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Abstract
Individual adult ventricular cardiomyocytes are either mono- or multi-nucleated and undergo morphological changes dur-
ing cardiac hypertrophy. However, corresponding transcriptional signatures, reflecting potentially different functions or 
the ability for cell-cycle entry, are not known. The aim of this study was to determine the transcriptional profile of mono- 
and multi-nucleated adult cardiomyocytes by single-cell RNA-sequencing (scRNA-seq) and to investigate heterogeneity 
among cardiomyocytes under baseline conditions and in pressure-induced cardiac hypertrophy. We developed an array-
based approach for scRNA-seq of rod-shaped multi-nucleated cardiomyocytes from both healthy and hypertrophic hearts. 
Single-cell transcriptomes of mono- or multi-nucleated cardiomyocytes were highly similar, although a certain degree of 
variation was noted across both populations. Non-image-based quality control allowing inclusion of damaged cardiomyocytes 
generated artificial cell clusters demonstrating the need for strict exclusion criteria. In contrast, cardiomyocytes isolated 
from hypertrophic heart after transverse aortic constriction showed heterogeneous transcriptional signatures, characteristic 
for hypoxia-induced responses. Immunofluorescence analysis revealed an inverse correlation between HIF1α+ cells and 
CD31-stained vessels, suggesting that imbalanced vascular growth in the hypertrophied heart induces cellular heterogeneity. 
Our study demonstrates that individual mono- and multi-nucleated cardiomyocytes express nearly identical sets of genes. 
Homogeneity among cardiomyocytes was lost after induction of hypertrophy due to differential HIF1α-dependent responses 
most likely caused by none-homogenous vessel growth.

Keywords  Single-cell RNA-sequencing · Multi-nucleated cardiomyocytes · Cardiac hypertrophy · Hypoxic responses · 
HIF1α

Introduction

Cardiomyocytes are the workhorses of the heart, contract-
ing continuously approximately 3 billion times over an 
average human lifetime without tiring [23]. Maturation of 
cardiomyocytes during postnatal development is associated 
with increased ploidy, i.e., an increase in DNA content. In 

the adult mouse heart, approximately 85% of all ventricu-
lar cardiomyocytes contain two nuclei (2 × 2c) [27]. So far, 
the reasons for increased polyploidy of cardiomyocytes are 
unknown, although numerous hypotheses have been pro-
posed including prevention of unwanted cell proliferation 
[16, 17]. In fact, experimental polyploidization of zebrafish 
cardiomyocytes is sufficient to inhibit proliferative responses 
during heart regeneration [8].

Technical limitations have prevented systematic studies 
about transcriptional heterogeneity among cardiomyocytes, 
which would provide insights into potential differences 
between diploid and polyploid cardiomyocytes. Although 
single-cell RNA-sequencing (scRNA-seq) has become enor-
mously popular during recent years [6], intact mono- and 
multi-nucleated cardiomyocytes have been mostly exempted, 
primarily because of their large size up to a length of 200 µm 
and difficulties to separate cells based on ploidy [23]. Com-
mon microfluidic or droplet-based scRNA-seq methods 
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preclude analysis of very large cells [11, 31]. To circum-
vent the size-problem, isolated cardiomyocyte nuclei have 
been sequenced [21], but such approaches exclude actively 
translated mRNAs defining the biological activity of car-
diomyocytes. In addition, information about numbers of 
nuclei within cardiomyocytes and cell quality is lost in any 
droplet-based scRNA-seq methods unless cardiomyocytes 
are pre-sorted into different classes of cells.

Here, we describe a novel method, based on the ICELL8 
single-cell system, for single-cell RNA-sequencing of intact 
mono- and multi-nucleated, rod-shaped cardiomyocytes iso-
lated from normal and hypertrophic hearts.

Results

Image‑based tracking of individual cardiomyocytes 
for scRNA‑seq prevents artificial cell clustering

Since common microfluidic or droplet-based scRNA-seq 
methods do not allow scRNA-seq of whole cardiomyocytes, 
we employed the ICELL8 platform, which uses a large-bore 
nozzle dispenser to distribute single cells into 5184 nanow-
ells for further processing. Due to the high physical density 
of cardiomyocytes, several modifications of the standard 
protocol were necessary to accomplish adequate loading 
of nanowells according to the Poisson distribution (Suppl. 
Fig. 1A, B). Critical steps included frequent dispensing with 
intermittent gentle mixing of the cell suspension to avoid 
sedimentation of cardiomyocytes and a reduction of the cal-
culated cell concentration from 1 to 0.2 cell per dispense 
volume (= 50 nl). Usually, we achieved a loading of 450–750 
intact cardiomyocytes per chip, which is below the theoreti-
cal value of ~ 1800 cells but still within an acceptable range 
(Fig. 1a). We assume that high fragility of adult cardiomyo-
cytes and low concentrations of cells are main reasons for 
suboptimal loading.

Initial analysis of scRNA-seq data from 586 cardiomyo-
cytes suggested the existence of two distinct classes of car-
diomyocytes, which clustered separately in PCA and t-SNE 
plots (Fig. 1b, Suppl. Fig. 1C). However, we noted that clus-
tering was mostly driven by strong differences in the abso-
lute number of genes detected per cardiomyocyte (Fig. 1b). 
Since the ICELL8 approach includes an imaging step ensur-
ing processing only of nanowells containing single cells, 
we correlated images of individual cardiomyocytes with the 
outcome of sequencing reactions and localization in clus-
ters 1 and 2. All cells within cluster 1, characterized by low 
numbers of detected genes, had a small size, were not rod-
shaped anymore, and showed undefined cellular silhouettes, 
which results from leakage of the Cell Tracker dye (Fig. 1c). 
We concluded that such cardiomyocytes had encountered 
cellular damage causing partial RNA degradation, which 

eventually leads to inefficient RNA-seq library preparation 
and decreased numbers of detected transcripts. Thus, we 
changed the experimental design and excluded all cells from 
subsequent analysis showing any signs of cellular damage.

In a second set of experiments, only scRNA-seq data 
from undamaged individual cardiomyocytes were analyzed 
as indicated by image-based analysis. Additional quality 
control criteria included the total number of detected genes 
(“features”), percentage of dropout, percentage of mito-
chondrial transcripts, percentage of non-unique alignments, 
and presence of cardiomyocyte markers (Suppl. Fig. 1D). 
In total, we analyzed 2767 micro-wells containing cardio-
myocytes, of which 715 harbored a single intact rod-shaped 
cardiomyocyte (Fig. 1d). After cell lysis, reverse transcrip-
tion, barcoding, cDNA amplification, library preparation, 
and sequencing, we obtained 0.6 M reads and the detection 
of 3.9 k genes per cell on average.

Bioinformatical evaluation using the “scater” R package 
[12] and PCA analysis revealed only a low degree of hetero-
geneity (8% and 1% variance for first and second principle 
components, respectively) among adult cardiomyocytes of 
healthy mice, which was not sufficient to drive formation of 
distinct clusters (Fig. 1e, Suppl. Fig. 1E). Remarkably, dif-
ferent cell sizes had no effects on the distribution of cardio-
myocytes within the PCA cluster (Fig. 1e, Suppl. Fig. 1E). 
Taken together, our findings suggest that cardiomyocytes 
of different sizes are remarkably homogenous and do not 
form distinct subpopulations. Furthermore, our data indicate 
that rigorous quality control, which, in case of highly fragile 
cardiomyocytes, needs to comprise image-based assessment, 
is essential to avoid technical artifacts that might suggest 
non-existing heterogeneity.

Mono‑ and multi‑nucleated cardiomyocytes express 
similar sets of genes

Multi-nucleated cardiomyocytes are assumed to be larger 
than mono-nucleated cardiomyocytes [1]. To corroborate 
these reports and validate our own data, we plotted the size 
of cardiomyocytes in relation to the number of nuclei. As 
expected, we observed a clear correlation of size and nuclei 
numbers (Fig. 1f, Suppl. Fig. 1F). The lack of substantial 
transcriptional heterogeneity among differentially sized car-
diomyocytes already indicated that the number of nuclei has 
only marginal effects on the transcriptome of individual car-
diomyocytes. To explore potential differences or similarities 
between mono- and multi-nucleated cardiomyocytes in more 
detail, we separated cardiomyocytes into groups based on 
the number of nuclei taking advantage of metadata acquired 
during the procedure. We employed the MAST R package, 
which detects differentially expressed genes using the Hur-
dle model for calculation of statistical significances at the 
single-cell level [5]. In addition to single-cell violin plots, 
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we applied pseudobulk visualization to depict results analo-
gous to more familiar, conventional bulk RNA-seq (Fig. 2a, 
b). The number of nuclei did not correlate with the num-
ber of mapped reads in each group, indicating that simi-
lar sequencing qualities and depths were reached thereby 
excluding a bias due to the RNA content of cardiomyocytes 
(Suppl. Fig. 1G, H).

Differential gene expression analysis of mono-, bi-, 
and multi-nucleated cardiomyocytes revealed only a rela-
tively low number of significantly regulated genes (Fig. 2a, 
b) including Hes1 and Egr1, which have distinct roles in 
hypoxia responses [28, 33]. Both genes were slightly down-
regulated in mono-nucleated cardiomyocytes. However, log-
fold-changes of differentially expressed genes between the 
groups were minor, and the PCA and t-SNE analysis did not 
identify clustering of cardiomyocytes with different number 
of nuclei (Figs. 2c, d, 3a). No meaningful and statistically 
significant enrichments of Gene Ontology terms or pathway 
were identified, indicating that the number of nuclei has no 

profound effect on the composition of the cardiomyocyte 
transcriptome. Surprisingly, the total read count per cell, 
which corresponds to the initial mRNA content [18], did 
not differ between mono- and binucleated cardiomyocytes 
(Fig. 3b), suggesting that the presence of additional nuclei 
in cardiomyocytes does not lead to a proportional increase 
of transcripts.

Although rod-shaped cardiomyocytes did not show 
sufficient transcriptional heterogeneity to generate dis-
tinct clusters in PCA or t-SNE plots, we wanted to know 
whether individual groups of genes were differentially 
expressed, considering differences in read count num-
bers per cell higher than 70% of the mean expression 
across the whole data set as significant. We detected a 
significant expression of cell-cycle regulating genes such 
as cyclins and cdk’s in some cardiomyocytes (Fig. 3c), 
which is surprising since adult cardiomyocytes barely 
cycle [32]. The list of detectable (more than five mapped 
sequencing reads) cell-cycle-related genes included 

Fig. 1   Image-based tracking of individual cardiomyocytes for 
scRNA-seq prevents artificial cell clustering. a Distribution of car-
diomyocytes passing imaging QC across the ICELL8 scRNA-seq 
micro-well chip. b Initial PCA clustering of unsupervised data shows 
clustering of cardiomyocytes into two subgroups. c Images of cardio-
myocytes in cluster 1 and 2 before library preparation [two-channel 

reflection mode: DAPI and Cell Tracker (Texas Red)]. Quality con-
trol reveals that cells in cluster 1 are damaged. d PCA plot showing 
cardiomyocyte clustering based on QC parameters. e PCA plot of 
intact rod-shaped cardiomyocytes. f Violin plot indicating correlation 
between size and nuclearity of cardiomyocytes
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Ccni, Ccnl2, Ccnk, Ccnd3, Ccnh, Ccny, Ccnd2, Ccnl1, 
Ccna2, Cdk4, and Ccng1 as stimulatory cell cycle; and 
Cdkn2d, Cdk2ap1, Inca1, and Cdkn1b as inhibitory cell 
cycle-related genes. Interestingly, expression of individual 

cell-cycle regulatory genes was randomly distributed 
within the population and no individual cardiomyocyte 
expressed a full set of cell-cycle genes. Moreover, no cor-
relation to the number of nuclei was evident (Fig. 3d).

Fig. 2   Mono- and multi-nucleated cardiomyocytes express similar 
sets of genes. a Pseudobulk heatmap of top differentially expressed 
genes in mono-/bi- and mono-/multi-nucleated cardiomyocytes 
(FDR < 5%). b Single-cell violin plots of top differentially expressed 

genes in mono-/bi- and mono-/multi-nucleated cardiomyocytes 
(FDR < 5%). “Normalized counts” refer to sequence counts after size-
factor normalization. c, d Numbers of cardiomyocytes nuclei do not 
drive cell clustering in PCA and t-SNE plots
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Cardiac hypertrophy induces heterogeneous 
transcriptional responses in cardiomyocytes

To investigate whether pathological conditions might 
induce heterogeneity in rod-shaped cardiomyocytes, we 
induced cardiac hypertrophy by applying transverse aor-
tic constriction (TAC) [3]. Cardiomyocytes isolated from 
hypertrophic hearts 8 weeks after TAC were clearly differ-
ent from cardiomyocytes of healthy hearts (WT) (Suppl. 
Fig. 2A–D; Fig. 4a, b). Bioinformatical analysis using the 

MAST package demonstrated expression of cardiac marker 
genes and revealed that the total number of genes detected 
per cell was comparable between normal and hypertrophic 
cardiomyocytes, excluding major technical biases. 184 
genes were differentially expressed (FDR < 5%) between 
WT (basal) and TAC conditions (Suppl. Table 1), which 
caused a clear separation in the PCA and t-SNE analy-
sis (variances of 5% and 2% in the first and second PCA 
components, respectively). However, we noted an over-
lap in the PCA plot, containing cells from both TAC and 

Fig. 3   Mono- and multi-nucleated cardiomyocytes stochastically 
express a restricted set of cell-cycle genes. a Pseudobulk barplots 
demonstrate similar expression levels of cardiac genes in mono- and 
multi-nuclear cardiomyocytes. “Normalized counts” refer to sequence 
counts after size-factor normalization. b Violin plots exclude correla-
tions between nuclearity and number of genes detected or nuclearity 
and total read count per cells. c Absence of cell clustering based on 
number of nuclei (color) and number of expressed cell cycle-related 

genes (presence of cyclins, cdk’s, Inhibitors plotted as size of data 
points) in PCA plots. d Scatter plot shows no cell clustering based 
on expression of cell-cycle genes (cyclins, cdk’s) and cell-cycle inhib-
iting genes (inhibitors of cyclins and cdk’s), number of total reads 
(color), and number of nuclei (size). For better visualization, the 
number of genes was kept discrete, but data points were shifted on 
both axes with a random number in the range of (− 0.5, 0.5)

Haeseler
Hervorheben
Suppl. Table 1
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WT conditions, suggesting that not all cardiomyocytes 
responded equally to hypertrophy.

Top differentially expressed genes between basal and 
TAC conditions included hypoxia response and muscle-
related genes such as Nppa, Nppb, Hif1α, Egr1, Acta1, 
Hes1, and Ankrd1 (Fig. 4c, d). In addition, we found up-
regulation of VEGFA and STAT pathway components such 
as Stat2. Likewise, TAC cardiomyocytes were enriched 
(p < 5%) for the GO terms “Hypoxia response via HIF-acti-
vation”, as well as for different inflammation- and signaling 

pathways-related terms (Suppl. Fig. 3A). Furthermore, we 
calculated cell-associated coefficients of transcriptional 
variation for both WT and TAC cardiomyocytes, and plot-
ted them to the number of sequencing reads (Fig. 4e). The 
resulting scatter plot revealed dramatically increased tran-
scriptional variation after TAC-induced cardiac hypertro-
phy. In addition, we generated single-cell interactome maps 
(see methods), which also revealed a dramatic increase of 
gene–gene co-expressions in TAC versus baseline conditions 
(236 pairs for WT and 716 pairs for TAC) (Fig. 5a; Suppl. 

Fig. 4   Homogeneity of cardiomyocytes is lost after induction of 
hypertrophy. a, b PCA-based and t-SNE-based cell clustering demon-
strating transcriptional differences between normal and hypertrophic 
cardiomyocytes. TAC: N = 10 mice; Sham: n = 4 mice. c, d Pseudob-
ulk barplots and single-cell violin plots showing differential expres-

sion of various hypoxia-related genes in normal and hypertrophic 
cardiomyocytes. “Normalized counts” refer to sequence counts after 
size-factor normalization. e The scatter plot shows increase of tran-
scriptional variation upon TAC-induced cardiac hypertrophy
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Fig. 3B), indicating increased transcriptional activity of car-
diomyocytes during hypertrophy.

Heterogeneity of cardiomyocytes in hypertrophic 
hearts is driven by hypoxic responses

PCA analysis of hypertrophic cardiomyocytes indicated the 
existence of two partially connected clusters correlating with 
Hif1α expression (Fig. 5b), which is a crucial transcriptional 
factor mediating hypoxic responses [22]. Clustering was per-
formed using the k-means algorithm (Fig. 5c) [29]. Cardio-
myocytes in cluster 1 (“Hif1αhigh”) were transcriptionally 
more active compared to cluster 2, resulting in a high num-
ber of differentially expressed genes between both clusters 
(Suppl. Table 2). Cluster 1 cardiomyocytes were enriched 
for “Angiogenesis”, probably as a consequence of Hif1α 
expression, while cluster 2 cardiomyocytes were enriched 
for “Striated Muscle Contraction” (Suppl. Fig. 3C). To ana-
lyze the impact of Hif1α expression on the transcriptional 
profile of hypertrophic cardiomyocytes, we set a threshold 
of minimal Hif1α expression greater than 70% of the mean 
expression across the data set. According to this definition, 
~ 41% of cardiomyocytes expressed Hif1α and ~ 59% did not. 
Both groups exhibited similar expression levels of Tnni3, 
Tnnt2, Myh6, and Myh7 (Suppl. Table 3, Suppl. Fig. 4A) 
but more than 2000 genes were differential expressed with 
an FDR < 1% (Suppl. Fig. 4B; Suppl. Table 4). The major-
ity of deregulated genes were found in the Hif1αhigh” group, 
consistent with higher transcriptional activity in these car-
diomyocytes. Furthermore, cardiomyocytes in the Hif1αhigh” 
group showed higher expression of Egln2 (also called Phd1) 
[30] and Vegfa [24]. The concomitant up-regulation of Egln2 
and Vegfa in cluster 1 was clearly evident by pseudobulk 
analysis (Fig. 4c) and single-cell visualization (Fig. 4d, e). 
In addition, cardiomyocytes in the Hif1αhigh” group were 
enriched for Ldha, Pgk1, Pfkl, and Hk2 transcripts (Fig. 5f), 
which are known targets of Hif1α. No differences in aver-
age numbers of nuclei were found in Hif1α+ compared to 
Hif1α− cardiomyocytes (Suppl. Fig. 4C).

HIF1α stabilization in cardiomyocytes inversely 
correlates with distance to vessels in hypertrophic 
hearts

Since our data indicated that a substantial amount of the 
cardiomyocyte heterogeneity in hypertrophic hearts might be 
driven by hypoxic responses, we wondered whether during 
hypertrophic growth, some areas of the myocardium encoun-
ter low oxygen levels probably due to heterogeneous vessel 
growth. Cells undergoing hypoxic responses were detected 
by immunofluorescence staining for HIF1α and vasculariza-
tion was assessed by staining for the endothelial cell marker 
CD31. The normal heart did not show HIF1α expression 

in nuclei under baseline conditions and was characterized 
by a well-organized vascular network with wide and long 
blood capillaries (Fig. 6a1). In contrast, hypertrophic hearts 
contained areas with patches of endothelial Hif1α+ nuclei 
located in substantially smaller capillaries lacking obvi-
ous interconnections (Fig. 6a2, a3). Co-staining with the 
nuclear cardiomyocyte marker PCM1 [9] revealed that such 
areas also contained cardiomyocytes undergoing hypoxic 
responses as indicated by HIF1α localization in nuclei 
(Fig. 5b). Expression of HIF1α was inhomogeneous and 
showed a “patchy” pattern (Fig. 6c). To quantify the inverse 
correlation between HIF1α expressing cardiomyocytes 
and the presence of vessels in the proximity, we counted 
the number of Hif1α+ cells as well as the average area of 
blood vessels (CD31+ area) per view field. A correlation of 
R2 = 0.54 was calculated between both parameters confirm-
ing that HIF1α-expressing cells are preferentially located 
in areas with a comparatively low degree of capillarization 
(Fig. 6d).

Discussion

Our study demonstrates that adult rod-shaped cardiomyo-
cytes are relatively homogenous, and that even mono-, bi-, 
and multi-nucleated cardiomyocytes express nearly identical 
sets of genes. In contrast, induction of hypertrophy induced 
strong transcriptional changes in cardiomyocytes and gen-
erated substantial heterogeneity. Since heterogeneity of 
cardiomyocytes in this pathological condition was mainly 
driven by hypoxic responses and nuclear HIF1α-expression 
was inversely correlated with capillarization of the myo-
cardium, we conclude that heterogenous vessel growth is 
the main reason for cardiomyocyte heterogeneity in the 
remodeling hypertrophic heart. Our findings indicate that 
differences in the transcriptional signatures of individual 
rod-shaped adult cardiomyocytes depend more on the local 
tissue microenvironment than on ploidy or other endogenous 
features, although we cannot exclude that, e.g., differences 
in the chromatin landscape, post-translational modifications, 
or others contribute to the differential response of individual 
cardiomyocytes under pathological conditions.

It is known for a long time that most types of pathological 
hypertrophy result in a lower capillary density, particularly 
in the subendocardial region, because growth of the capil-
lary bed does not keep pace with increases in cardiac mass, 
thereby increasing the path length for oxygen transport [25]. 
During the physiological phase of adaptive cardiac growth 
angiogenesis is enhanced due to up-regulation of mTOR and 
expression of HIF1a-responsive angiogenic factors including 
VEGF, which promote coordinated cardiomyocyte growth 
and angiogenesis [14, 26]. Furthermore, at early states of 
hypertrophy, local hypoxia will induce hypoxic responses 

Haeseler
Hervorheben
Suppl. Table 2

Haeseler
Hervorheben
Suppl. Table 3

Haeseler
Hervorheben
Suppl. Table 4)
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and expression of Vegfa in cardiomyocytes, which will 
promote local angiogenesis as an attempt to restore normal 
oxygenation throughout the myocardium. In pathological 
conditions, HIF1α is down-regulated, probably via up-reg-
ulation of p53 and MDM2-dependent ubiquitylation, result-
ing in proteasomal degradation of HIF1α, which causes a 
mismatch of cardiomyocyte growth and capillary density 
[19, 20]. Interestingly, we observed an enrichment of the 
GO term “Hypoxia response via HIF-activation” in a subset 
of individual cardiomyocytes by single-cell RNA-seq after 
TAC, which was also one of the main drivers for the induc-
tion of cardiomyocyte heterogeneity. The heterogeneity of 
cardiomyocytes after TAC in response to hypoxic signal-
ing indicates that degradation of HIF1α, even at advanced 
stages of pathological remodeling (8 weeks after TAC), does 
not occur in all cardiomyocytes, but is withheld in a sub-
set of cells, which still show physiological responses. Cur-
rently, we do not know whether this feature reflects ongo-
ing continuous disruption of coordinated tissue growth and 
angiogenesis in the heart or results from different endog-
enous properties of individual cardiomyocytes, independ-
ent of transcriptional similarities. We reason that the newly 
acquired knowledge about heterogenous responses of car-
diomyocytes under pathological conditions might provide 
new clues to prevent the progression from adaptive cardiac 
hypertrophy to heart failure [13].

Aside from hypoxic response-driven cardiomyocyte 
heterogeneity, we found that rod-shaped cardiomyocytes 
form a very homogenous cell population, which was sur-
prising, since we expected strong effects of the number 
of nuclei on transcriptional profiles. The absence of tran-
scriptional heterogeneity between cardiomyocytes might 
suggest that polyploidization is a byproduct of terminal 
differentiation, prevents unwanted cell proliferation, and/or 
serves other unknown functions. It had also been claimed 
that multi-nucleation allows organ growth without deterio-
rating changes in cell shape and function, results in higher 
metabolic activity and gene expression, or enables better 
stress responses [16, 17]. The induction of heterogeneity by 

hypoxic stress might indicate that polyploidization allows 
better adaptation to chronic stress and injury [17], although 
we did not find any differences between mono- and multi-
nucleated cardiomyocytes in this respect. Likewise, mono- 
and multi-nucleated cardiomyocytes showed the same ran-
dom expression of single-cell cycle-related genes, which 
does not argue in favor of the idea that mono-nuclear car-
diomyocytes own a higher propensity to enter cell cycling. 
Since we observed a clear correlation between the number of 
nuclei and cell size, but no increase of the number of reads 
per cell, we reason that increased ploidy does not necessarily 
leads to increased gene expression.

Of course, our study has some limitations. (1) We 
restricted the analysis to rod-shaped cardiomyocytes, 
thereby excluding cardiomyocytes of unconventional shape, 
e.g., round-shaped or immature cardiomyocytes [13]. (2) 
scRNA-seq does not provide a comprehensive assessment 
of all transcripts in a cell, but is limited to ~ 15 to 30% of 
the transcriptome. (3) Individual cardiomyocytes might 
differ in respect to epigenetic landscape, chromatin acces-
sibility, post-translational modifications, or other features 
that might contribute to regional differences (epi/endocar-
dium; apex/base). (4) The nanowell-based approach limits 
the number of analyzed cells, although image-based quality 
control eradicates artifacts perturbing scRNA-seq analysis. 
Such limitations might have prevented detection of het-
erogeneity among cardiomyocytes or in cardiomyocytes 
lacking the canonical rod-shaped morphology. Moreover, 
it is entirely possible that mono- and multi-nucleated ven-
tricular, rod-shaped cardiomyocytes differ with respect to 
lowly expressed genes, which are below the threshold of 
what can currently be detected by scRNA-seq. Neverthe-
less, our investigation clearly indicates that mono- and 
multi-nucleated own a remarkably similar transcriptional 
profile and show similar transcriptional responses to pres-
sure overload. The fabrication of false heterogeneity due to 
inclusion of damaged cardiomyocytes strongly asks for strict 
quality control measures to avoid experimental artifacts. We 
assume that our data set covering intact, rod-shaped mono- 
and multi-nucleated cardiomyocytes will serve as a valuable 
resource for future studies.

Methods

Mouse experiments

All animal experiments were performed in accordance with 
German animal protection laws and EU (Directive 2010/63/
EU) ethical guidelines and were approved by the local gov-
ernmental animal protection authority Regierungspräsidium 
Darmstadt (TVA: B2/1208). Six-month-old C57Bl6 males 
were used for all experiments. Transverse aortic constriction 

Fig. 5   Heterogeneity of cardiomyocytes in hypertrophic hearts is 
driven by hypoxic responses. a Single-cell interactome analysis indi-
cating increase of gene co-expressions during cardiac hypertrophy. 
Genes showing significant co-expression (excluding base-gene self-
pairs) are connected by lines. TAC: N = 10 mice; Sham: n = 4 mice. b, 
c PCA plots of hypertrophic cardiomyocytes identify two cell clusters 
corresponding Hif1α expression. Red ellipses in b represent arbitrary 
visualizations. The strict definition by k-means clustering is given in 
c. d Scatter plots indicating co-expression of Hif1α and Egln2 (d1) 
and Hif1α and Vegfa (d2) at single-cell resolution. Percentages of 
cells in different clusters are listed below the plots. e, f Pseudobulk 
bar plots and single-cell violin plots demonstrate differential expres-
sion of selected genes in Hif1α+ and Hif1α− cardiomyocytes (two-
tailed t test). “Normalized counts” refer to sequence counts after size-
factor normalization

◂
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was accomplished using 26-gauge needles to partially ligate 
the proximal aorta resulting in an acute left-ventricular pres-
sure overload. Cardiomyocytes were isolated 8 weeks after 
surgery.

Single‑cell RNA‑sequencing of cardiomyocytes

Single-cell suspensions of cardiomyocytes were isolated 
from the murine heart by enzymatic digestion using a Lan-
gendorf system. After perfusion with the enzyme solution, 
the ventricles (but not the atria) were dissected, cut into 
smaller pieces and gently triturated [9]. Next, cardiomyo-
cytes were washed 3 × with PBS prior to staining. Cardio-
myocytes were counted and stained with blue nuclear and 
red cytosolic stains (NucBlue Live, Invitrogen, ref. R37610 
and CellTracker Red CMTPX, life technologies, USA, ref. 
C34552). After staining, cell suspension was washed 3 × 
with PBS (5 min, 200 g). Stained cell suspension contained 
primarily ventricular cardiomyocytes. Next, cardiomyo-
cytes suspensions were dispensed into barcoded micro-well 
ICELL8 chips (Takara Bio, USA, cat. 640143). Loading 
of cardiomyocytes was reduced by 0.2 × compared to the 
original ICELL8 protocol [7]. Furthermore, three additional 
pipetting steps of the source suspension were introduced to 
avoid cell sedimentation. For TAC experiment, 7/8 of wells 
were loaded with TAC-derived cardiomyocytes and 1/8 of 
wells were loaded with WT-derived cardiomyocytes to avoid 

batch effects caused by library preparations. Each well of the 
chip was photographed in the reflection mode to obtain the 
images of nuclear and cytosolic staining. Wells containing 
cells of interest were selected for further library preparation 
using the ICELL8 Cell-Select software.

ICELL8 library preparation and sequencing

The RT-mix, including reagents for cell lysis, reverse tran-
scription, first and second strand synthesis (SMARTer tech-
nology, Takara Bio, USA, cDNA synthesis kit cat. 634926), 
and PCR cDNA amplification, was dispensed into selected 
wells. After incubation and thermal cycling, all amplified 
cDNAs from selected wells were pooled. Amplified cDNA 
was used as input material for fragmentation, insertion of 
Illumina sequencing adapters and additional PCR ampli-
fication using the Nextera XT DNA library preparation 
kit (Illumina, USA, cat. FC-131-1024). Each sub-library 
contained a unique 10-basepair barcode adapter at one 
side and Nextera-type N7XX adapters at the other side. 
After cleanup and SPRI-beads size selection, concentra-
tion of DNA in the library was measured by the Qubit-HS 
assay (Thermo Fischer, USA, cat. Q32854) and the quality 
checked with LabChip GX Touch 24 (PerkinElmer, USA, 
cat. CLS138162) using the DNA-3K chip (PerkinElmer, 
USA, cat. CLS960013). The current protocol is suitable 
for 3′ end sequencing allowing single-end sequencing. The 

Fig. 6   Hif1α stabilization in 
cardiomyocytes inversely corre-
lates with distance to vessels in 
hypertrophic hearts. a Immu-
nostaining for Hif1α and CD31 
under different conditions: (1) 
Sham; (2, 3) TAC. TAC: N = 10 
mice; Sham: n = 4 mice. b 
Immunostaining for Hif1α and 
Pcm1. c “Patchy” structure of 
Hif1α expression. d Scatter plot 
showing inverse correlation of 
Hif1α expression in cardiomyo-
cytes and average vessel area 
(square µm) in the proximity 
(R2 = 0.54)
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library was sequenced on the Illumina NextSeq500 high75 
cartridge v.2 (cat. FC-404-2005). The length of read was 
80 bp from one side (library) and 11 bp from the other side 
(well barcode).

Deposition of sequencing data

Raw sequencing data from scRNA-seq were deposited in the 
European Nucleotide Archive (https​://www.ebi.ac.uk/ena) 
under accession number PRJEB29049.

Analysis of scRNA‑seq data

Using the unique barcode present in each well, reads from 
each cell were demultiplexed. Mapping was conducted with 
STAR [4]. An expression matrix was generated (with cells 
on X-axis and genes on Y-axis), containing feature (informa-
tion about genes) and phenotype data (information about 
cells) in the SCE-Set format [12]. Further analysis was done 
in the R programming environment. The normalization of 
counts was performed on pooled counts for multiple cells, 
effectively reducing the incidence of “problematic” zeros 
[10]. Raw counts were summed across pools of cells of dif-
ferent sizes, and summed values were used to calculate pool-
based size factors. Those size factors were then deconvoluted 
to infer size factors for individual cells without the need of 
spike-ins. Therefore, levels of gene expression are referred 
as “Normalized counts”. PCA and TSNE analysis were used 
for clustering analysis [2, 15]. MAST package was used for 
supervised differential expression analysis [5]. Single cells 
were separated based on the expression of particular genes 
of interest (e.g., Hif1α), forming groups of gene-positive 
and gene-negative cells. Clustering was performed using the 
k-means algorithm [29]. Data are shown as mean ± SEM. 
R and RStudio software were used to determine statistical 
significance. Two treatment groups were compared by two-
tailed Student’s t test. Results were considered statistically 
significant when p value (or FDR when applicable) < 0.05. 
Coefficient of transcriptional variation (CV) was calculated 
with the following formula: CVj = SD (Aj)/mean (Aj); i = [1; 
imax], where Aj—expression vector from the matrix Aijwith i 
rows (transcripts) and j columns (cells).

Construction of single‑cell interactome maps

Single-cell interactome data set were generated to allow an 
unbiased approach for separation of single cells into pheno-
typically similar groups. We selected genes (“Base-Genes”) 
that were expressed in less than 80% of cardiomyocytes and 
showed at least 10% of mean expression levels (2617 genes 
in total). Base-gene-positive (> 0.7 × mean expression) 
and negative (< 0.7 × mean expression) groups, containing 
at least ten cells each, were subjected to differential gene 

expression analysis using the MAST approach [5] resulting 
in a list, which relates the 2617 base-genes to differentially 
expressed genes. Only differentially expressed genes with 
fold change > 2 and FDR < 0.01 were used for further analy-
sis. Base-genes together with genes showing a statistically 
significant correlation formed an interactome map visualized 
in circular plots. Genes showing significant co-expression 
(excluding base-gene self-pairs) were connected by lines.

Tissue sectioning and immunostaining

After dissection, hearts were gradually frozen in CryoTek 
cryopreservation gel and sectioned using a cryostat (12 um 
slices). Slices were fixed with 4% PFA and blocked (1% BSA 
(Sigma, Germany), 0.3% Triton X-100 (Sigma, Germany), 
and 2% FCS (Sigma, Germany) in PBS) for 1 h. Processed 
slides were incubated with primary antibodies in blocking 
solution overnight at 4 °C. After three washes with PBS, 
slides were incubated for 1 h at RT with appropriate second-
ary antibodies diluted in PBS. After two washes with PBS, 
slides were stained with DAPI, followed by additional wash-
ing with PBS. Coverslips were mounted with Mowiol 4-88 
mounting media (Sigma, Germany, cat. 81381). Images were 
obtaining using a Zeiss Z1 microscope (Zeiss, Germany). 
Image analysis was conducted with ImageJ software using 
the “Particle Analyzer” package.

Antibodies

The following primary antibodies were used in the study: 
Hif1α—Rabbit polyclonal, Novus Biologicals, USA, 
NB100-479SS, 1/300 dilution; CD31—Goat polyclonal, 
Novus Biologicals, USA, AF3628, 1/300 dilution; cTnT—
Mouse monoclonal, Abcam, UK, ab8295, 1/300 dilution; 
Pcm1—Mouse monoclonal, Santa Cruz Biotechnology, 
USA, sc-398365, 1/300 dilution. The following second-
ary antibodies were used in the study: Anti-rabbit (donkey) 
FITC, Sigma, Germany, AP182F, 1/500 dilution; Anti-goat 
(chicken) Alexa 594, Invitrogen, USA, A21468, 1/500 
dilution; Anti-mouse (goat) Alexa 594, Invitrogen, USA, 
A11005, 1/500 dilution.
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