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Abstract Blockade of the late Na? current (INaL) protects

from ischemia/reperfusion damage; nevertheless, informa-

tion on changes in INaL during acute ischemia and their

effect on intracellular milieu is missing. INaL, cytosolic

Na? and Ca2? activities (Nacyt, Cacyt) were measured in

isolated rat ventricular myocytes during 7 min of simulated

ischemia (ISC); in all the conditions tested, effects con-

sistently exerted by ranolazine (RAN) and tetrodotoxin

(TTX) were interpreted as due to INaL blockade. The results

indicate that INaL was enhanced during ISC in spite of

changes in action potential (AP) contour; INaL significantly

contributed to Nacyt rise, but only marginally to Cacyt rise.

The impact of INaL on Cacyt was markedly enhanced by

blockade of the sarcolemmal(s) Na?/Ca2? exchanger

(NCX) and was due to the presence of (Na?-sensitive)

Ca2? efflux through mitochondrial NCX (mNCX). sNCX

blockade increased Cacyt and decreased Nacyt, thus indi-

cating that, throughout ISC, sNCX operated in the forward

mode, in spite of the substantial Nacyt increment. Thus, a

robust Ca2? source, other than sNCX and including mito-

chondria, contributed to Cacyt during ISC. Most, but not all,

of RAN effects were shared by TTX. (1) The paradigm that

attributes Cacyt accumulation during acute ischemia to

decrease/reversal of sNCX transport may not be of general

applicability; (2) INaL is enhanced during ISC, when the

effect of Nacyt on mitochondrial Ca2? transport may

substantially contribute to INaL impact on Cacyt; (3) RAN

may act mostly, but not exclusively, through INaL blockade

during ISC.
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Introduction

Acute myocardial ischemia results in a characteristic pat-

tern of metabolic and intracellular ion changes, ultimately

leading to cytosolic Ca2? (Cacyt) accumulation [5] and the

resulting functional and structural derangements. Enhanced

Na? influx, exceeding the functional reserve of the Na?/

K? pump, is widely considered as the ‘‘primum movens’’

of this process, being coupled to Cacyt homeostasis through

changes in the equilibrium potential of the sarcolemmal

Na?/Ca2? exchanger (sNCX) (coupled exchanger theory)

[9, 23, 28, 31].

Several mechanisms may account for enhanced a Na?

influx during acute ischemia. While it is widely accepted

that the Na?/H? exchanger (NHE), driven by intracellular

acidosis, may support large Na? influx upon reperfusion

[19, 24, 47], there is disagreement about its role during

ischemia [3, 32, 47]. Several studies show that blockade of

a persistent component of Na? current (INaL), prevents

Ca2? overload and reduces injury following reperfusion

[1, 7, 16, 45]. This suggests that INaL enhancement may

contribute to increased Na? influx during the preceding

ischemia. Exposure to ischemia components (i.e., H2O2,

hypoxia and ischemic metabolites) has indeed been shown

to enhance INaL in standard V-clamp experiments

[26, 40, 43, 46]. On the other hand, membrane
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depolarization and shortening of action potential duration

(APD), both correlates of acute ischemia, may reduce

overall Na? current availability and time for INaL-mediated

Na? influx, respectively. Therefore, whether INaL is actu-

ally enhanced during acute ischemia and contributes to

cytosolic Na?/Ca2? accumulation remains to be estab-

lished. The present study aims to directly address these

questions by measuring INaL and cytosolic ionic activities

(Nacyt and Cacyt) in isolated ventricular myocytes exposed

to a simulated ischemia protocol.

The results obtained indicate that INaL was enhanced

during simulated ischemia, in spite of the attending action

potential (AP) changes, and significantly contributed to

Nacyt accumulation. However, the relationship between

Nacyt and Cacyt was more complex than predicted by the

coupled exchanger theory, suggesting instead a role of

ischemia-induced redistribution of Ca2? between intracel-

lular compartments, with mitochondria contributing as a

Nacyt-sensitive Ca2? store.

Materials and methods

Cell isolation

Ventricular cardiomyocytes from male adult Sprague–

Dawley rats (150–175 g) were isolated using a retrograde

coronary perfusion method previously published with

minor modifications [34]. Measurements were performed

only in quiescent, rod-shaped, myocytes with clear stria-

tions. All experiment were approved and conducted

accordingly to the guidelines stipulated by the Animal Care

committee of University of Milano-Bicocca. The manu-

script does not contain human data.

Simulated ischemia protocol

Cardiomyocytes were placed into a recording chamber and

superfused at 36.5 �C with Tyrode’s solution containing

(mM): NaCl 154, KCl 4, CaCl2 2, MgCl2 1, HEPES 5,

Glucose 5.5, adjusted to pH 7.3. Cells were paced at 1 Hz,

either through the patch pipette or by field stimulation,

throughout the protocol.

Ischemia was simulated by superfusing myocytes with a

modified Tyrode’s solution (ischemia mimic solution, ISC)

containing (mM): NaCl 134, Na-lactate 20, KCl 8, CaCl2 2,

MgCl2 1, HEPES 5, sucrose 37, adjusted to pH 6.8. Its

composition reflects the major changes in the ischemic

environment, as previously described by others

[8, 10, 25, 30, 49].

ISC protocol has been performed here in normoxic

condition, according to previous studies on ischemia [25]

proving that the contribution of hypoxia to changes in

cardiomyocyte contractility is negligible; nevertheless, its

absence should be considered in the interpretation of

results (see ‘‘Discussion’’).

The experimental protocol included pre-ISC stabiliza-

tion in normal Tyrode’s solution (about 2 min) followed by

ISC superfusion for 7 min (Fig. S1). This ISC duration was

selected in preliminary experiments as the maximal toler-

ated by the majority of cardiomyocytes; ISC wash-out

(reperfusion) was almost invariably followed by contrac-

ture and death. In the following text, protocol phases are

referred to as PRE (pre-ISC); 0.5ISC (0.5 min of ISC);

3ISC (3 min of ISC); 7ISC (7 min of ISC).

Cell shortening

Cardiomyocytes were field stimulated and the single-cell

shortening was measured by video-edge detection system

(Crescent electronics). The difference between maximal

diastolic and systolic cell lengths was expressed as twitch

amplitude, which was normalized within each cell to the

value recorded in PRE conditions.

Electrophysiology

Myocytes were patch-clamped with borosilicate glass

pipettes containing (mM): K?-aspartate 110, KCl 23,

MgCl2 3, HEPES KOH 5, EGTA KOH 0.5, GTP Na?-salt

0.4, ATP Na?-salt 5, creatine phosphate Na?-salt 5, CaCl2
0.2 (calculated free-Ca2? = 10-7 M), adjusted to pH 7.2.

Series resistance was\5 MX and was compensated to 80%

of its value.

Action potentials (AP) were recorded (I-clamp with

I = 0 pA) throughout the protocol. AP waveforms recor-

ded in PRE condition and at 7ISC, respectively, were used

as templates in AP-clamp experiments.

INaL was measured at PRE and 7ISC in AP-clamp mode

as the current sensitive to 1 lM TTX [40]. To test whether

ISC-induced changes in AP affected INaL magnitude during

ISC, AP-clamp was applied with two modalities: (1) the

AP templates recorded at PRE and 7ISC, which included

ISC-induced changes, were applied during the corre-

sponding phases of the protocol; (2) the AP template

recorded at PRE, was applied at both PRE and 7ISC, thus

disregarding ISC-induced changes. Differences between

INaL recorded with the two AP-clamp modalities reflect the

impact of ISC-induced membrane potential changes to

INaL.

INaL magnitude during APs was quantified by integrat-

ing inward TTX-sensitive current from the beginning of

repolarization to 90% of repolarization and dividing the

result for the integration interval. This measurement,

abbreviated in the following text and figures as ‘‘INaL’’,

reflects mean Na? influx rate during repolarization.
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Currents were normalized to cell capacitance and expres-

sed as current density (pA/pF).

Measurement of intracellular ionic activities

Nacyt and Cacyt were measured in intact, field-stimulated

(1 Hz) cardiomyocytes, loaded with Asante Natrium Green-

2 (ANG-2) for Na? and FLUO4-AM for Ca2? measure-

ments, respectively. Cardiomyocytes were incubated with

the membrane-permeant form of the dyes for 30 min, and

then washed for 15 min. ANG-2 and FLUO4-AM emissions

were collected through a 535 nm band pass filter, converted

to voltage, low-pass filtered (200 Hz) and digitized at 2 kHz

after further low-pass digital filtering (FFT, 100 Hz) and

subtraction of background luminescence [2].

For Na? measurement, fluorescence recorded during

ISC (F) was normalized to that recorded during the PRE

phase (F0) and expressed as F/F0. Considering that, Nacyt
changes were well within the range of linear dye response

(Supplemental Figure S5), the uncalibrated Na? signal was

considered adequate. Because dye response is slow relative

to membrane potential changes, the Na? signal reflects an

integrated value of Nacyt during the whole electrical cycle.

Ca2? fluorescence signal was calibrated by previously

described methods [34], described in the Online Resource

along with the potential bias introduced by intrinsic pH

sensitivity of the dye. Since dye response is fast enough,

the Ca2? signal was evaluated as diastolic Ca2? (CaD) and

Ca2? transient amplitude (CaT, i.e., difference between

systolic Ca2? and CaD). The sarcoplasmic reticulum (SR)

Ca2? content (CaSR) was estimated at 7ISC in separate

subsets of cardiomyocytes, by applying an electronically

timed 10 mM caffeine pulse. The caffeine solution was

Ca2? and Na? free, to prevent Ca2? efflux through the

sNCX. SR Ca2 fractional release (CaFR) was obtained as

the ratio between CaT at 7ISC and CaSR.

Pharmacological interventions

The contribution of different mechanisms to Nacyt and

Cacyt dynamics during ISC was evaluated by specific

pharmacological interventions.

INaL contribution was tested by blocking the current with

either ranolazine (RAN, 10 lM) or tetrodotoxin (TTX,

1 lM). Although at this concentration TTX can be safely

considered to selectively block INaL [40], ancillary effects

might be present for RAN. Therefore, whereas effects

equally exerted by the two agents were considered to

reflect INaL contribution, those peculiar of RAN may pos-

sibly result from ancillary effects of the drug. RAN and

TTX were applied at the beginning of the PRE phase.

Contribution of sNCX and mNCX were tested by using

the selective blockers SEA0400 (SEA, 1 lM) and

CGP37157 (CGP, 1 lM), respectively. Cariporide (CAR,

1 lM) and ouabain (OUAB, 1 mM) were used to inhibit

the NHE and the Na?/K? pump, respectively. RU360 (RU,

10 lM) was used to block the mitochondrial Ca2? uni-

porter (MCU) [29], the main path of Ca2? entry into

mitochondria [21]. These agents were also added to the ISC

solution; DMSO concentration was balanced in all the

solutions.

Statistical analysis

The time courses of Nacyt and Cacyt (CaT and CaD) during

the protocol, shown in figures, were obtained by averaging

records from N cells and are presented as mean ± SE.

Differences in twitch amplitude, Nacyt and Cacyt were

statistically evaluated at 0.5ISC, 3ISC, 7ISC (Supplemental

figure S1). In the case of Nacyt, peak value and the rate of

rise (dNa?/dt, by linear fitting of the rising phase) were

also evaluated.

Differences between means were tested by paired T test

or ANOVA as appropriate (Bonferroni’s correction in post

hoc comparisons). Statistical significance was defined as

p\ 0.05 (NS, not significant). Sample size is reported in

each figure legend.

Results

Cell shortening and electrical activity

Twitch amplitude markedly decreased during early ISC

(0.5ISC), to slowly recover to a stable level after 3 min

(Fig. 1a). Twitch amplitude achieved a minimum at 0.5ISC

(-86.9 ± 1.8% of PRE; p\ 0.05), recovered at 3ISC to

-12.4 ± 18.5% of PRE, without further changes at 7ISC

(-10.8 ± 17.3% of PRE) (Fig. 1b).

AP were elicited throughout ISC exposure (Fig. 1b),

even when mechanical activity was almost absent. ISC

partially depolarized diastolic potential (Ediast) and reduced

dV/dtmax of phase 0 (Fig. 1c). APD at 90%, repolarization

(APD90) prolonged up to 0.5ISC and then shortened

(Fig. 1c). RAN treatment did not measurably affect AP

response to ISC (Supplemental Figure S2).

Late Na1 current

A small INaL was present during repolarization even in PRE

conditions; this component was insensitive to blockade by

RAN (Fig. 2). When the 7ISC AP template was applied at

7 min of ISC, INaL was increased by 77% (p\ 0.05 vs

PRE, Fig. 2b), a change completely prevented by RAN

(Fig. 2b). When the PRE AP template was applied at 7ISC,

INaL increment observed was, if anything, larger than seen
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with the previous protocol (88%, p\ 0.05 vs PRE, Sup-

plemental Figure S3). Thus, INaL may significantly increase

during ISC in spite of the attending membrane potential

changes, which, as expected, reduced overall INa avail-

ability (reduced dV/dtmax, see above).

Cytosolic Na1

Changes in Nacyt during ISC were assessed in intact, field-

stimulated (1 Hz) cardiomyocytes in the absence (CTRL)

and presence of INaL blockade by either RAN or TTX.

After an initial dip, Nacyt increased during ISC, reaching a

peak at about 1–2 min, and then slowly declined (Fig. 3a).

RAN and TTX significantly reduced peak Nacyt (Fig. 3a)

and the rate of Nacyt increment (Fig. 3b); the effect was

similar between the two agents. This suggests that INaL
enhancement significantly contributed to, but was not the

only factor, in Nacyt accumulation during ISC. When both

INaL and NHE were blocked simultaneously

(CAR ? TTX), ISC failed to induce Nacyt accumulation

Fig. 1 Cell shortening and

electrical activity during ISC.

a Average traces ± SE of

contraction amplitude (left) and

statistics at discrete time points

during the protocol (arrows).

b Representative traces of

contraction (top) and action

potentials (bottom) at discrete

time points (arrows in a).
c Statistics for diastolic

membrane potential (Ediast),

maximum depolarization rate

(dV/dtmax) and action potential

duration at 90% repolarization

(APD90). CTRL N = 8.

�p\ 0.05 vs PRE

Fig. 2 Late Na? current (INaL)

during ISC. a Representative

action potentials templates (top)

and the respective TTX-

sensitive currents (bottom) at

PRE (black line) and 7ISC (red

line) time points in CTRL and

RAN groups. b Statistics for

INaL at PRE and 7ISC. N[ 6 for

both groups. �p\ 0.05 vs PRE
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(Supplemental Figure S4), thus pointing to NHE as the

other Na? influx route [35].

To test whether the Na?/K? pump remained functional

during ISC and contributed to the late Nacyt decline, car-

diomyocytes were exposed to ISC in the presence of ouabain

(OUAB).Under this condition,Nacytmonotonically increased

throughout ISC superfusion (Supplement Figure S5), indi-

cating that in the present settings, the Na?/K? pump was

active and contributed to limit Nacyt accumulation.

Cytosolic Ca21

Changes in Cacyt during ISC were assessed in intact, field-

stimulated (1 Hz) cardiomyocytes (Fig. 4). Both CaD and

CaT increased during ISC; at variance with Nacyt, the

increment was not preceded by a dip. CaD monotonically

increased to achieve a more or less stable level at 3 min

(Fig. 4a). CaT increment followed a sigmoidal time course,

thus lagging behind CaD; it achieved a peak at about 3 min

and then slowly declined (Fig. 4a). RAN slightly, but sig-

nificantly, decreased CaD and visibly minimized its vari-

ability across cells, an effect not shared with TTX

(Fig. 4a). The same was true for CaT even if, probably

because of its larger variability, RAN effect on this

parameter did not achieve significance (Fig. 4a). Both

RAN and TTX tended to decrease CaSR, but when analyzed

separately for each INaL blocker their effect did not achieve

statistical significance (Fig. 4b). However, when the data

from RAN and TTX groups were pooled, INaL blockade

significantly reduced CaSR at 7ISC (80.7 ± 8.5 vs

60.8 ± 4.7 lM; p\ 0.05, Fig. 4b). CaFR was not affected

by INaL blockade (Fig. 4b).

These observations are consistent with the common

notion that Cacyt increases during acute ischemia; however,

neither its timing with respect to Nacyt, nor its unexpected

insensitivity to INaL blockade, were consistent with its

dependency on enhanced Na? influx. The (small) effect of

RAN on CaD, not shared by TTX, might reflect an agent-

specific ancillary action.

The unexpected lack of Cacyt response to reduced Na?

influx, led us to question sNCX role in mediating Cacyt
accumulation during ISC. To address this point, Cacyt
measurements were repeated in the presence of sNCX

blockade.

Role of the sarcolemmal Na1/Ca21 exchanger

To assess the role of sNCX during ISC, its specific inhi-

bitor SEA [42] was also added to the ISC solution

(ISC ? SEA, Fig. 5).

In the presence of SEA, ISC-induced Nacyt accumula-

tion was reduced and Cacyt accumulation (CaD, CaT,

CaSR) was markedly enhanced (Supplemental Figure S6).

The direction of the reciprocal changes in Nacyt and Cacyt
unequivocally indicates that, during ISC, sNCX still

operated in its forward mode, thus supporting Ca2? efflux,

rather than influx. Notably, forward sNCX operation

persisted in spite of the attending increase in Nacyt;

moreover, the Cacyt increment induced by ISC in the

presence of sNCX blockade (SEA group) was twice as

large as that observed during SEA alone (Supplemental

Figure S7). These findings indicate that large, sNCX-in-

dependent, Ca2? sources contribute to Cacyt build up

during ISC.

Fig. 3 Effect of INaL blockade

(RAN, TTX) on cytosolic Na?

(Nacyt) during ISC. a Average

traces ± SE of Nacyt during the

ISC protocol in CTRL, RAN

and TTX treatment groups;

statistics of Nacyt changes

(normalized to values at PRE) at

peak Nacyt and at 7ISC time

points. b Average Nacyt traces

(as in a) during the early ISC

phase to illustrate differences in

Nacyt accumulation rate;

statistics for Nacyt accumulation

rate (dNacyt/dt). CTRL N = 14;

RAN N = 9; TTX N = 12.

*p\ 0.05 vs CTRL
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Notably, during ISC ? SEA, both RAN (?RAN) and

TTX (?TTX) significantly reduced Cacyt accumulation

(Fig. 5a), with their effect being substantially larger than

during ISC alone (Fig. 4). This suggests the contribution to

Cacyt accumulation of a Na?-sensitive Ca2? source, whose

role was unveiled by sNCX blockade.

Consistent with the increase in overall cell Ca2? content

expected from sNCX blockade, CaSR at 7ISC was higher in

ISC ? SEA (SEA) than in ISC alone (CTRL)

(116.7 ± 11.6 vs 80.7 ± 8.5 lM; p\ 0.05; Supplemental

Figure S6a). RAN slightly but significantly reduced CaSR
even in the presence of SEA (Fig. 5b), thus suggesting its

ability to modulate Cacyt independently of sNCX. This

effect did not achieve significance with TTX, which, in this

respect, was less efficient than RAN. CaFR was unchanged

by either RAN or TTX (Fig. 5b) thus arguing against

modulation of ryanodine receptors (RyRs) as a major

player in the effects exerted by the two agents.

The significant effect of INaL blockade on Cacyt in Fig. 5

suggests that, at least under sNCX inhibition, a Nacyt-

sensitive intracellular compartment may contribute to its

accumulation during ISC. Mitochondria are an intracellular

Ca2? compartment, potentially affected by ISC and

endowed of Nacyt-sensitive Ca2? transport. The latter is

represented by mNCX, which may either uptake or release

Ca2? from mitochondria depending on the electrochemical

gradient for the transport. To test this hypothesis, the

experiments were repeated in the presence of mNCX

blockade.

Role of the mitochondrial Na1/Ca21 exchanger

mNCX was selectively blocked by CGP [12], which was

added to the ISC solution either alone, or in the presence of

SEA.

When applied alone (CGP group, Fig. 6 left), CGP did

not measurably affect Cacyt accumulation during ISC

(Fig. 6a); however, it significantly increased CaSR
(Fig. 6b), thus suggesting a shift of Ca2? from the mito-

chondrial to the SR compartment. On the other hand, when

CGP was applied in the presence of SEA (?CGP group;

Fig. 6 right), Cacyt accumulation and CaSR were signifi-

cantly reduced. Thus, at least in the presence of the high

Cacyt levels achieved under sNCX blockade, mitochondria

provided a Ca2? source, with mNCX supporting Ca2?

efflux to the cytosol [27]. CaFR was not affected by CGP

Fig. 4 Effect of INaL blockade (RAN, TTX) on cytosolic Ca2?

(Cacyt) during ISC. a Average traces ± SE of diastolic Ca2? (CaD)

and Ca2? transient amplitude (CaT) during the ISC protocol in CTRL,

RAN and TTX treatment groups; statistics of Cacyt at discrete time

points (arrows) during the protocol (CTRL N = 22; RAN N = 19;

TTX N = 19). b Statistics for SR Ca2? content (CaSR) and SR Ca2?

fractional release (CaFR) at protocol end (CTRL N = 19; RAN

N = 13; TTX N = 10); representative Ca2? transient triggered by

caffeine in each group. *p\ 0.05 vs CTRL; #p\ 0.05 vs RAN
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Fig. 5 Effect of INaL blockade

(RAN, TTX) on cytosolic Ca2?

during ISC in the presence of

sNCX blockade (SEA).

a Average traces ± SE of

diastolic Ca2? (CaD) and Ca2?

transient amplitude (CaT) during

the ISC protocol in CTRL, RAN

and TTX treatment groups;

statistics of Cacyt at discrete

time points (arrows) during the

protocol; statistics of Cacyt at

discrete time points (arrows)

during the protocol (SEA

N = 23; SEA ? RAN N = 20;

SEA ? TTX N = 18).

b Statistics for SR Ca2? content

(CaSR) and SR Ca2? fractional

release (CaFR) at protocol end

(SEA N = 9; SEA ? RAN

N = 9; SEA ? TTX N = 9);

representative Ca2? transient

triggered by caffeine

superfusion in each group.
§p\ 0.05 vs SEA

Fig. 6 Effect of mNCX

blockade (CGP) on Cacyt and

CaSR during ISC. Left effect of

CGP alone; right effect of CGP

in the presence of SEA.

a Statistics for diastolic Ca2?

(CaD, top) and Ca2? transient

amplitude (CaT, bottom) at

discrete protocol time points

(CTRL N = 22; CGP N = 8;

SEA N = 23; SEA ? CGP

N = 16); b statistics for SR

Ca2? content (CaSR) and SR

fractional release (CaFR) at the

end of protocol (CTRL N = 19;

CGP N = 8; SEA N = 10;

SEA ? CGP N = 14).

*p\ 0.05 vs CTRL, §p\ 0.05

vs SEA
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(Fig. 6b), again arguing against the involvement of RyRs

modulation in the observed effects.

In the presence of sNCX blockade, the effects of CGP,

RAN and TTX on Cacyt accumulation during ISC were

strikingly similar (Supplemental Figure S8). This supports

the view that INaL blockade may limit Cacyt accumulation

by reducing Nacyt availability to fuel mNCX-mediated

Ca2? efflux from mitochondria.

To further test the role of mitochondria as a Ca2? source

during ISC, MCU was selectively blocked by RU [29] in the

presence of sNCX blockade (?RU). RU reduced Cacyt accu-

mulation, achieving statistical significance for CaD (Fig. 7a).

In the presence of SEA ? RU, CGP failed to modify Cacyt
(Supplement Figure S10). These observations confirm a role

ofmitochondria inCacyt increment during ISC and support the

view that the effect of CGP on Cacyt (Fig. 6 right) were due to

inhibition of mitochondrial Ca2? efflux. RU also increased

CaSR (Fig. 7b) likely reflecting transfer of Ca2? from the

mitochondrial compartment to the SR one.

Discussion

The main findings of this study are that during ISC: (1) INaL
was increased in spite of AP changes; (2) INaL blockade

reduced Nacyt accumulation, but failed to affect Cacyt

accumulation unless sNCX was blocked; (3) sNCX con-

tributed to Cacyt clearance (as opposed to accumulation)

throughout ISC; (4) blockade of INaL and mNCX exerted

similar effects on ISC-induced Cacyt accumulation, at least

under conditions of substantial Ca2? overload.

Relevance of ISC as a model of acute myocardial

ischemia

Tissue response to acute ischemia is highly dynamic and

closely dependent on a number of conditions; thus, any

experimental model of acute ischemia is necessarily

specific and unlikely to be of general applicability. Fur-

thermore, an isolated myocyte, oxygenated through aque-

ous superfusion (low O2 solubility) and contracting without

external load, cannot be strictly compared to in vivo

ischemia. Nevertheless, information of general relevance

on the mechanisms that can contribute to ischemic damage,

can still be acquired by observing the response to condi-

tions known to occur during it. The ischemic condition

adopted in this study (ISC), although encompassing the

major factors present in tissue ischemia, differs from it for

the absence of hypoxia. Although hypoxia was shown to

have little role in the contractile pattern during ISC

application [25], it might affect the mechanisms by which

such a pattern is achieved in a given time-frame. For

Fig. 7 Effect of MCU blockade

(RU) on cytosolic Ca2? during

ISC (in the presence of sNCX

blockade). a Average

traces ± SE of diastolic Ca2?

(CaD) and Ca2? transient

amplitude (CaT) during

ISC ? SEA alone (SEA) and in

the presence of MCU blockade

(?RU); CaD and CaT statistics

at discrete time points;

b statistics for SR Ca2? content

(CaSR) and SR Ca2? fractional

release (CaFR) at protocol end;

representative caffeine-induced

Ca2? transients. SEA N = 9;

?RU N = 10. §p\ 0.05 vs

SEA
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instance, hypoxia would likely accelerate ATP decay and

reactive oxide species (ROS) production, both factors

known to accelerate Nacyt accumulation and facilitate

reversal of sNCX transport. Therefore, failure of sNCX to

switch to the reverse mode, and the modest effect of INaL
blockade, might be model-specific. However, the contri-

bution of sNCX-independent Ca2? sources (including

mitochondria) to Cacyt accumulation in the presence of

factors certainly present during real ischemia, may have

general relevance. A further factor to be considered is that,

whereas generated within the myocyte under true ischemia,

lactic acid was applied extracellularly. This might reduce

NHE contribution to Na? loading, which was nonetheless

substantial (Supplemental Figure S4).

To mimic what is reported to occur during ischemia, the

ISC solution was slightly hyperosmolar [25]. The possi-

bility that this accounted for the observed changes in the

intracellular milieu was ruled out in preliminary experi-

ments (Supplemental Figure S9).

Because of the above features, ISC reproduces condi-

tions closer to those of a ‘‘border zone’’, not directly

ischemic (still energetically competent) but exposed to

factors released by the neighboring ischemic area [11].

ISC-induced INaL enhancement

A link between INaL enhancement and ischemia/reperfu-

sion injury has been firmly established by previous studies

[1, 4, 7, 39, 50]. However, considering the opposing effect

of ISC-induced membrane potential changes, INaL
enhancement by ISC was far from predictable.

Contribution of INaL and Na1/H1 exchanger

to cytosolic Na1 accumulation

About 50% of ISC-induced Nacyt accumulation was simi-

larly prevented by RAN and TTX. Being shared by both

agents, this effect is likely to result from INaL blockade.

When NHE was also blocked (Supplemental Figure S4),

ISC-induced Nacyt accumulation was completely abol-

ished; this suggests that Na? influx via NHE accounted for

the remaining 50% (this quantitative estimate does not take

into account potential interactions between the two trans-

ports). Although the presence in ISC of lactic acid likely

afforded relatively fast H? equilibration across the mem-

brane, acidosis was primarily extracellular in the present

setting; this might explain the initial dip in Nacyt time

course (Fig. 3). The present findings suggest that, under the

present experimental conditions, NHE was still active

during ISC. The monotonic increase in Nacyt during

exposure to ouabain (Supplemental Figure S5) indicates

that INaL- and NHE-mediated Na? influx were in balance

with Na? extrusion through the Na?/K? pump, which

remained active throughout the ISC period and was

responsible for the late decay in Nacyt.

INaL contribution to cytosolic Ca21 accumulation

In spite of its remarkable effect on Nacyt, INaL blockade

unexpectedly failed to affect ISC-induced Cacyt accumu-

lation (Fig. 4). This might simply reflect inadequacy of the

INaL-dependent Nacyt perturbation in overriding Cacyt
homeostatic control; indeed, INaL blockade tended to

reduce CaSR, potentially revealing a role for SR in

buffering INaL-induced perturbation. However, the obser-

vation that the effect of INaL blockade was unmasked by

sNCX blockade implies that a Ca2? source independent of

sNCX, and at least partially sensitive to INaL blockade (or

Nacyt), must have contributed to ISC-induced Cacyt
accumulation.

sNCX is often claimed to work in reverse mode during

ischemia [43, 48], thereby providing a direct path for Ca2?

influx. This was clearly not the case in the present setting;

however, sNCX mode may depend on the duration and

extent of ischemia. Nevertheless, changes in Nacyt com-

patible with forward sNCX operation have been reported

after sNCX knock-out in intact murine hearts subjected to

no-flow ischemia (Fig. 5 in Ref. [18]).

Mitochondrial contribution to cytosolic Ca21

accumulation

Mitochondria represent a significant Ca2? compartment,

physiologically uptaking Ca2? through MCU [21] and

extruding it to cytosol through mNCX, a Nacyt-sensitive

transport [6, 27].

CGP effect in the absence of SEA suggests that, under

basal conditions, mNCX blockade may promote a shift of

Ca2? from mitochondria to the SR. This implies that,

during ISC, mitochondria contribute to buffer Cacyt through

mNCX-mediated Ca2? uptake. In the present setting, the

impact of INaL blockade on mitochondrial buffering was

probably small enough not to affect Cacyt.

On the other hand, when sNCX was blocked, CGP

reduced ISC-induced Cacyt accumulation, thus supporting

the view that sizable mNCX-mediated Ca2? efflux from

mitochondria may occur during ISC in the presence of

substantial Ca2? overload [6, 37, 44]. Because mNCX flux

is Nacyt-dependent, this might account for the INaL-sensi-

tive component of Cacyt accumulation observed under

sNCX blockade.

At the conditions used in the present experiments, RU is

a selective blocker of MCU, without effect on ICaL or SR

Ca2? uptake/release [29, 36]. Functional exclusion of the

mitochondrial compartment by MCU blockade caused a

shift of Ca2? to the SR, reduced Cacyt accumulation and
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abolished the effect of mNCX blockade. Concomitance of

reduced Cacyt with increased CaSR is consistent with micro-

domain communication between mitochondria and SR

[22].

To summarize, sNCX blockade seemingly changed the

role of mitochondria during ISC from Ca2? sink to Ca2?

source; the simplest way to explain this effect is the rather

dramatic increase in overall cell Ca2? content present in

this condition, possibly reducing mitochondrial and SR

Ca2? buffering reserves. We surmise that such a Ca2?

overload might be achieved, even in the absence of sNCX

blockade, during in vivo cardiac ischemia. Therefore, the

specific effect of mNCX inhibition might depend on the

duration and extent of ischemia; nevertheless, the contri-

bution of mitochondria as a further Nacyt-sensitive com-

partment contributing to Cacyt changes may be regarded as

an observation of general value.

Additional potential sources of cytosolic Ca21

accumulation

As a Nacyt-sensitive Ca2? compartment, mitochondria are

of particular relevance to changes caused by INaL
enhancement. Nonetheless, they are unlikely to fully

account for the large source of Cacyt required to support

forward sNCX operation during ISC, in spite of the

attending increase in Nacyt and membrane depolarization

(both favoring sNCX reversal).

Because voltage-gated Ca2? channels are potently

inhibited by acidosis [20, 38] ICaL is unlikely to be

enhanced during ISC; however, a H?-gated background

Ca2? conductance (TRPA1) [17] is expressed in the heart

and shown to contribute to ischemia/reperfusion damage

[33].

Protons compete with Ca2? for binding to intracellular

buffers, troponin C in particular [15, 41]. In the present

setting, this is suggested by the virtual absence of con-

traction during early ISC, occurring in spite of persisting

Ca2? transients. Therefore, acidosis might support sub-

stantial release of free Ca2? to the cytosol through a

mechanism independent of transmembrane fluxes. Because

sarcolemmal Na? gradient is crucial for intracellular H?

clearance through NHE, this Ca2? source may also be

modulated, albeit indirectly, by INaL blockade.

Discrepancy between TTX and RAN effects

RAN and TTX shared the majority of effects during ISC

exposure, supporting their origin from INaL inhibition.

However, unlike TTX, RAN reduced CaD during ISC

under baseline condition and limited CaSR increment dur-

ing SEA exposure. This points to modulation by RAN of a

Ca2? compartment insensitive to TTX. RAN has been

shown to stabilize membrane potential of mitochondria

during ischemia [1, 13, 14, 51], which would enhance their

ability to retain Ca2?. However, this has been attributed to

limitation of Nacyt accumulation, an effect that should be

shared by TTX. The possibility that RAN may affect

mitochondrial performance as a Ca2? compartment also

independently of INaL blockade may deserve further

investigation.

Conclusions

Some of the observed effects of ISC may be model-specific

(i.e., depend on the duration and extent of the ischemic

condition) and, as such, of restricted applicability. These

may include poor sensitivity of Cacyt to INaL blockade and

persistence of forward sNCX operation. Nevertheless,

other observations lead to conclusions likely of more

general relevance: (1) INaL can be enhanced during acute

ischemia, irrespective of membrane potential changes, and

significantly contribute to Nacyt accumulation; (2) Ca2?

sources other than sNCX substantially contribute to Cacyt
increment and, at least in the early phase of acute ischemia,

may oppose reversal of sNCX flux; (3) under conditions of

Ca2? overload, mitochondria may act as a Nacyt-sensitive

Cacyt source, thus providing a mechanism, beyond sNCX

modulation, to account for INaL-induced perturbation of

intracellular milieu. A further conclusion is that most, but

not all, RAN effects on intracellular milieu may result from

INaL blockade.
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