death and 
might ultimately lead to maladaptive repair. Recent evidence 
suggested the efferocytosis process to be compromised in 
CAD patients. Eligini et al. have confirmed that, compared 
to healthy individuals, CAD patients have MDMs with a 
reduced efferocytosis capacity and pro-inflammatory fea-
tures, leading to high risk of ruptures in coronary plaques 
[32]. Moreover, several studies have demonstrated that, in 
the atherosclerotic plaque, MerTK function is compromised. 
MerTK is a macrophage receptor that mediates the binding 
and phagocytosis of apoptotic cells and most of the mac-
rophage literature is focused on MerTK related pathway. 
Using an ischemia–reperfusion (I/R) injury model, DeBerge 
et al. have demonstrated that reperfusion-induced cleavage 
of MerTK limits the capacity of cardiac macrophages to 
clear necrotic cells, impairing inflammation resolution and 
thus cardiac repair [26]. Mice deficient for the MerTK recep-
tor displayed left ventricle (LV) dilatation, increased infarct 
size and fibrotic scar formation. The opposite was observed 
in mice resistant to MerTK cleavage, which presented 
decreased infarct sizes and enhanced cardiac function. 
The authors also demonstrated that bone marrow-derived 
monocytes have an important role in MerTK cleavage in 
resident cardiac macrophages [26]. In line with this study, 
Nicolás-Ávila et al. have confirmed that deletion of MerTK 
in cMacs leads to defective autophagy and compromised 
capacity in mitochondria removal, triggering the activation 

of pro-inflammatory pathways, ventricular alterations and 
metabolic cardiac disorders [82].

Novel findings have reported that the role of MerTk is 
also strictly related to CD36, a scavenger receptor involved 
in the phagocytosis of apoptotic CMs mediated by mac-
rophages [27]. Using an MI model, Dehn et al. have shown 
that mice deficient for CD36, display reduced expression of 
the phagocytic receptor MerTK and nuclear receptor sub-
family 4, group A, member 1 (Nr4a1) [27]. Mice with a 
double knockout (KO) for CD36 and MerTK, subjected to 
MI, showed increased myocardial rupture compared to wild-
type mice [27]. Similarly, Nr4A is also a crucial protein 
necessary for phagocyte survival and for the induction of 
MerTK expression [27]. In line with this, in silico analysis 
identified the direct binding site of this protein in a MerTK 
genomic regulatory region [27]. Further research is needed 
to further expand our knowledge of the receptors involved 
in rcMac-mediated efferocytosis and hopefully will discover 
novel targets to improve therapeutic strategies.

Conduction

In the embryos, the heart is the first organ to initiate its func-
tion and generate arrhythmic contractions while it is still 
developing and even before there is blood to be pumped 
in the circulatory system. This is possible because of the 
contractile activity of specialized CMs located in the 
sinoatrial node where the electrical impulse is generated 

Fig. 2   Roles of cardiac mac-
rophages following injury. 
Cardiac macrophages are 
involved in cardiac conduction, 
efferocytosis MerTK-mediated, 
suppression of maladaptive 
remodelling, coronary develop-
ment and maturation and neona-
tal cardiomyocyte proliferation 
(SAN sinoatrial node, AVN 
atrioventricular node)
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[94]. Recently, the classic perception of CMs being the 
sole cellular units able to propagate the cardiac electrical 
impulse has been revisited. Indeed, it has been reported that 
the action potential propagation and CM contraction can 
be altered also by cell–cell interactions and communica-
tion between stromal cells and CMs [59]. Fibroblasts (FBs) 
play a key role in CM contraction in both physiological and 
pathological conditions [93]. Several in vitro studies have 
demonstrated the crucial role of direct contact between car-
diac FBs and CMs to regulate electronic coupling [59, 86]. 
More recently, Hulsmans et al. were the first to demonstrate 
that rcMacs are also important mediators in this process and 
can alter electrical conduction [53]. The authors reported 
that, in both mouse and human, the atrioventricular node 
(AVN) is abundant with elongated, spindle-shaped rcMacs 
expressing connexin 43 (Cx43). Using parabiosis studies, 
they confirmed that only 1% of the circulating inflamma-
tory cells contribute to the AVN macrophage population, 
corroborating the new exclusive role of rcMacs in cardiac 
electrical activation [53]. Using macrophage-specific Cx43 
KO mice [53], the authors demonstrated that the Cx43 dele-
tion in macrophages and the innate absence of rcMacs delays 
conduction through the AVN. Macrophage ablation can also 
alter the expression profile and drastically affect AVN func-
tion, triggering arrhythmia [53]. To investigate cell–cell 
communication between rcMacs and CMs, they engineered 
a mouse model to control the macrophage membrane poten-
tial. Mice expressing photoactivatable channelrhodopsin-2 
(ChR2) were light stimulated to produce cyclical membrane 
depolarization which was shown to modulate CM electro-
physiological properties and improved AVN conduction 
[53]. Using a simplified in vitro model of macrophages and 
IPS-derived CMs co-culture, Hitscherich et al. have also 
revealed that M2 macrophages enhance CM Ca2+ fractional 
release [51]. The presence of macrophages, independent of 
their pro- or anti-inflammatory subtype, causes a consistent 
reduction of store‐operated calcium entry response in CMs. 
In a study by Monnerat et al., the authors demonstrated that 
rcMacs can dysregulate the electrical activity of CMs, lead-
ing to lethal ventricular arrhythmias. A justification of this 
effect was indicated as the paracrine release of interleukin 
1β (IL-1β), which induced oxidative stress in the neighbour-
ing cells thus triggering arrhythmogenic events [80]. These 
findings highlighted the impacts of macrophages on CMs 
and vice versa. Although the experimental evidence is still 
limited to a restricted number of studies, the importance of 
macrophages in CM electrophysiology and cardiac conduc-
tion is increasing and attracting the interest of the scientific 
community. Further investigation is still required to address 
whether the reprogramming or selective targeting of mac-
rophages could represent a possible therapeutic option for 
conditions with conduction disorders or to modulate the 
cardiac rhythm.

Coronary development, maturation 
and angiogenesis

Monocyte-derived macrophages are considered the main 
players in angiogenesis during embryonic development or 
following cardiac injury. These phagocytes communicate 
with other cells such as pericytes, endothelial cells and vas-
cular smooth muscle cells by paracrine signalling to modu-
late angiogenic events [21]. Macrophage polarization has 
also an effect to the angiocrine secretion profile and it influ-
ences the pro- or anti-angiogenic signals released by these 
cells. Indeed, in vitro M1 macrophages secrete an array of 
pro-angiogenic growth factors such as vascular endothelial 
growth factor (VEGF)-A and fibroblast growth factor (FGF)-
2, while M2 macrophages release high levels of platelet-
derived growth factor (PDGF)-BB, chemoattractant for peri-
cytes and matrix metalloproteinase 9 (MMP-9) which are 
crucial in cardiovascular remodelling [103]. In line with this, 
it has been observed that Annexin A1 (AnxA1) activates the 
pro-angiogenic phenotype in rMac. Indeed, following MI, 
AnxA1 stimulates macrophages to release VEGF-A lead-
ing to new vessels’ formation. KO mice for AnxA1 show 
macrophages with impaired capacity to release VEGF-A and 
compromised cardiac functions [35].

Recent findings have identified various subsets of rcMacs 
and their contribution to the development of the vascular 
system in the heart. In this context, Leid et al. have charac-
terized, in the embryonic heart, different lines of embryonic 
macrophages and have demonstrated their contribution in 
vascular maturation [64]. CCR2− rMacs are modulators of 
coronary development and maturation, eliciting the remodel-
ling of the primitive coronary plexus through the selective 
expansion of perfused coronary vasculature. CCR2+ mac-
rophages seem also to be involved in heart development, 
however, further studies to better investigate their contribu-
tion and role are needed [64]. The pro-angiogenic effect of 
CCR2− macrophages has also been verified in vitro, where 
conditioned media obtained from this macrophage popu-
lation could promote coronary endothelial cell migration 
and tube formation [64]. The pro-angiogenic capacity of 
CCR2− macrophages was also demonstrated at the mRNA 
and protein level, with higher concentrations of insulin-like 
growth factor (IGF1) in conditioned media from embryonic 
CCR2− macrophages than CCR2+. Additionally, the supple-
ment of an IGF1 receptor-specific inhibitor was sufficient to 
eliminate the ability of CCR2− macrophages conditioned 
media to prompt coronary endothelial cell migration and 
tube formation. These findings indicate IGF as a potential 
pro-angiogenic signal by which CCR2− embryonic mac-
rophages can modulate coronary development [64].

Given the evidence about the key role of rcMacs in coro-
nary growth and development, it would be tempting to elu-
cidate the potential function of CCR2+ in heart development 



Basic Research in Cardiology (2020) 115:77	

1 3

Page 7 of 15  77

as well as investigate how rcMacs can influence the vascular 
remodelling in different pathological conditions.

Regulation of cardiomyocyte regeneration

Cardiac regeneration remains a great promise for cardiovas-
cular research. In contrast to adult mammalians, salamander 
and zebrafish retain an excellent regenerative capacity and 
following tissue injury they can repair complex structures 
such as the brain and heart [44, 102]. Increasing evidence 
seems to indicate that macrophages are key players in this 
process. When myocardial damage is performed by cryo-
injury to zebrafish and salamander’s hearts, they respond 
with inflammation, edema and collagen deposition which 
closely resemble the process occurring in the mammalian 
adult heart [102]. Despite this similarity, cardiac regenera-
tion eventually succeeds by a fine-tune cooperation between 
pro-fibrotic and pro-regenerative pathways which are medi-
ated by macrophages. The loss of macrophages during the 
initial phases of tissue injury results in the interruption of 
cardiac regeneration and impaired recovery [43]. Using 
macrophages with a genetic deletion for collagen type IV 
alpha-3-binding protein (col4a3bpa), Simões et al. dem-
onstrated that macrophages are directly involved in colla-
gen deposition during zebrafish heart regeneration [102]. 
Recent evidence revealed that cardiac macrophages are also 
key drivers in the regenerative and reparative response of 
injured adult rodent hearts. Neonates can recover after api-
cal resection [90] or MI [91], with minimal hypertrophy or 
fibrosis, this regenerative capacity, however, is lost within 
7 days after birth. On the opposite, following cardiac injury, 
the adult heart undergoes cell death, acute inflammation and 
scar formation which eventually lead to tissue remodelling 
and heart failure (HF). Aurora et al. noticed that the immune 
response of postnatal day 1 (P1) and P14 mice is different 
and they identified significant alterations in several immune 
cells involved in the reparatory process, particularly in mac-
rophages. Using a macrophage depletion model, the authors 
demonstrated that these phagocytes are indispensable for 
neonatal heart regeneration and angiogenesis in P1 mice. 
Indeed, following MI, neonatal mice with macrophages’ 
depletion lose their capacity to regenerate myocardium, with 
increased collagen deposition and scar formation [7].

Lavine et  al. also reported the direct implication of 
rcMacs in the regenerative process [62]. Following cardiac 
injury, the neonatal heart rcMacs respond by inducing mini-
mal inflammation and activating tissue repair by boosting 
coronary angiogenesis and CM proliferation [62]. On the 
contrary, in the adult injured heart, rcMacs are replaced by 
pro-inflammatory macrophages and monocyte-derived mac-
rophages which induce inflammation and oxidative stress, 
with an inadequate capacity to promote cardiac repair. In 
line with this, inhibition of monocyte recruitment after 

adult cardiac injury preserves rMacs population, suppresses 
inflammation, and leads to adult cardiac repair [62]. A higher 
number of CCR2− cardiac macrophages were observed in 
the hypoxic condition, which promotes CM proliferation 
in newborn human and animal models. This reinforces the 
hypothesis of the potential role of rcMacs in the regulation 
of CM proliferation [67]. Over the last decades, transcrip-
tomic and epigenomic analyses have confirmed that the 
inflammatory response mediated by embryonic macrophages 
play a crucial role in cardiac regeneration. On this topic, 
Wang et al. reported differences in the immune response 
in regenerative and non-regenerative hearts following MI 
[106]. The regenerative process is triggered by a unique 
immune response which involves chemokine C–C motif 
ligands 4 (CCL4), a macrophage-secreted factor, and insu-
lin-like growth factor 2 mRNA-binding protein (IGF2BP3), 
encoding for an RNA-binding protein [106]. CCL4 is pref-
erentially expressed in P1 macrophages rather than in P14, 
highlighting how the neonatal heart regeneration is governed 
by the embryonic cardiogenic gene program [106].

Despite the precise role played by resident and non-res-
ident macrophages in the reparative process of the injured 
heart, there is a growing recognition that these immune cells 
might represent the turning point for the identification of 
new mechanisms modulating CM regeneration in response 
to injury.

Adverse LV remodeling and dysfunction

Considering the important role associated with intercel-
lular connections, paracrine factors’ release and collagen 
secretion, it is not surprising that macrophages are essential 
regulators of LV maladaptive remodelling as demonstrated 
in various research models. The transcriptomic analysis, 
performed by Simões et al., identified a different expression 
pattern in collagens and ECM genes sets in macrophages 
isolated from the damaged heart of zebrafish and mouse, 
suggesting their direct role in scar formation [102]. Similar 
findings were confirmed by Ma et al. where macrophages 
were indicated as the main driver of cardiac fibrosis both 
in vivo and in vitro [68] by boosting the production of 
interleukin (IL)-6 from cardiac FBs. This was connected to 
TGF-β1 release and small mother against decapentaplegic 
(Smad3) phosphorylation enhancing the activation of car-
diac FBs into myofibroblasts [68]. Similarly, Shahid et al. 
have confirmed that, during HF, the accumulation of mono-
cyte-derived macrophages in the damaged cardiac tissue is 
associate to collagen deposition and transition of FBs into 
myofibroblasts, ultimately resulting in severe cardiac remod-
eling [97]. A recent study by Dick et al., reported that within 
the infarct zone, cardiac rMacs account for approximately 
2–5% of the total macrophages during the early stages of 
cardiac damage. Their depletion, however, leads to defective 
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cardiac function, inducing pathological remodelling and 
LV dysfunction [28]. The justification for such specific 
behaviour has been proposed by a small cluster of genes 
exclusively expressed by human and murine rcMacs which 
include TIMD4, LYVE1, and IGF1 [28]. Recent studies have 
shown that rMacs are also important in cardiac recovery 
after tissue injury. Depletion of neonatal macrophages, by 
liposomal clodronate, elicits cardiac chamber dilatation, CM 
hypertrophy, and interstitial fibrosis, emphasizing once again 
the relevance of these resident immune cells [62]. Moreover, 
in a murine cryoinjury model, the non-selective depletion 
of macrophages, by clodronate-containing liposomes, dur-
ing the first week after injury resulted in impaired wound 
healing and higher mortality rate due to increased LV dilata-
tion and impaired scar formation [3]. Taken together these 
findings clearly indicate the beneficial role of these resident 
cardiac phagocytes during tissue remodelling. More research 
on the topic is likely to soon identify specific mechanisms 
and cellular interaction that can be exploited to regulate the 
remodelling process ultimately improving tissue function.

Myocarditis and rcMacs

Particularly interesting and controversial is the role of 
rcMacs during myocarditis or inflammatory cardiomyopathy. 
This pathological condition has mostly viral origins but it 
can also be caused by drugs, heavy metals or by deregulation 
of the immune system (i.e. autoimmune myocarditis) [63]. 
Viral myocarditis is the most frequent, with viral genomes 
detected in 35–70% of patients with dilated or chronic car-
diomyopathy [31, 73]. This condition is characterized by 
the release of double-stranded viral RNA which drives the 
release of pro-inflammatory cytokines and the activation 
of different immune cells including monocytes and mac-
rophages. The release of these chemical signals results in the 
alterations of cardiac tissue homeostasis, and it often evolves 
in adverse cardiac remodelling and occasionally in heart fail-
ure. The precise role and contribution of rcMacs in myo-
carditis remains unclear, however, all myocarditis in vivo 
models report a clear expansion of macrophage numbers. 
Ex vivo experiments have demonstrated that CCR2−/MHCI-
Ihigh macrophages act as antigen-presenting cell for T-helper 
cells activation [34]. On the contrary, CCR2−/MHCIIlow 
macrophages have a reparative phenotype, they promote CM 
proliferation and angiogenesis [7, 62]. In a study performed 
with a mouse model of myocarditis induced by encepha-
lomyocarditis virus, it was shown that the specific deple-
tion (clodronate-mediated) of rcMacs caused an increase in 
animal mortality in the acute phase [42, 77]. Different out-
comes were noticed if the deletion of rcMacs was occurring 
in the advanced stages of the viral infection. Using a mouse 
model of experimental immune myocarditis, the injection 
of clodronate-loaded liposomes was performed during the 

chronic phase of the cardiac infection. The treatment lead to 
a reduction of rcMacs which had beneficial effects in cardiac 
function and reduced maladaptive tissue remodelling [63]. 
Similarly, in a murine model of Coxsackievirus B3 myo-
carditis, it was shown that in response to the viral infection, 
macrophages secrete galectin 3 involved in the formation 
of fibrotic tissue following viral myocarditis [42]. Indeed, 
the depletion of macrophages as well as the pharmacologi-
cal inhibition of galectin 3 resulted in a reduction of the 
acute inflammation and deposition of fibrotic tissue [42]. 
Emerging evidence also indicate that the de-regulated or 
the maladaptive inflammatory response can have a nega-
tive impact on the progression of myocarditis induced tis-
sue damage. Several receptors were shown to be involved in 
the transition from acute to chronic inflammation. On this 
topic, toll-like receptors (TLRs), a family of receptors active 
in the immune response against pathogens are studied the 
most. During viral myocarditis TLR3 was shown to bind the 
viral RNA thus inhibiting the replication of the virus. Mice 
affected by inflammatory cardiomyopathy CVB3 mediated 
with a deletion in TLR3 are more susceptible to develop 
lethal myocarditis.

Doxorubicin, a drug used to treat cancer and known for its 
cardiotoxic effects, can also cause myocarditis. Mice with a 
deletion of TLR4 and TLR2 display a reduced cardiotoxicity 
following doxorubicin treatment, confirming the important 
role that these receptors play in this process [83, 92].

A better understanding of the role of this cardiac popu-
lation might have a potential impact for the treatment of 
infectious diseases which are known to induce myocardi-
tis or that induce a systemic inflammatory response. This 
is the case of various viral infections including the most 
recent SARS-CoV-2 which is currently having enormous 
socio-economic effects on the worldwide public health and 
economy. Lung monocytes and macrophage response dur-
ing SARS-CoV-2 infections has recently been described and 
the contribution of rcMacs is likely to soon be investigated 
to develop potential therapeutic interventions to attenuate 
macrophage-related inflammatory reactions [56].

Macrophage‑mediated therapeutic 
strategies

The majority of therapeutic strategies for CVDs are targeting 
bone marrow-derived macrophages. Whereas rcMacs het-
erogeneity and complexity are still less appreciated, which 
makes them as a novel direct or indirect target for therapeu-
tic applications (Fig. 3).

While pivotal role of cardiac macrophages in cardiac 
development as well as in diseases have led to rise of atten-
tion, strategies for specific cardiac macrophages targeting 
still remained challenging. For this reason, despite of the 
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extremely promising results from experimental models, 
most of clinical attempts did not meet the expectations of 
the pre-clinical data. Therefore, a comprehensive overview 
of rcMacs dynamics and corresponding therapeutic approach 
is urgently needed to limit off-target effects. One encourag-
ing strategy is the use of nanoparticles (NPs) for the treat-
ment of CVDs. In a recent mouse study by Aouadi et al. NPs 
were enriched with siRNAs able to target macrophages and 
to inhibit TNF-α and IL-1β production by Map4k4 silenc-
ing [5]. Flores et al. have also proposed an approach to tar-
geted macrophages with NPs in atherosclerotic plagues. The 
treatment induced a reduction of pro-inflammatory cytokine 
release and prevent the atherosclerosis progression by dis-
rupting the CD47-SIRPα (signal regulatory protein-α) sig-
nalling [36]. A different experimental approach applied by 
Getts et al. where immune-modifying microparticles (IMP) 
were used following cardiac reperfusion injury [40]. After 
IMP treatment, the authors observed a decreased number 
of macrophages as well as a reduction in cardiac inflamma-
tion and improved cardiac function [40]. Scientific evidence 
seems to indicate that the pharmacological modulation of 
rcMacs in acute ischemia might be particularly challeng-
ing. It has been recently described that, in mice subjected 
to stroke, the survival time of these cells is just 20 h and 
they are then replaced by splenic monocytes [65]. However, 
although most of the resident macrophages are replaced by 
monocytes, a less number of these cells remain in the heart 
and keep self-replication, playing a crucial function [28].

The mechanisms that regulate the shift of cardiac mac-
rophages from a pro-inflammatory (M1) to an anti-inflam-
matory (M2) phenotype have also been identified as novel 
opportunities for therapeutic intervention. Mesenchymal 
stromal cells (MSCs) are active players in the M1–M2 phe-
notypic transition [15]. As such, MSC treatment following 

MI was shown to promote this phenotypic switch both 
in vitro and in vivo where it also improved LV remodelling 
and function [14]. Cardiac stem cell therapy could be a prac-
tical option to selectively activate macrophages. Vagnozzi 
et al. have observed that, following an ischemia–reperfusion 
injury, the intracardiac injection of bone marrow mononu-
clear cells (MNCs) promotes the recruitment of CX3CR1+ 
and CCR2+ macrophages in the damaged cardiac tissue 
[104]. This MNC population alters function of cFBs driv-
ing to a decreased fibrotic tissue deposition, which lead to 
improvement in the cardiac function [104].

Intriguingly, the polarization of macrophages can also be 
controlled at the genic level with the aid of NPs which might 
provide an alternative and more precise treatment option. 
By silencing the interferon regulatory factor 5 (IRF5) with 
the help of NP-delivered short interfering RNA (siRNA), 
Courties et al. succeeded in the reprogramming the mac-
rophage phenotype. The delivery of these siRNA-enriched 
NPs induced a reduction of M1 markers and the resolution of 
inflammation with improved infarct healing [23]. Bagalkot 
et al. have reported the in vitro capacity of hybrid lipid-latex 
(LiLa) NPs to be selectively taken up by M1 macrophages 
[9]. By loading LiLa NPs with an anti-inflammatory drug, 
they observed a reduction in the expression of pro-inflam-
matory cytokines in targeted M1 macrophages [9]. NPs have 
been also used to prevent the progression of inflammatory 
diseases by reprogramming the macrophage phenotype. In 
a study by Jain et al., the authors developed NPs which able 
to transport IL-10 in the inflamed environment eliciting 
the shift from pro-inflammatory to anti-inflammatory mac-
rophages [57]. In a MI model, Bejerano et al. reported the 
capacity of NPs, which were loaded with miR-21, to target 
M1 macrophages reprogramming their phenotype in anti-
inflammatory macrophages, thus leading to angiogenesis, 

Fig. 3   Therapeutic approaches 
to target cardiac macrophages. 
The most used macrophage-
mediated therapeutic strategies 
are cell therapy, application of 
nanotechnologies, cytokines/
chemokines modulation and 
non-coding RNAs (MNCs bone 
marrow mononuclear cells, 
CDCs cardiosphere-derived 
cells, MSCs mesenchymal stro-
mal cells, NPs nanoparticles, 
ncRNA non-coding RNAs, lncR-
NAs long non-coding RNAs, 
miRNAs microRNAs)
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reduction in CM apoptosis and improvement in the cardiac 
function [13]. Similarly, Alvarado-Vazquez et al. induced 
a macrophage phenotype switch from M1 to M2 by apply-
ing NPs which overexpress CD163 in human primary mac-
rophages [2]. Taking advantage of phosphatidylserine (PS), 
a ligand presents on the surface of apoptotic cells, Harel-
Adar et al. engineered liposomes conjugated with PS which 
are recognized and phagocytised by cardiac macrophages 
driving the switch in the secretion of anti-inflammatory 
cytokines and repressing the release of pro-inflammatory 
mediators [49]. In this study, rats were subjected to acute MI 
and injected with PS liposomes. The results demonstrated 
decreased expression of pro-inflammatory markers such as 
TNF-a, and CD86 and higher expression of anti-inflam-
matory markers such as CD206, IL-10, and TGF-b, which 
indicated that the shift from pro-inflammatory to reparative 
macrophages has occurred. In line with this, from a whole 
tissue perspective, rats exhibit enhanced cardiac function, 
reduced fibrosis, and increased angiogenesis [49].

Cardiosphere-derived cells (CDCs) have also been used 
to modulate macrophage phenotype. Using an I/R rat model 
the authors demonstrated a cardioprotective effect of these 
cells which resulted in decreased apoptosis and scar forma-
tion [25]. Furthermore, the beneficial effects of CDCs were 
completely abolished the depletion of the systemic mac-
rophages by the clodronate’s administration [25].

The main cause of cardiac macrophages’ polarization 
is strictly associated with the release of inflammatory 
mediators. The capacity of interleukin (IL)-4 to drive the 
polarization of macrophages towards the reparative phe-
notype has been tested in vivo by intraperitoneal injection 
in mice subjected to MI [100]. The treatment resulted in a 
higher percentage of M2 macrophages in the tissue which 
had beneficial effects on fibrotic tissue remodelling which 
prevents ruptures in the injured cardiac wall and conse-
quently increased survival and improved cardiac function 
[100]. Opposite effects, however, were reported in Tribbles 
Psuedokinase (TRIB1)-deficient mice where the selective 
depletion of M2 macrophages resulted in decreased scar 
formation, recurrent cardiac rupture, and a higher mortality 
rate [100].

Non-coding RNAs (ncRNAs) are also promising tools for 
therapeutic strategies. There are various types of ncRNAs 
and they are normally classified accordingly to their size or 
mechanism of action. They all have important regulatory 
functions and they are involved in various cellular processes 
in both health and disease state. In the context of cardiac 
rMacs, recent data originated from human heart tissue have 
reported important differences in the ncRNAs expression 
profile of bone marrow-derived and embryonic macrophages 
[11]. Various subpopulations of cardiac rMacs carry MHCII 
[11] which enhances their ability to present antigens and act 
as antigen-presenting cells (APCs) which is crucial during 

both inflammation and resolution. Autophagy, a lysosomal 
catabolic process to dispose of organelles and cytoplasmic 
content, is also essential during the initial phases of immu-
nity APCs mediated [61]. The lncRNA expression profile 
of macrophages undergoing autophagy was recently studied 
and a pathway involving metastasis-associated lung adeno-
carcinoma transcript 1 (Malat1) identified it as a promoter 
of autophagy [71]. A deeper understanding of Malat1-mir-
23-3p-Lamp1 (lysosomal-associated membrane protein 1) 
interactions could help to further understand the role of mac-
rophages and their role in inflammation. Another important 
feature of ncRNAs is the possibility of being transferred via 
exosomes. In this process, nanosized lipid bilayer vesicles, 
enriched with ncRNAs are secreted and taken up by recipient 
cells. Keeping in mind the regulatory function of ncRNAs, 
exosomal transfer provides another opportunity for cellular 
communication. CDCs can release exosomes which are par-
ticularly enriched in Y RNA fragment (EV-YF1) [18]. These 
EV-YF1-enriched exosomes target macrophages leading to 
an increase in the production and secretion of IL-10 [18]. 
In a co-culture of CMs and macrophages, it was observed 
that the overexpression of EV-YF1 in macrophages, results 
in a cardioprotective outcome through IL-10 secretion [18]. 
In vivo, rats subjected to MI and treated with EV-YF1 dis-
played a reduction of the infarct area, highlighting the car-
dioprotective effect of this Y RNA fragment [18]. Similarly, 
exosomes secreted by CDCs can be enriched with differ-
ent miRNA including miRNA-181b which were shown to 
induce macrophage polarization towards a cardioprotective 
phenotype with associated beneficial effect at a tissue level 
[24]. miR-155 is overexpressed in cardiac macrophages. In 
a mouse model of myocarditis, this specific microRNA was 
highly expressed by infiltrating macrophages [22]. The sys-
temic knockdown of miR-155 leads to reduced infiltration of 
monocyte-derived macrophages and reduced cardiac damage 
[22]. In line with this, the pro-inflammatory role miR-155 
has been confirmed also in a pressure-overload mouse model 
[84]. Mice with a deletion of miR-155 in macrophages show 
reduced hypertrophy and inflammation [84], suggesting its 
potential for therapeutic applications. Differently, lncRNA-
Macrophages M2 polarization (MMP2P) is upregulated 
in M2, but not in M1 macrophages [19]. Moreover, the 
knockdown of lncRNA-MMP2P inhibits the polarization 
of macrophages towards the M2 phenotype by decreasing 
the phosphorylation of signal transducer and activator of 
transcription 6 (STAT6) [19].

Conclusions

Recent technological developments and contemporary 
immunological techniques are offering new opportuni-
ties to identify and study the roles and contribution of 
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rcMac in respect to recruited monocytes and other cardiac 
cells. These novel approaches have already allowed scien-
tist to better understand rcMac origin, phenotypic profile 
and their functional contribution in myocardial function. 
Basic and pre-clinical studies which involve the use of 
drugs or non-coding RNAs also demonstrated the potential 
of rcMac to regulate cellular interactions thus suggest-
ing their use to modulate and potentially prevent tissue 
remodelling. The emerging evidence is also highlighting 
the detrimental effects induced by uncontrolled responses 
of this cell type. The future of macrophage-modulated 
therapy will have to take advantage of the mechanistic 
pathways that coordinate tissue repair and exploit them to 
develop more precise and effective therapeutic strategies.
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