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development and disease. As periostin may be targeted for 
therapeutic treatment of cardiac fibrosis, these insights may 
shed light on the putative timing for application of periostin-
specific therapies.
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Introduction

Tissue development and homeostasis are dependent upon the 
concerted synthesis, maintenance, and degradation of extra-
cellular matrix (ECM) molecules. The ECM is composed 
of a dynamic organizational and signaling network which 
governs the functional needs of tissue and how it responds 
to various stimuli. Fundamental cellular processes are regu-
lated by matricellular proteins including cell-associated pro-
teins, intercellular matrikines, enzymatic cleavage products 
and matricryptins, and structural factors within the ECM. 
In recent years, much attention has been directed towards 
periostin, a cell-associated protein involved in cell fate 
determination, proliferation, tumorigenesis, and inflamma-
tory response. Initially identified as the bone-specific adhe-
sion molecule osteoblast-specific factor 2 (OSF-2) [100], 
periostin has since been recognized a player in the ECM 
response in various tissue pathologies including muscle and 
vascular injuries [8, 48, 58, 83, 85, 91–93, 108]. Periostin is 
known to be important in cardiac development and its role 
as a regulator or indicator of pathologies involving the car-
diovascular system is an emerging area of interest. A wealth 
of evidence has indicated the prominent role of periostin in 
coronary artery disease (CAD) and hypertension [45, 56, 61, 
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65, 108], valvular disease [21, 50, 71] and various etiologies 
of cardiac fibrosis [110, 116, 117].

Emerging evidence suggests that periostin is a novel 
therapeutic target in cardiovascular disease. Signaling path-
ways regulating cardiac periostin expression are pleiotropic 
and often coupled to cytoskeletal dynamics and extracel-
lular stimuli. New insights into the expression of periostin 
in the remodeling myocardium indicate that it is specific to 
activated myofibroblasts, the primary contributors to car-
diac fibrosis. Herein, we summarize the phylogenetic history 
of periostin, its role in cardiac development, and the major 
signaling pathways influencing its expression in various car-
diovascular pathologies. As periostin may be targeted for 
therapeutic treatment of cardiac fibrosis, these insights may 
shed light on the putative timing for application of periostin-
specific therapies.

Periostin and the FAS1 domain superfamily

Background

Periostin was first recognized as an essential player in osteo-
blast differentiation and response to transforming growth 
factor-β (TGF-β) signaling [39, 100]. At approximately 
90 kDa, periostin is classified as a cell-associated, or matri-
cellular, glycoprotein as it does not contain a transmembrane 
domain and is expressed as a non-structural protein in the 
ECM. Rather, periostin exhibits significant structural homol-
ogy to fasciclin I, an adhesion molecule described in insect 
developmental studies in D. melanogaster [12, 28, 86] and 
Schistocerca americana [9]. Fasciclin (FAS1) domains com-
prise a relatively conserved sequence of 150 amino acids 
found in many membrane-bound and secreted proteins 
across all phyla, and are often observed as scattered repeats 
or in tandem among other domains [20, 67]. Periostin is 
especially like fasciclin I because both proteins contain 
FAS1 domains in four consecutive, tandem repeats (Fig. 1). 
Other notable members of the fasciclin superfamily bearing 
a similar structure and function include: periostin-like factor 
(PLF) [64, 66] and transforming growth factor-β-induced 

Fig. 1   A comparison of periostin and the other members of the 
FAS1 Domain superfamily of proteins. Human periostin is expressed 
as a 90 kDa protein with an alternatively spliced region consisting of 
nine exons at the C-terminus, and four consecutive FAS1 domains 
in the central portion of the protein. The EMILIN (EMI) domain at 

the N-terminus is believed to serve as a site for multimer formation. 
Unlike the other members of the FAS1 family of proteins, Stabilin-1 
also contains several epidermal growth factor (EGF)-like domains, 
which are typically associated with membrane-bound proteins
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protein IG-H3 (βIG-H3) [65–67, 95]. While the exact func-
tion of FAS1 domains remains elusive, evidence suggests 
that they may serve as a self-dimerization interface which 
modulates the strength of ligand-binding [75], or mediate 
protein–protein interaction [66]. Other members of the fas-
ciclin superfamily, such as stabilin I and II, contain trans-
membrane domains and act as cell-surface scavenger recep-
tors for many ECM components, such as hyaluronan and 
glycoproteins [89].

Another important structural feature present in periostin 
and βIG-H3 is the N-terminal EMI domain, a highly con-
served cysteine-rich domain originally discovered in the 
Emilin family of proteins [26, 80]. Functional studies in 
C. elegans and other metazoans suggest that extracellular 
EMI domains serve as sites for protein–protein interac-
tion, as hydrophobic pockets can form between the first and 
fourth cysteine residues [16]. A study in corneal dystrophy 
showed that the EMI domain allows periostin to heterodi-
merize with βIG-H3, facilitating is secretion from human 
corneal fibroblasts [49]. Although this interaction has yet to 
be examined in the heart, some have suggested that it might 
serve as an important regulator of TGF-β signaling, as other 
EMI domain-containing proteins have been shown to inhibit 
TGF-β signaling pathway components [80].

Despite being relatively conserved across phyla, the 23 
exons of human periostin can be alternatively spliced to form 
seven possible splice variants [7, 33, 76, 100, 102]. While 
the physiological functions of each encoded isoform have 
yet to be fully elucidated, pathological functionality, ranging 
from cancer metastasis to cardiac fibrosis and remodeling, 
has been attributed to splice variants containing exons 17 
and 21 [7, 102]. Although this may be the case for soft tis-
sue, the full-length mRNA of periostin is essential in bone 
formation, resorption and fracture healing [13, 41]. Periostin 
evidently plays a vital role in the activation and progres-
sion of fibro-proliferative pathologies, and understanding its 
functional and signaling properties is critical to advancing 
our understanding of cell–matrix interactions in health and 
disease.

Expression of periostin and signaling crosstalk 
in the heart

As a potent modulator of cell–matrix interaction, periostin 
has been implicated in crosstalk between multiple signal-
ing pathways which regulate cell migration, adhesion, and 
proliferation (Fig. 2). Despite this, very little is known 
regarding the transcriptional regulation of periostin. The 
most studied pathways associated with periostin expression 
are of the TGF-β superfamily in mesenchymal cells, which 
has established periostin as a focal contributor to collagen 
fibrillogenesis in response to injury and inflammation [5, 
51, 78, 96, 107]. Early in vitro studies demonstrated that 

exogenous treatment of primary cardiac fibroblasts and 
vascular smooth muscle cells (VSMCs) with recombinant 
TGF-β1 promoted the expression of periostin via canoni-
cal SMAD-dependent signaling [56, 70, 96, 97]. Similar 
studies in embryonic chick atrial cushions confirmed that 
periostin is positively regulated by TGF-β3 [82]. Immuno-
logical studies have also linked inflammation and immune 
response to the TGF-β/periostin axis of signaling in fibrotic 
heart disease and idiopathic dilated cardiomyopathy [4, 17]. 
Conversely, the induction of periostin by TGF-β1 is mark-
edly hindered by the use of anti-TGF-β antibodies [42] as 
well as dominant-negative mutant TGF-β Receptor type II 
(TGF-βRII) [18], suggesting that not only is the periostin 
promoter TGF-β-responsive, but also that latent TGF-β may 
assist in mediating periostin signaling in cardiac tissues.

Besides being induced by canonical TGF-β signaling, 
periostin promotes collagen fibrillogenesis by supporting 
bone morphogenic protein-1 (BMP-1) in mediating the acti-
vation of matricellular lysyl oxidase (LOX) [31, 73]. Spe-
cifically, secreted periostin sequesters BMP-1 and increases 
its deposition on fibronectin-rich ECM; this promotes the 
proteolytic activation of pro-LOX and collagen cross-linking 
[73]. Snider et al. utilized a periostin−/− mouse model to 
show that periostin knockout mice were susceptible to dis-
organized matrix stratification, reduced transforming growth 
factor signaling, misexpress the proteoglycan aggrecan 
(commonly found in cartilage), valve leaflet discontinuity 
and delamination defects [96]. The absence of a functional 
inhibitory SMAD6 produced a Marfan-like syndrome char-
acterized by aortic stenosis and, occasionally, a bicuspid aor-
tic valve [101]; speculating as to the putative connection of 
this SMAD to periostin, reduced subsequent bioavailability 
of periostin and subsequent inhibition of cell fate determina-
tion. In addition, parallel studies regarding atrioventricular 
valvulogenesis have linked periostin promoter activation to 
BMP-2 overexpression [31, 44], strengthening the causal 
link between periostin expression and signaling within the 
TGF-β superfamily. Although there exist much data to sub-
stantiate the TGF-β/BMP-periostin signaling axis, further 
studies are needed to identify the regulatory components 
that govern periostin transcription.

Apart from being expressed in response to SMAD-
dependent TGF-β signaling, periostin activates a multitude 
of intracellular signaling pathways via its interaction with 
cell-surface receptors and in response to mechanical stress. 
Periostin-associated ECM components including: fibronec-
tin and tenascin-C (TNC) [48], and collagens type I, III 
and V [27, 78, 99], are responsible for governing the bio-
mechanical properties of tissues, ergo periostin-associated 
regulation of these components may help to determine tis-
sue biomechanics. Special interest has been taken regarding 
TNC, as it directly associates with periostin FAS1 domains 
to organize fibronectin–collagen ECM structure [48], and is 
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Fig. 2   The major signaling pathways involved in periostin expres-
sion and function in cardiac cells of mesenchymal origin. Mechanical 
stress, chemokines and changes in matrix composition trigger sign-
aling pathways which induce Smad-dependent periostin (POSTN) 
expression and subsequent secretion. In turn, periostin interacts 
with matrix-associated lysyl oxidase (LOX) and tenascin-C (TNC), 
stimulating mitogenic αvβ1, β3, and β5 integrin signaling. In turn, a 
pro-fibrotic phenotype is further established in a feed-forward signal-
ing cascade. Akt RAC-alpha serine/threonine-protein kinase, α-SMA 

alpha-smooth muscle actin, Ang-II angiotensin-II, AGTR angiotensin-
II receptor, BMP bone morphogenic protein, Col1α1/2 collagen type 
I, alpha 1 and 2, Ctgf connective tissue growth factor, EDA-Fn EDA-
containing cellular fibronectin, ERK extracellular signal-regulated 
kinases, FAK focal adhesion kinase, FZD frizzled, GF growth factor, 
MAPK mitogen-activated protein kinase, MEK mitogen-activated 
protein kinase kinase, Myh10 myosin heavy chain 10 or non-muscle 
myosin IIB, NFκB nuclear factor kappa light-chain enhancer of acti-
vated B cells, TGF-β transforming growth factor-β
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also activated by mechanical stress in cardiovascular pathol-
ogies [43, 114]. It has been reported that periostin stimulates 
cell migration and invasion through biomechanically and 
biochemically sensitive integrin communication. Various 
reports attribute periostin-mediated cancer cell prolifera-
tion to Arg-Gly-Asp (RGD) matricryptin-associated αvβ1, 
β3 and β5 integrin signaling [33, 90, 104]. Similar stud-
ies in cardiovascular cells of mesenchymal lineage indicate 
that periostin facilitates vascular and valvular cell migration 
and hyperplasia via the same set of integrin receptors [15, 
32, 55]. Within the cell, the cytoplasmic domains of integ-
rin complexes trigger a gamut of mitogenic signaling cas-
cades. Not surprisingly, cardiovascular periostin expression 
has been shown to activate integrin-associated p38/MAPK 
[57], FAK and PI3K/AKT [19, 55] and WNT/β-Catenin [2] 
signaling cascades in fibroblasts and VSMCs during car-
diac development and disease. Finally, it has been shown 
in various pathologies that latent TGF-β associated with αv 
integrin subunits is released upon stimulation by mechanical 
stress [3, 37, 47, 109]. Cell contraction or a change in ECM 
composition leading to the release of latent TGF-β might 
leave integrins open to interaction with periostin, triggering 
a feed-forward loop of periostin signaling. While this has yet 
to be examined in the heart, the TGF-β–integrin–periostin 
relationship could better our understanding of fibrogenic 
cardiovascular diseases and provide a novel target for thera-
peutic intervention.

Periostin in cardiac development—valve 
maturation and the mesenchyme

Early murine studies in the role of periostin in cardiac devel-
opment were prompted by the discovery of its role in the 
remodeling myocardium, post-MI [50, 98]. Endocardial 
cushions from embryonic day (E) 10.5 express low levels 
of periostin mRNA, which increases markedly from E12.0 
forward [50]. The same report also demonstrated that peri-
ostin expression was excluded from cardiomyocytes, as it 
was primarily detected in the endocardial cushion, and that 
it promotes dose-dependent cell migration and proliferation 
during valve maturation [15]. This notion was robustly sub-
stantiated by subsequent reports which determined that peri-
ostin is expressed by cells of mesenchymal lineage, such as 
those responsible for the formation of the chordae tendineae 
and valvular septum [62, 78, 79]. Further studies in a car-
diac-specific periostin reporter mouse model concluded that 
periostin was solely expressed by non-cardiomyocytes, and 
plays an integral role in the morphogenesis of valve leaflets 
and the cardiac fibrous scaffold during embryogenesis [96].

Periostin also appeared to be prominently expressed 
by differentiating VSMCs and cardiac fibroblasts during 
valvulogenesis [78, 79]. Periostin null mice exhibited a 

modest degree of embryonic lethality due to the appear-
ance of MF20-positive cardiomyocyte progenitor cells in 
the atrioventricular cushion, suggesting aberrant signaling 
for myocardial differentiation [81]. The surviving null mice 
exhibited truncated valve leaflets and ectopically developed 
smooth muscle. It was also determined that lack of cardiac 
periostin resulted in insufficient fibrillar collagen deposi-
tion and maturation during valvulogenesis, with abnormal 
encroachment of myocardium along the ventricular leaflet 
of the tricuspid valve [81, 82]; this suggests that periostin 
expression assists in restricting the boundaries between 
tissue types during cardiac development. Norris et al. also 
concluded from their extensive studies regarding valvulo-
genesis that periostin is also required for the commitment 
of mesenchymal progenitors to the cardiac fibroblast pheno-
type [80, 82]. Periostin is a vital component to the matura-
tion and montage of the tissues of the heart, and provides 
the necessary signaling for the proper formation of the 
three-dimensional cardiac collagen scaffold during cardiac 
morphogenesis.

The role of periostin in cardiovascular disease

Hypertension and vasculopathies

The conversion of VSMCs into a hyperproliferative, hyper-
secretory phenotype is a hallmark of the vascular response to 
injury. Neointimal formation due to excessive ECM deposi-
tion has been linked to increased expression of several peri-
ostin splice variants, which facilitate the migration and pro-
liferation of VSMCs [55, 61, 65]. Wang et al. demonstrated 
in an atrial natriuretic peptide (ANP) null mouse pressure 
overload model that periostin expression is increased in 
the myocardial interstitial and coronary arteries [108]. The 
study also indicated that ANP negatively regulates periostin 
expression, as the null mouse showed marked overexpres-
sion of periostin by VSMCs and cardiac fibroblasts after 
transverse aortic constriction (TAC). Similar studies in a rat 
model of pulmonary hypertension also confirmed the inhibi-
tory effects of ANP on TGF-β-mediated periostin expression 
in pulmonary arterial smooth muscle cells [59]. Subsequent 
studies in a rat carotid balloon injury model indicated there 
is a spatiotemporal pattern to the expression of periostin fol-
lowing the initial insult [56]. At 1 week post-injury, periostin 
expression was prominently expressed in the medial VSMCs 
of the injured artery, while the uninjured vessels showed 
minimal expression. Between 2 weeks and 1 month after 
injury, the neointima presented an abundance of periostin, 
suggesting that it has functional importance in the initiation 
and progression of atherosclerosis and restenosis after per-
cutaneous coronary intervention [56].
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As a major contributor to many etiologies of hyperten-
sion, and a mediator of ECM deposition, Angiotensin-II 
(ANG-II) is also a driving factor which regulates pathologi-
cal periostin expression. Using a chronic ANG-II infusion 
rat model of hypertension, Li et al. observed increased peri-
ostin expression within the myocardial interstitium com-
pared to untreated animals, and these effects were revealed 
to be mediated by p38/MAPK signaling [57]. Similar effects 
were observed in isolated cardiac fibroblasts treated with 
Ang-II, in vitro. However, the effects of ANG-II on periostin 
expression within vascular walls and the myocardium have 
been reduced by introducing commonly prescribed ANG-II 
receptor blockers such as losartan [57] and valsartan [34]. 
Concurrent studies in a high salt-induced hypertension 
in vivo model further strengthened the case for periostin as a 
central mediator of pressure overload vasculopathy, and even 
implicate it as a contributor to oxidative stress in hyperten-
sion [110]. Finally, a recent study conducted by Ling et al. 
on a group of 50 patients diagnosed with ST-elevation myo-
cardial infarction (STEMI) showed that serum periostin lev-
els were negatively correlated with left ventricular function, 
and left anterior descending coronary artery restenosis in 
the 6 months following clinical intervention [63]. Although 
this was a small study, the evidence strongly suggests that 
periostin could serve as a prognostic marker for short-term 
management of patients who have undergone recent coro-
nary revascularization, post-myocardial infarction (post-MI).

Valvular disease

The cardiac valve leaflet is composed of three distinct lay-
ers of ECM components, each serving a different function 
to mitigate the effects of the tremendous biomechanical 
forces endured during the cardiac cycle [38]. The hetero-
geneous nature of the resident valve leaflet cell population 
makes it susceptible to malfunction if any disturbance in 
their distribution and phenotype occurs. Several genetic con-
nective tissue disorders originating from mutation in ECM 
proteins have been associated with aberrant cardiac valve 
maturation and function, and this feature is often linked to 
anomalous periostin expression [25, 32, 80, 96]. Valvular 
interstitial cells (VICs) are the most abundant cell type 
within the leaflet, and result from the endothelial–mesen-
chymal transition of cells within the endocardial cushion 
during cardiac development [54]. Using a murine model of 
a heterozygous Fibrillin-1 mutation to mimic Marfan syn-
drome, Horne et al. demonstrated that periostin expression 
is markedly increased by VICs in all layers of the mitral 
valve, compared to wild-type mice [40]. The same group 
examined myxomatous mitral valve biopsies from male 
patients undergoing reparative surgery and observed a sig-
nificant increase in periostin in the ventricularis, with mini-
mal detection within the fibrosa and spongiosa, noting that 

periostin-positive mesenchymal cells were not necessarily 
also staining positive for the fibrotic myofibroblast marker, 
α-smooth muscle actin (α-SMA) [40]. Other groups have 
reported that periostin is expressed in both surface layers of 
healthy human valve leaflets, with more pronounced expres-
sion in the aortic ventricularis and mitral fibrosa [35].

Apart from its role in congenital valve defects, peri-
ostin also stimulates the progression of degenerative valve 
diseases. Work by Lorts et al. demonstrates that periostin 
expression is greatly increased in the vasculature and valves 
of patients with stenotic and rheumatic valve disease [69]. 
Subsequent investigations confirmed these findings regard-
ing aortic stenosis, and revealed that periostin over-expres-
sion in the valve leaflet leads to increased secretion of matrix 
metalloproteinase-2 (MMP-2) and MMP-9, resulting in tis-
sue remodeling and calcification [36, 103]. Hakuno et al. 
compared wild-type mice to a novel Periostin−/− mouse line 
for valve thickening and degeneration induced by a high-fat 
(HF) diet revealed that the contributing role of periostin is 
marked, as M-mode echocardiography of wild-type mice 
revealed significant aortic valve remodeling while the peri-
ostin null mice were protected [36]. These authors conclude 
that periostin is directly involved with HF diet-induced 
degeneration of aortic valves. Recent proteomics analyses 
also support the notion of periostin as a potential biomarker 
to identify both male and female patients at risk of develop-
ing degenerative aortic stenosis [72]. These data corrobo-
rate previously published evidence which indicated that 
periostin expression is increased in the aortic valve and left 
ventricle (LV) of both male and female patients undergoing 
stenotic valve replacement surgery, although multiple stud-
ies report higher serum concentrations of periostin in males 
than females [74, 88]. Regardless of the etiology of cardiac 
valvular dysfunction, periostin is upregulated during valvu-
lar disease in response to the need for increased ECM, and 
invokes a fetal gene program seen in fibrotic pathologies.

Cardiac fibrosis

Nearly, all forms of heart disease and heart failure are 
associated with cardiac fibrosis, a condition defined by the 
abnormal thickening of the myocardium due to the exces-
sive deposition of ECM components by activated cardiac 
fibroblasts. While some fibrosis must heal damaged tissue, 
the expansion of cardiac ECM leads to the loss of proper 
ventricular architecture, electrical coupling, and contractil-
ity, ultimately resulting in heart failure.

As a chronic disease affecting a significant portion of the 
population in the developed world, diabetes mellitus (DM) 
is a primary determinant of cardiovascular pathologies 
[30]. Diabetic cardiomyopathy is typified by early onset of 
diastolic dysfunction independent of the presence of vas-
cular disease, as oxidative stress and circulating advanced 
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glycation end-products contribute to the development of 
interstitial fibrosis [30, 111]. Investigations which used a 
streptozotocin-induced type 1 diabetes rat model showed 
that diabetic rat hearts expressed high levels of periostin 
mRNA and protein, relative to healthy controls [34]. It 
was also found that treating diabetic animals with valsar-
tan reduced the expression of periostin, and collagen I and 
III [34]. Further studies on the role of periostin in diabetic 
cardiomyopathy found it may be overexpressed in DM in 
response to the chronic accumulation of reactive oxygen 
species in the myocardium [111]. Treatment of diabetic 
animals with the antioxidant resveratrol resulted in a sig-
nificant reduction in myofibroblast activation, and inhibited 
the expression of periostin via ERK/TGF-β signaling [111]. 
Taken together, the evidence suggests that periostin func-
tions as an intermediary in the initiation and progression 
of diabetic cardiomyopathy. While blocking its effects may 
assist in mitigating the effects of DM on the heart, further 
studies are required to fully understand the role of periostin 
in the diabetic heart.

Along with its effects on ventricular fibrosis, periostin 
has also been associated with atrial fibrosis, a pathology 
commonly attended by atrial fibrillation (AF) [113]. Much 
like ventricular fibrosis, TGF-β is often viewed as the pri-
mary mediator of atrial fibrosis [14, 17]. Thus, as a target 
of TGF-β signaling, periostin is likely to play a role in atrial 
fibrogenesis. A recent examination of atrial appendages from 
AF patients undergoing elective valve replacement surgery 
indicated a strong positive correlation between periostin 
expression and the extent of atrial fibrosis [112]. While these 
data do not procure a causal link between periostin, atrial 
fibrosis, and AF, the study also suggests that increased peri-
ostin levels in atrial tissues are associated with worsening 
heart failure and decreasing ejection fraction. Concurrent 
studies in a rabbit model of AF by Yuan et al. demonstrated 
that the expression of periostin in cardiac atria can be regu-
lated by miR-30a, a miRNA associated with both cardiac 
and pulmonary fibrosis [115]. It was specifically shown that 
overexpression of miR-30a led to a decrease in periostin and 
atrial fibrosis. Conversely, inhibition of miR-30a promoted 
the expression of periostin in atrial tissue. Once again, while 
this potential axis of signaling is not fully understood, their 
findings further support the notion that periostin plays a role 
in the pathogenesis of cardiac fibrosis. Additional studies are 
still required to fully clarify whether periostin is triggering 
chronic fibrinogenesis or reinforces established feedback 
mechanisms which promote aberrant ECM deposition.

Post‑MI cardiac remodeling

In contrast to chronic cardiomyopathies, cardiomyocyte 
death due to ischemia following MI results in the infil-
tration of macrophages and lymphocytes in response to 

the injury. Cardiac fibroblasts are then activated by TGF-
β1 and mechanical stressors, leading to the deposition 
of ECM proteins and formation of a fibrotic scar. In the 
regions distal to the expanding infarct, reactive interstitial 
fibrosis is also observed in both left and right ventricles. 
Replacement fibrosis post-MI is thought to be essential to 
prevent cardiac rupture, as the collagenous scar possesses 
significant tensile strength, whereas continuous interstitial 
fibrosis and cardiac remodeling leads to progressive cardi-
omyocyte hypertrophy, chamber dilation, ventricular wall 
thinning, and overall loss of cardiac function and output.

The role of periostin in the post-MI heart has been pri-
marily examined in the context of LV remodeling. Prelimi-
nary studies by Oka et al. in a mouse model of post-MI 
remodeling indicated that periostin is necessary for the 
proper formation of the infarct scar, as periostin−/− ani-
mals were susceptible to ventricular rupture within the first 
2 weeks after MI [84]. Conversely, the group’s periostin-
overexpressing mouse line did not experience post-MI rup-
ture; however, they developed spontaneous cardiac fibrosis 
and hypertrophy with age. When subject to TAC-induced 
pressure overload, the mice lacking periostin did not develop 
overt interstitial cardiac fibrosis or remodeling, as seen in 
wild-type animals [84]. These findings were later confirmed, 
as adenovirus-mediated rescue of Postn−/− infarcted myo-
cardium protected post-MI hearts from ventricular rupture 
[94]. Subsequent studies by Shimazaki et al. in human tis-
sue specimens confirmed that periostin is not expressed in 
healthy myocardium, and it strongly induced in ischemic and 
reperfused tissue [94]. In an in vivo mouse model of post-MI 
remodeling, the same group confirmed that periostin dele-
tion prevented stiffening of the LV free wall and attenuated 
chamber dilatation; however, it should be noted that there 
was an overall decrease in the number of vimentin-positive 
(mesenchymal) cells within and surrounding the infarct. 
Furthermore, it was found that periostin ablation resulted 
in a decrease in FAK activation, which may account for the 
decrease in myofibroblast migration [94] into the infarcted 
area. These findings postulate that periostin may be required 
to initiate the invasion of infarcted tissue by activated myofi-
broblasts during post-MI wound healing. Despite these stud-
ies, it was still unclear which mesenchymal cells handled 
periostin-mediated post-MI cardiac remodeling. Further 
reports by Molkentin’s group showed in lineage tracing 
analyses in mice that TCF21+ resident cardiac fibroblasts 
are the overwhelming majority of periostin-expressing cells 
within and surrounding the infarct scar [46]; this is in sharp 
contrast to previous investigations which suggested that acti-
vated cardiac fibroblasts originate from multiple sources [1, 
6, 105]. Thus, it is evident that periostin likely plays a key 
role in regulating fibroblast function, and mediates the myo-
cardium’s response to injury.
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Given the growing evidence suggesting its importance in 
post-MI remodeling, the specific targeting of periostin as a 
point of intervention in post-MI cardiac fibrosis is of great 
interest. A study using periostin-neutralizing antibodies in 
an in vivo rat MI model showed promising evidence that 
not only does post-MI infusion of anti-periostin antibod-
ies reduce infarct size, but also improved cardiac fractional 
shortening and ejection fraction 8 weeks after MI [102]. It 
was specifically found that periostin exon 17 was the pref-
erential target for reducing the effects of chronic post-MI 
fibrogenesis, confirming previous reports that periostin 
splice variants lacking exon 17 are beneficial in combatting 
cardiac remodeling [94]. The cumulative body of evidence 
supporting periostin’s role in cardiac fibrosis and the ability 
to target it in vivo generates an auspicious vision for future 
animal models and potentially, clinical trials.

Non‑mesenchymal effects of periostin—cardiac 
regeneration

While endogenous cardiac regeneration remains a conten-
tious notion [10, 11], the myocardium remains unique in its 
response to injury. Current therapies used for the treatment 
of post-MI fibrosis and heart failure only serve to alleviate 
the symptoms, rather than ameliorating cardiac function; this 
is primarily due to the inability for human cardiomyocytes 
to readily regenerate after an acute insult.

One approach to mitigate the effects of sudden loss of car-
diomyocytes is cardiac cell tissue regeneration by the exog-
enous expression of factors which promote re-entry into the 
cell cycle. Due to its ability to promote mesenchymal cell 
proliferation, periostin has been viewed as a potential point 
of intervention for post-MI cardiac regeneration. Work by 
Kuhn et al. demonstrated that in vitro treatment of rat cardio-
myocytes with recombinant periostin promoted cell cycle re-
entry and PI3K/Akt signaling [52]. The group also utilized a 
rat post-MI model of sudden cardiomyocyte loss to examine 
the capacity for recombinant periostin to regenerate infarcted 
tissue. Long-term, post-MI delivery of periostin via a biore-
sorbable ECM patch was shown to not only improve frac-
tional shortening and ejection fraction, but also reduce the 
degree of replacement fibrosis incurred after infarction [52]. 
It should be noted, however, that the recombinant periostin 
implemented in these studies was truncated; this form was 
lacking the N-terminal signal peptide, as well as the alterna-
tively spliced C-terminal region. It is important to recognize 
this alteration, as these data were later contested as another 
report indicated that periostin did not affect cardiomyocyte 
proliferation [69]. In a transgenic mouse model overexpress-
ing full-length periostin via an inducible α-myosin heavy 
chain promoter, Lorts et al. determined that periostin did 
not induce cardiomyocyte proliferation in the post-MI heart. 

They also did not see any cell cycle activation in neona-
tal cardiomyocytes transduced with a periostin-expressing 
adenoviral vector. This is a stark contrast to recent trans-
genic studies which indicate that periostin ablation prevents 
neonatal cardiomyocyte regeneration, and inhibited PI3K 
signaling [19]. There are two experimental differences that 
may account for the disparate results: first, the transgenic 
mice constitutively overexpressed periostin, whereas pre-
vious studies only applied recombinant protein acutely; 
second, the transgenic mice overexpressed full-length peri-
ostin, which still contains the alternatively spliced region. 
To complicate the matter, further studies repeating the exog-
enous application of ECM-bound periostin into infarcted 
myocardium confirmed the results obtained by Kuhn et al., 
albeit to a lesser degree [53]. Again, discrepancies could be 
attributed to the fact that a porcine model of post-MI remod-
eling was used, rather than a murine one. Moreover, it was 
also found that the large animal model was distinguished 
by a marked increase in myocardial fibrosis 3 months post-
treatment, compared to untreated controls [53]. While the 
various conditions in which periostin-mediated cardiac 
regeneration have been diverse and at times contradictory, 
further investigations into the effects of the different iso-
forms of periostin is warranted. Periostin may be necessary 
for cardiomyocyte renewal, but not sufficient on its own; 
rather, it is very possible that periostin is only required as 
an intermediary in cardiac regeneration. With this is mind, it 
is still important to consider periostin isoforms or mimetics 
as novel therapeutic tools in future clinical interventions for 
the treatment of post-MI hearts.

Future directions

As a central player in tissue response to mechanical stress 
and injury, periostin is a pleiotropic matricellular protein 
whose regulation is still relatively uncharacterized. With 
this in mind, several avenues of exploration hold potential 
answers to better understand transcriptional and transla-
tional modulation of periostin. First, as periostin expres-
sion responds to SMAD-dependent TGF-β/BMP stimula-
tion, further investigations into endogenous repressors of 
the signaling cascade may provide further insight into its 
transcriptional regulation. The SKI/SNON family of proteins 
has been shown to not only inhibit SMAD2/3-inducible sign-
aling [24], but also have the potential to attenuate cardiac 
myofibroblast activation [22, 23]. Similarly, the homeobox 
protein TGIF1 is also a SMAD2 transcriptional co-repressor 
which downregulates TGF-β signaling [87]; however, little 
is known about its function in cardiac tissues. Besides regu-
lators of TGF-β, the relationship of periostin to the Hippo 
signaling pathway may also be a point of interest when con-
sidering the regulation of periostin. The activation of the 
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mitogenic Hippo nuclear effectors TAZ (transcriptional co-
activator with a PDZ-binding domain; also known as WW 
domain-containing transcription regulator 1, or WWTR1) 
and YAP (Yes-associated protein; also known asYAP1), is 
characterized by multiple instances of potential crosstalk 
with periostin [68, 106]. Mechanosensory signaling cas-
cades which activate WNT/β-Catenin signaling [2, 60, 118] 
and serum response factor (SRF) and are associated with 
cardiac fibrosis and expansion of the extracellular matrix 
[29, 77] and may have roles for both periostin and YAP/
TAZ; however the existence of a shared regulatory relation-
ship has yet to be explored.

The relationship between cells and their extracellular 
environment is of paramount importance when considering 
cardiovascular development and disease. The multifaceted 
nature of periostin and the specificity of its mesenchymal 
source within cardiovascular tissues are unique qualities 
which make it an attractive biomarker and potential thera-
peutic target. Given its relevance to both physiological and 
pathological expression of matrix components in the heart, 
continued experimentation toward elucidation of periostin’s 
effects in cardiac extracellular matrix needs to be carried 
out, including those aimed at clinical translation.
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