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Abstract Cardiovascular aging is a physiological process

affecting all components of the heart. Despite the interest

and experimental effort lavished on aging of cardiac cells,

increasing evidence is pointing at the pivotal role of

extracellular matrix (ECM) in cardiac aging. Structural and

molecular changes in ECM composition during aging are at

the root of significant functional modifications at the level

of cardiac valve apparatus. Indeed, calcification or myxo-

matous degeneration of cardiac valves and their functional

impairment can all be explained in light of age-related

ECM alterations and the reciprocal interplay between

altered ECM and cellular elements populating the leaflet,

namely valvular interstitial cells and valvular endothelial

cells, is additionally affecting valve function with striking

reflexes on the clinical scenario. The initial experimental

findings on this argument are underlining the need for a

more comprehensive understanding on the biological

mechanisms underlying ECM aging and remodeling as

potentially constituting a pharmacological therapeutic tar-

get or a basis to improve existing prosthetic devices and

treatment options. Given the lack of systematic knowledge

on this topic, this review will focus on the ECM changes

that occur during aging and on their clinical translational

relevance and implications in the bedside scenario.
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Introduction

Cardiac valve degeneration represents the most common

pathological condition for valve disease and the more fre-

quent indication for surgery in the US and Europe [14].

Mitral valve (MV) and aortic valve (AV) are primarily

interested by degeneration, causing severe valve dysfunc-

tion with important impact on the overall ventricle function

over time [32]. MV is usually affected by a myxomatous

degenerative phenomenon leading to severe regurgitation,

while the process of calcification more often harnesses AV

leaflets, causing different degrees of stenosis with subse-

quent repercussion on ventricular performance [14]. Aging

is associated to a cascade of biological and molecular

events that might translate and lead to structural deterio-

ration and functional impairment of cardiac tissues [95].

Despite the interest and experimental effort lavished on

aging of cardiac cells, increasing evidence is pointing at the

pivotal role of extracellular matrix (ECM) in cardiac aging.

ECM does not exert a role of mere support, but is a key

factor in the tight interplay with the cellular compartment.

Structural and molecular changes in ECM composition

during aging are at the root of significant functional mod-

ifications at the level of cardiac valve apparatus [17].

Indeed, calcification or myxomatous degeneration of car-

diac valves and their functional impairment can all be

explained in light of age-related ECM alterations. Valvular

interstitial cells (VICs) and valvular endothelial cells
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(VECs) populating cardiac valves have been reported to be

extremely sensitive to tissutal environment and physio-

logical states and their activity is reciprocally influenced by

changes in the surrounding matrix substrate [17, 137]. A

bivalent mechanism is therefore established in which valve

cells actively answer to mechanical load or biochemical

signals through phenotype switches resulting in the pro-

duction of different components of ECM [137]. At the

same time, age-related or disease-related ECM changes are

able in turn to deeply influence VICs and VECs behavior.

Aged valve tissues undergo an ECM remodeling process

resulting in fibrillar disarray with an imbalance in the ratio

between collagen type I and type III and increased stiffness

[159, 161]. Also, augmented concentrations of proteogly-

cans and glycosaminoglycans throughout the leaflets have

also been reported and contribute to increased stiffness in

the circumferential direction with subsequent impairment

of the elastomechanical properties of the leaflet itself [158].

VICs have been shown to be at the base of ECM changes in

elderly valve tissues contributing to myxomatous degen-

eration or calcification [101, 107]. However, ECM

remodeling itself, stimulating the expression of different

substrate matrix proteins and altering tissutal organization,

influences both VICs and VECs biosynthetic activity

eventually favoring leaflet tissutal modifications and

therefore the risk of valvular disease [17]. Indeed, as valve

ECM remodels during lifetime, the different biochemical

composition of the supporting matrix or its simple struc-

tural deterioration triggers changes not only in valvular

cells phenotype but also in their secretory activity. The

age-related ECM remodeling, typical of older leaflets

[161], impairs tissutal density and the barrage function of

the fibrosa, determining an increased permeation of several

VEC-secreted proteins throughout the valve layers. Accu-

mulation of important mediators within the leaflet, as

inflammatory or hemostatic proteins, might favor tissutal

alteration and calcific nucleation [17].

Undoubtedly the two phenomena of physiological aging

and pathological alteration are closely imbricated as they

are reciprocal actors in the determinism of the disease. The

mechanisms governing these intertwined pathways and the

sequence of events leading to pathology is unclear even if it

might be reliably speculated that the age-related alterations

constitute a background for the development of patholog-

ical changes. In this context, the study of genetic factors

predisposing to the onset of disease at later stages in life is

very important. However, as in a multifactorial disease, the

presence of external factors superimposed to a particular

genetic background play a fundamental role and is able to

trigger the actual ‘‘expression’’ and translation into disease

of an underlying pathological potential. Similarly, ECM

changes might be considered as an underlying framework

on which pathologic changes can establish either affecting

the biological activity of VICs and VECs or by means of a

reciprocal interaction with them. In support of this,

mechanical properties of the ECM and in particular

increased degree of its stiffness, as in aged valve, have

been shown to modulate and influence the differentiation of

VICs to pathological phenotypes in response to biochem-

ical cues [185]. Additionally, the fact that some of the

characteristics found in aged valves reflect in different

extents the changes observed in diseased valve further

support this hypothesis. In a study by Kupari et al.,

increased circulating levels of collagen type III and I

telopeptides were found in aortic stenosis patients [93].

This finding might be associated to the findings of

increased collagen type III and I and telopeptides in aged

valves as described in details below.

These initial findings clearly suggest the emerging need

for a more accurate understanding of the changes occurring

in valvular ECM during aging, which have been unjustly

underestimated by the current literature. Considering the

burden of age-related valve disease on an aging population

[116], understanding the interplay between valve cells and

ECM and their response to different physiological states

appears fundamental to develop noninvasive therapeutic

strategies [17] or to optimize existing treatment options. In

light of the scarce availability of a comprehensive picture

on this topic, this review will focus on changes of ECM

components in the aged valves trying to unveil their clin-

ical translational relevance and potential implications in

the bedside scenario.

The clinical burden

As a result of the rise in life expectancy and the consequent

progression and incidence of age-related valve disease, the

need for surgical repair or replacement of degenerated

valves is enormously increasing, determining a consistent

burden on both surgical activity and general healthcare

management [14]. Indeed, the amount of elderly patients

requiring surgery is increasing and this subpopulation

carries a significant intraoperative and postoperative risk

due to their several comorbidities or simply poor general

health conditions [31]. Heavily calcified valves, fragile

cardiac and aortic tissue, chronic lung and renal disease

profoundly affect both the surgical technical aspects and

the postoperative care and retrieve from the operation

[102]. Cardiac surgery in the elderly is associated with

increased mortality, surgical complications, hospitalization

time (length of stay, LOS), and usually demands for more

complex procedures or combined operations of valve

replacement and myocardial revascularization [31].

In mitral valve, aging mainly translates in myxomatous

degeneration that determines redundancy and thickening of
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the leaflets impairing coaptation and mostly causing

regurgitation [137]. However, MV annulus calcification or

leaflet retraction related to the changes in valve structure is

also frequent, especially when associated to previous

rheumatic disease. Abnormal age-related activation of

myofibroblasts, deeply affecting the dynamic balance

between the synthesis and degradation of connective tissue,

is known to be at the root of these structural alterations

[137]. Additionally, the aging process determines an

intrinsic weakening of the whole heart skeleton, and this

reflects in the general tendency to dilation of the mitral

annulus under hemodynamic load and intraventricular

telediastolic pressure [57]. This requires annulus rein-

forcement with prosthetic rings [62], but considering the

natural elasticity and dynamic compliance of the heart, a

great effort to simulate the mechanical properties of the

skeletal part of the heart is mandatory in this context [35].

Different materials have been used in an attempt to mimic

annulus properties, taking into account the redistribution of

forces bearing on the leaflet and the annulus following

reconstructive plasty of the MV [144].

As far as degenerative AV disease is concerned,

stenosis represents the most frequent cause of dysfunction

in the elderly with a 2–7 % prevalence, which is in any

case destined to rise because of the increasing life

expectancy. AV stenosis is characterized by a silent

chronic course with a steeper trend in clinical evolution

and prognosis after the onset of symptoms [116]. Medical

therapy is limited to the relief of symptoms, but is not able

to have an impact on actual survival, while the surgical

option remains the most effective treatment. However,

despite this strategy carries low operative risk, improved

survival, and optimal freedom from reoperation in

younger patients, the 30-day mortality in patients aged

over 80 years increases up to 15 %, with a significant

increase in operative and postoperative complications

[177]. In the recent years, new minimally invasive

strategies are emerging to guarantee the treatment of AV

stenosis in high-risk surgical patients (STS Score [10,

logistic EuroSCORE [20). Transcatheter aortic valve

implantation (TAVI), developed in 1992 by Andersen

et al. [10], and clinically introduced in 2002 by Cribier

[44], constitutes an option in this subpopulation, allowing

avoidance of surgical complications essentially related to

open chest operative technique, aortic cross clamping and

cardioplegic arrest [102]. Differently from the MV, the

major biological obstacle in this framework is represented

by the heavy calcium deposition at the level of the con-

nectival network of the leaflets and of the aortic annulus,

which is thought to be due to a shift toward an

osteoblastic phenotype of the cells within the aortic

structure [87, 113].

The biological counterpart

In the physiology of the cardiac valve apparatus, the

combined activity of myofibroblasts and connectival

degrading enzymes normally warrant a strict regulation of

matrix homeostasis within the valve and ensure an ade-

quate functional architecture of the valve itself [148]. In

this extent, the highly preserved stratified framework

exhibited by the valve internal structure is crucial to meet

the biomechanical needs related to the loading forces sus-

tained by the valve over a lifetime. A continuous turnover

of ECM is at the biological basis of the valve structure

conservation, and is due to the activity of myofibroblast-

like cells populating the leaflets, namely valvular intersti-

tial cells (VICs). Also valvular endothelial cells (VECs)

have been reported to exert a fundamental action in the

maintenance of valve homeostasis, being responsible of

hemostatic regulation [30] and displaying close interac-

tions with VICs and valvular ECM [29]. VECs have been

shown to actively respond to changes in the surrounding

microenvironment via several mechanotransduction path-

ways [56] and their dysfunction has been claimed to be

involved in the initiation of valvular disease [13, 46, 56,

152]. It is known that ECM components are responsible for

the accommodation of the hemodynamic repetitive changes

occurring throughout the cardiac cycle and that VICs and

VECs mediate its continuous remodeling warranting valve

durability [136, 137]. Early studies by Schoen et al.

demonstrated specific topographical differences in ECM

component within the valve [148], which will be discussed

separately.

Aortic valve

In the physiological normal AV, the fibrosa (or arterial

side) of the leaflet mainly contains type I collagen allowing

for maximal coaptation during closure and preventing cusp

prolapse, while the ventricularis is characterized by higher

content in elastin, which provides better expandability

during diastole and elastic recoil during systole. Shock and

shear absorption is guaranteed by the hydrophilic proteo-

glycans present in the spongiosa [148]. Therefore, ECM

spatial distribution and composition affect valve function,

and alterations at the molecular level of such a delicate

balance are able to determine the dysfunction and the

morbidity that surgeons encounter at the operative table.

Initial studies on explanted degenerated valves from adults

demonstrated thickening phenomena with disorganization

of collagen fibers, enhanced VICs density and calcifica-

tions [124]. An interesting study from Hinton et al. [75] on

valvulogenesis, in which a comparison between charac-

teristics of animal valves during embryogenesis and human
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pediatric diseased aortic valves was performed, showed

that the developmental program underlying leaflet remod-

eling during life includes a precise spatiotemporal coordi-

nation of ECM organization and a progressive VIC

compartmentalization. Also, increases in collagen content,

diameter of collagen fibrils and level of collagen cross-

linking were reported in adult compared to fetal porcine

heart valves [90]. These balanced mechanisms are dis-

rupted in a pathological valve, underpinning the impor-

tance of the historarchitectural organization of ECM in

valve pathobiology. Loss of collagen, misorientation and

fragmentation of elastin fibers, and VIC disarray (with

formation of cellular clusters alternated to cell-free areas in

the interstitium) were demonstrated in pathological valves

[75].

Valve aging shares several of the features described on

pathological degenerated valves. The majority of the

changes found in physiologically aged valves seems to be

prodromal to the establishment of more defined patholog-

ical alterations. Conversely, another number of age-related

alterations overlap with the ones described in pathological

valves with the boundaries between physiological aging

and pathology being very indefinite and the actual trans-

lation of these changes in a clinical evident pathological

condition being associated to the superimposition of dif-

ferent other factors (genetic predisposition, environment,

life-style, controllable risk factors as smoking physical

inactivity hypercholesterolemia, uncontrolled hypertension

or diabetes, etc.).

More specifically, aging is associated to changes in type

I and type III collagen as found in diseases calcified valves

[59]. Beside their relative content in AV, their distribution

and degree of cross-linking acquire a relevant significance

in valve aging. Indeed, after their secretion as propeptides,

immature forms of collagen undergo cross-linking mainly

at the lysine (Lys) and hydroxylysine (Hyl) residues in the

telopeptide regions at both ends of the molecule.

Telopeptides further bind with particular helical regions of

another molecule to form a divalent immature cross-link,

which undergoes a progressive maturation process towards

a higher valence of cross-linking. The entity of cross-

linking and proportion of telopeptides characterize many of

the mechanical properties of the AV.

In physiological aged valves, a change in the nature of

C-terminal telopeptide of collagen type I was reported,

supporting the idea of a change in the maturation of cross-

links together with an altered collagen turnover [59]. This

has been explained by an age-related reduction in the

activity of the LH isoenzyme, which is responsible for the

hydroxylation of telopeptidyl lysine. At the same time, an

overall decrease in the N–terminal telopeptide of type III

collagen has been reported in aged valves [59]. Mecha-

nisms underlying these changes are thought to be

associated to increased activity of matrix metallopro-

teinases (MMP-1, MMP-2, MMP-3, MMP-9), their tissue

inhibitor-1 and tissue inhibitor, which are mediating an

ongoing ECM remodeling process [63, 93, 147].

Additionally, collagen-bound advanced glycation end

products (AGEs), arising from non-enzymatic glycation of

serum and vascular proteins, have been shown to play a

role in the increase of aortic stiffness during aging [135].

AGEs accumulation within the ECM has been shown to

induce collagen cross-linking in animals [141]. Addition-

ally, AGEs are recognized by several receptor molecules,

with the receptor of AGEs (RAGE) being the most

extensively investigated. Its activation leads to a pro-in-

flammatory state and AGE–RAGE interaction has been

shown to be involved in aortic valve changes due to

metabolic stress from high fat intake in animal models

[77]. These data found a counterpart in the observation that

patient with calcific aortic valve stenosis have decreased

levels of soluble RAGE, a natural inhibitor of the AGE–

RAGE system with anti-atherogenic properties [20].

Interestingly, in animal studies Pioglitazone-mediated

RAGEs downregulation attenuated the progression of AV

calcification by reducing inflammatory cell infiltration and

oxidative stress [100].

All these initial alterations of the main components of

ECM, together with abnormal activity of VICs, define a

framework that further becomes a theater for the estab-

lishment of leaflet calcification normally observed at sur-

gery. However, other ECM components are altered during

AV aging. Jian et al. [80] demonstrated increased levels of

tenascin-C (a glycoprotein normally expressed in devel-

opmental bone tissue and atherosclerotic plaques) in aortic

degenerated calcific valves. This protein participates in the

physiological mineralization being associated to bone

morphogenetic protein (BMP) pathways [103], and is

normally expressed in low levels in aged valves in the

subendothelial space. Tenascin-C expression might be

induced by a number of cytokines as BMP, TGF-beta and

TNF-alpha [85], and also by mechanical stress in fibrob-

lasts [145]. Some studies suggested that the accumulation

of tenascin-C, induced by several factors as cytokines, or

collagen damage, might be prodromal to the progression of

aortic valve disease to calcific stenosis. Accumulated

tenascin-C in the deeper layers of the valve would up-

regulate the expression of MMP-2 and the positive feed-

back by MMP-2 would induce further accumulation of

tenascin-C. This would lead to cellular aggregation and

increase in alkaline phosphatase (ALP) expression with

subsequent deposition of calcium phosphates [80]. The

induction of tenascin-C synthesis in fibroblasts through

mechanical stress or collagen damage [145], together with

the observation of increased level of this protein in pres-

sure-overloaded valve in elderly hypertensive patients
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[146], remark the idea that age-related structural changes

of the ECM components can constitute a trigger for

pathological alterations to occur and further explain the

overlap in the biochemical and mechanical features of aged

and diseased valves.

As an additional confirmation, osteopontin and BMP

were found to be up-regulated in calcified valves together

with EGR-1, a transcription factor inducing both tenascin-

C and osteopontin [67, 111].

Gene expressions of BMP-2 and ALP were significantly

accelerated in AVICs from aged rats [150]. In parallel,

ALP activity was found significantly increased in calcified

valves [80]. Along with these findings, activity of matrix

metalloproteinase type 2 (MMP-2), a gelatinase, was found

enhanced in calcified valves [80]. In concert with the

previous data, Fondard et al. identified changes in expres-

sion of MMP-3, MMP-9 and of their inhibitor, i.e. TIMP-1,

in pathological valves [63]. Interestingly, in a study com-

paring tricuspid aortic valves from elderly patients with

and without calcific aortic stenosis, both MMP-2 expres-

sion and its gelatinase activity was significantly higher in

calcific stenotic valves, suggesting that that MMP-2 is

present as a latent pro-enzyme in normal aged valves and

turns activated in pathological valves [88]. Also, this

observation confirms the idea of age as an underlying

background for the establishment of pathology and the

finding of the induction of MMP expression through

mechanical shear stress, as in stiffened or aged tissues [15],

further confirms this hypothesis.

Another interesting ECM component involved in AV

degeneration is fibulin-4, a protein known to maintain the

structure of the extracellular matrix. Reduction in its

expression has been shown to lead to valve thickening and

disarrangement of elastic fibers in an animal model [71].

Although the precise mechanism as not been elucidated

yet, Hanada et al. associated this protein to perturbation of

the TGF-beta signaling [71].

As mentioned above, ECM has been shown to be

responsive to shear stress alterations, as testified by chan-

ges in the expression and activity of the proteases MMP-2,

MMP-9, cathepsin L and cathepsin S, and an abnormal

mechanical stimulation was shown to trigger calcification

[166]. Altered ECM becomes a pabulum for the infiltration

of inflammatory cells or for the phenotype switch of VICs

into secreting myofibroblasts, with enhanced ECM depo-

sition. This process is led by an increase in the expression

of toll-like receptor (TLR)-2 and TLR-4 and in pro-in-

flammatory and pro-osteogenic responses [184]. The

modulation of the nuclear factor-jB activity [186], of the

osteoprotegerin (OPG)/receptor activator of nuclear factor

kappa B (RANK)/RANK ligand (RANKL) pathway [83],

and of associated signal transduction pathways [53] is

thought to subtend the pro-osteogenic drive. Age-related

VECs alterations determine lipid penetration and accu-

mulation in areas of damage or inflammatory injury, and

permit lipoproteins (LDL) implicated in atherogenesis to

subsequently undergo oxidative modifications [121]. These

ox-LDLs are cytotoxic and capable of enhancing inflam-

matory response, through TGF-b1, TNF-a, interleukin

(IL)-1b pathways, eventually leading to both fibrotic and

calcific processes, with an increase in valve stiffness [53].

The renin–angiotensin system is thought to modify this

fibrotic process, since angiotensin-converting enzyme

(ACE) and angiotensin-II are up-regulated and their effect

on valve myofibroblasts has been shown [119].

In a genomic study, Bossè et al. identified many of the

actors involved in calcific degeneration of AV stressing the

role of inflammation and matrix remodeling in this context

and eventually revealed phenomena of endochondral

metaplasia in AV leading to calcification [24]. With this

regard, Cappelli et al. have recently reported enhanced

activity of gamma-glutamyltransferase (GGT), an enzyme

linked to calcium metabolism and atherogenesis, inside the

lipid component of valves leaflets by osteoclastic-like

resident cells [34]. The findings of this study enlighten a

potential link between atherosclerosis-related phenomena

and the calcification of AV. Several study reported the

association between atherosclerosis and aortic valve

stenosis demonstrating as these two conditions share sim-

ilar mechanisms and clinical risk factors, as age, male

gender, hypertension, hyperlipidemia, smoking and dia-

betes [2, 8, 131]. The majority of these predisposing factors

are strongly associated with inflammation and, interest-

ingly, calcification in response to an inflammatory stimulus

seems to be a proper feature of aortic valve, as it has not

been described in other cardiac valves. In fact, only the

aortic VICs exhibited an osteogenic in response to a pro-

inflammatory stimulation via TLR-4 resulting in BMP-2

production [179]. The association between the calcification

process and inflammation in aortic valve disease has been

testified by the observation of inflammatory reaction as an

early feature in histologic specimens from aortic stenosis

patients [4, 124]. As above-mentioned, lipid accumulation,

infiltration of macrophages and lymphocytes represent the

substrate activating the calcification cascade [65, 120, 138].

A recent study using positron emission tomography proved

that early aortic valve inflammation, prior to hemodynamic

impairment, drives the pathophysiologic processes of valve

calcification in humans [1], even if remains difficult to

distinguish between the cause and the consequence.

Calcification of the aortic valve per se is associated with

disruption of the basal membrane, infiltration of inflam-

matory cells and lipids deposition [58, 110], and cytokines

and vesicles released from macrophages may initiate the

calcification of the ECM. Conversely, calcium may pro-

mote inflammation which in turn would enhance further
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calcification perpetuating a self-sustained ‘‘vicious cycle’’

[115, 172]. Furthermore, TNFa-mediated oxidative stress

causes loss of endothelial protective function of VEC and

chronic inflammation sustains fibrogenic and osteogenic

activation [60]. The importance of inflammation pathways

in the genesis of aortic valve disease has been extensively

investigated and confirmed by many studies in recent years.

Oxidized lipids are found in calcifying aortic valves, and

could promote osteoblastic differentiation of valvular

fibroblasts and macrophages via activation of LRP-5/Wnt

and Runx2/Cbfa-1 pathways, eventually leading to calci-

fication [118]. Also, the interaction between sphingosine

1-phosphate receptors and TLR-4 signaling leads to a

cooperative up-regulation of inflammatory, angiogenic, and

osteogenic pathways [61]. TLR-3, NF-jB and ERK1/2

pathways in VICs are also implicated in the pro-osteogenic

effects [187]. Interestingly, the presence of numerous

proinflammatory cytokines such as TNF-2, BMP mole-

cules, and interleukins such as IL-1b/2/6 has been shown in
degenerated diseased aortic valves [104]. Anti-inflamma-

tory effects of Interleukin-1 receptor antagonist are reduced

in stenotic valves in respect to normal valves; TGF-b,
another anti-inflammatory mediator, is also ubiquitous in

diseased valves, especially bound to matrix, and acts as a

promoter of ECM fibrosis [97]. In established aortic

stenosis, histopathology of the valves shows numerous new

blood vessels associated with the expression of angiogenic

factors such as vascular endothelial growth factor (VEGF)

and endothelial nitric oxide synthase (NOS) [155], how-

ever, the origin of endothelial cells seen in this setting is

poorly understood. In the early stages of calcific lesion

formation, neoangiogenetic capillary sprouts exhibited the

endothelial cell markers CD31, CD34 and von-Willebrand

factor (vWF) as well as carcinoembryonic antigen cell

adhesion molecule-1 (CEACAM1), Tie-2 and angiogenesis

inhibitor endostatin indicating angiogenesis as a patho-

genic factor in aortic stenosis [36]. In other studies the co-

expression in VICs of smooth muscle alpha-actin (a-SMA)

and VEGF receptor-2 suggested a mesenchymal-to-en-

dothelial transition in early stage valve lesion with for-

mation of new capillaries with inter-endothelial junctions

and partial basement membrane-like structure, reinforcing

the role of angiogenesis in the calcification process and

valve remodeling [99, 129]. A recent study demonstrated a

stretch-mediated activation of inflammatory pathways

evaluated using miRNA analysis [128] but the multiple

connections between inflammation, hemodynamics and

aortic valve pathophysiology are far from being completely

elucidated.

Glycosaminoglycans (GAGs) content of AV also chan-

ges with age. In a study on porcine valves at different ages,

Stephens et al. reported an aging-related increase in the

4-sulfation to 6-sulfation ratio of GAGs, that reversed the

compressive tissue phenotype observed in younger AV into

a tensile one [158]. Since GAGs are well represented in the

central spongiosa layer, it has been speculated that this

layer allows to reduce the shearing which results from the

differences in motion kinetics of the fibrosa and ventricu-

laris during leaflet deformations [149, 180]. GAGs are

hypothesized to contribute substantially to the behavior of

the bulk tissue at lower physiological force levels by means

of mechanical interactions with the collagen, whereas at

higher tissue stress levels, tissue response is dominated by

the fully loaded and straightened collagen fibers [171]. The

specific arrangement of GAGs within the leaflet, with

increased content of water-binding GAGs localized in

regions that experience more compression, achieves an

important significance in controlling tissue behavior over

the cardiac cycle [69, 70]. In an experimental setting, the

removal of GAGs from the aortic valve had actually no

measureable effect on extensional mechanical properties

including peak stretch, hysteresis, or creep. However, in

the low force range, hysteresis was markedly reduced after

GAG removal. Therefore, GAGs do not play a direct role

in modulating the time-dependent tensile properties of

valvular tissues, but they are strongly connected with fiber–

fiber and fiber–matrix interactions at low forces levels. In

this context, GAGs are thought to be important in provid-

ing a damping mechanism to reduce leaflet flutter when the

leaflet is not under high tensile stress [54]. Considering the

role of GAGs, the changes occurring with aging result in

increased tensile loading on the aortic leaflet, and may

partially explain the age-related decrease in aortic com-

pliance [45].

Additionally, a recent study from Balaoing et al.

underlined the hemostatic imbalance in old aortic pig valve

due to age-related changes in the activity of VECs [17].

Interestingly, these Authors found an increased secretory

activity of prothrombotic proteins such as vWF, tissue

factor pathway inhibitor (TFPI) and tissue plasminogen

activator (tPA) in older valves. This aberrant secretory

activity, coupled with the age-related changes in collagen

type I and elastin organization, justified the sequestration of

the soluble hemostatic protein deeply within the ventricu-

laris part of the AV leaflet, as the barrier function exerted

by the aligned collagen fibrils of healthy valves is lost in

older valves. Authors demonstrated in vitro that the pres-

ence of a large burden of vWF induced a pro-osteogenic

activity in the interstitial cells leading to calcific nodule

formation [17]. The importance of vWF is supported by the

fact that inhibition of the metalloproteinase ADAM-17, the

physiologic inactivator of vWF, during mouse develop-

ment results in perinatal lethality and heart valve abnor-

malities. Thus, ADAM-17 is required in VECs for proper

cell regulation and ECM homeostasis in semilunar valves

[183]. The age-related imbalance in hemostatic protein
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regulation, leading to prothrombotic mediators accumula-

tion within the leaflet and accompanied by the mentioned

ECM disarray, might favor the development and progres-

sion of aortic calcific disease [17]. In this context, the

matrix Gla protein (MGP), a vitamin K-dependent inhibitor

of calcification, has been reported to play an important role

in the pathogenesis of valve calcific disease. c-carboxyla-
tion of its glutamic acid residual (via vitamin K-dependent

c-carboxylase) activates the protein which in turn binds

BMP-2 exerting an inhibitory activity and therefore

protecting from vascular and valvular calcification.

Undercarboxylated MGP circulating levels have been

associated to increased mortality in aortic valve stenosis

[176] and Sweatt and colleagues demonstrated reduced

levels of carboxylated MGP in valve tissues of old rats

establishing a pathological link between aging, ECM valve

remodeling and calcific aortic disease [168]. MGP is cur-

rently under investigation as an inhibitor of vascular cal-

cification, and lack of this ‘‘anti-calcification’’ protein

contributes to the calcification in the aortic valve [178].

Fig. 1 Schematic diagram showing ECM changes in aortic valve leaflets during aging and potential therapeutic approaches to counteract aging

processes
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The protease calpain-1 has been recently considered as an

antagonist of ECM adverse remodeling through inhibition

of MMP-2 in rat aortic wall [82], but its importance in

aortic leaflet remains to be clarified. ECM changes of the

aortic leaflet occurring with aging are summarized in

Fig. 1, and a comprehensive schema of all the reported

changes together with the possible pathobiological mech-

anisms in both aged and diseases AV ECM is given in

Table 1.

Mitral valve

Normal MV structure and function rely on a more complex

valvular apparatus including annulus, leaflets and chordae

tendinae. Leaflets are composed of four layers, atrialis,

spongiosa, fibrosa, and ventricularis. Atrialis, spongiosa

and ventricularis are characterized by loose collagen, while

the fibrosa is constituted by dense circumferentially aligned

collagen providing tensile strength to the valve [92].

Interspersed GAGs within the other layers determine the

compressive strength of the leaflet, while the elastin-rich

side of the atrialis layer at the level of the inflow side

permits to bear considerable stretch and allows for elastic

recoil to the original shape during the phases of the cardiac

cycle [96].

A specific analysis of GAGs within the valve ECM

revealed high concentration of hyaluronan (HA) and hydra-

ted chondroitin/dermatan sulfate proteoglycans in the spon-

giosa [158], while regularly spaced elastic fibers and

circumferentially oriented collagen fibers characterized the

thinner ventricularis side. Small leucine-rich proteoglycans

(SLRPs) are mostly present in the collagen-rich region, in

which they interconnect and provide mechanical support to

the fibers [96, 158]. Additionally, there are functional dif-

ferences in the composition of the free edge of the anterior

leaflet, historically named ‘‘rough zone’’, where the chordae

tendineae attach to the valve, and the center of the leaflet

referred as the ‘‘clear zone’’, where no chordae are attached.

The latter, experiencing tensile stresses, has a thicker fibrosa

layer and shows lower concentration of GAGs, in particular

less unsulfated, 6-sulfated, and 4-sulfated glucuronate than

the free zone. In the rough zone, designed for compressive

load absorption, the spongiosa layer is more represented and

contains an overall higher concentration of HA [158]. The

posterior or mural leaflet is suited for compressive load

bearing and shows similar characteristics to those of the

rough zone of the anterior one [69]. Chordae tendineae exert

an important action during systole phase and chordal

replacement is quite frequently required during surgical

repair for degenerative mitral disease, mainly due to age-

related alteration in chordal native structural composition.

Dense collagen fibers orientated according to the direction of

load characterize the core of the chorda, while elastic

properties are conferred by elastin present in the outer sheath

[5]. SLRPs (such as decorin and biglycan) are found inter-

spersed within the aligned collagen fibers of the chordae [69].

Changes in structural composition accompanying the

aging process are at the basis of functional reflexes on the

valve itself and often translate into clinical evident mor-

bidity requiring surgical treatment. One of the main findings

in degenerated aged MV regards the thickening of the

collagen-rich fibrosa layer and the increase in collagen

production and remodeling [159]. In 2001, Rabkin et al.

[137] perceived that the imbalance between MMPs and

cysteine endoproteases (cathepsins), mainly altering colla-

gen features, could play a role in myxomatous degeneration

of MV. These observations suggest that the abnormalities of

collagen result primarily from excessive collagenolytic

activity rather than decreased collagen synthesis. Therefore,

the deranged mechanical properties of myxomatous valves

result from defective ECM and altered layered architecture.

Indeed, collagen derangement has been shown to determine

striking defects in the mechanical properties of myxoma-

tous leaflets, leading to loss of tensile strength and inherent

weakness. The synergistic effect of intrinsic elastome-

chanical defects and aberrant stresses engendered by

hemodynamic cyclic load on altered and enlarged leaflets

contributes to both disease pathogenesis and occurrence of

postoperative failure [18]. In this context, David et al. in a

multivariate analysis, reported myxomatous changes of the

leaflets as the only statistically significant variable pre-

dicting the risk for reoperation [47].

In support of the hypothesis of an aberrant ECM

remodeling in degenerated valve, it has been demonstrated

that VICs maintain an ‘‘activated’’ phenotype and

immunohistological co-localization of these cells with

enzymes deputed to ECM turnover has been shown [161].

VICs are known to be mechanosensitive, and their syn-

thesis of ECM components influences valve properties.

Analysis of markers of VIC activation, such as a-SMA, and

collagen synthesis, as heat shock protein-47 (HSP47) and

prolyl 4-hydroxylase (P4H), proved that there are age-

specific and valve-region-specific changes in VIC pheno-

type depending on the leaflet regional matrix where the

VICs reside [160]. Potential mechanisms underlying tis-

sutal degeneration in MV have been elucidated. Activation

of resident interstitial valvular cells seems to be crucial in

matrix degeneration. Interstitial valvular cells were found

in higher number and expressing increased proteolytic

enzymes, such as MMPs, that mediate ECM degradation,

in degenerated valves compared with normal valves.

Additionally, they have been shown to activate a catalytic

state as demonstrated by their immunoreactivity for

cathepsins S and K and IL-1b. Co-localization of IL-1b co-

with MMP-13 and cathepsin S might additionally indicate

that VICs are activated by IL-1b in response to a variety
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stimuli and modulate the ECM enzymatic breakdown of

the connective tissue described in myxomatous valves

[137]. Specifically, collagen degradation process is thought

to be initiated by interstitial collagenase that operates the

breakdown of type I collagen fibrillar network, leading to

the generation of fragments which become further acces-

sible to gelatinases, completing collagen catabolization

[91]. Collagen type III is conversely more represented in

the aged valve [159]. Elastin degradation is in turn per-

formed by cathepsins, in particular cathepsin K, which also

exhibits collagenolytic activity [165]. VICs activation and

ECM degradation itself trigger the production of a cascade

of extracellular and paracrine messengers, such as IL-1,

boosting and perpetuating the lytic process also for other

components of the leaflet, such as proteoglycans [49, 137].

Indeed, there is a reduction in unsulfated and 6-sulfated

glucuronate, as well as a decrease in the ratio of chon-

droitin sulfate to dermatan sulfate. Conversely, decorin and

biglycan have a greater representation in the valve and co-

localize with collagen in attempt to lend support to the

above-mentioned remodeling occurring throughout aging

[158]. In a study on porcine valves, Stephens et al. reported

that compressive regions of MV showed an aging-related

decrease in the fraction of 4-sulfated GAGs (associated

with tension), paralleled by an increase in the fraction of

6-sulfated GAGs (associated with compression), whereas

the tensile regions of the MV showed the opposite pattern.

The distribution of these changes is not uniform in the

degenerated myxomatous MV: the rough zone of the leaflet

on the ventricular side, at the attachment of the chordae, is

more prone to develop disease together with the inter-

chordal hoodings at the level of the apposition line of the

leaflets (the so-called parachute change) [64]. Additionally,

the middle section of the leaflets, especially the middle

scallop, which is normally undergoing the strongest pres-

sure, shows the greatest incidence of changes [64]. Addi-

tionally, the interaction and relative content of GAGs with

other ECM components is important in defining the elas-

tomechanical properties of the leaflets and the age-related

alterations of ECM further demonstrate the significance of

GAGs function in this context. In an animal study on mitral

valve, old mice showed increased leaflet stiffness due to

increased collagen and matrix fiber alignment. Interestingly

in Marfan-like mice deficient in Fbn1 gene, the loss fib-

rillin, a crucial element in extracellular microfibrils orga-

nization and function, produced fiber misalignment and a

relative increase in GAGs content, which eventually

resulted in myxomatous degeneration [68]. Therefore, the

loss of a leading ECM framework constituted by fibrillin,

determines an excessive accumulation of GAGs leading to

degenerative changes. This finding testifies the importance

of an homeostatic balance between structural proteins and

load absorption glycans also in non-Marfan conditions, as

the deterioration or loss of important structural ECM pro-

tein occurs in aging too, as described above. Whether the

deregulation of this balance is triggered by an age-related

change in VICs secretory activity or by an intrinsic ECM

age-related degradation needs to be clarified, but it might

play a crucial role in the determinism of disease as shown

in the genetic model.

Even if, with advancing age, the layers become

microstructurally more delineated [161], the amount of

elastin decreases, especially in subjects over the age of 50

[106]. Other important changes seen during aging regard

lipids accumulation and calcification throughout the valve.

These phenomena represent both a pathogenic moment for

age-related degeneration of the valve and an obstacle

during valve surgical repair.

Changes in the structural and functional composition of

ECM translate in an alteration of the mechanical prop-

erties of the valve. Collagen modifications during aging,

with particular reference to the augmented cross-linking,

together with elastin fragmentation, determine an increase

in the overall valve stiffness in both the radial and cir-

cumferential directions, leading to permanent tissue

stretch with less crimped collagen fibers, analogously to

what occurs in valves subjected to glutaraldehyde fixation

[26]. Additionally, these changes in ECM composition

might underlie another interesting clinical finding eluci-

dated by the group of Levine et al. who demonstrated an

adaptive enlargement of the leaflets of chronically insuf-

ficient MV in patient with dilated ventricles, therefore

bearing longitudinal stress and tethering forces [21]. In

support of this clinical evidence, further studies demon-

strated that stress application to mitral leaflets are able to

induce a switch in VICs phenotype, promoting the syn-

thesis of different ECM patterns with consequent increase

in leaflet stiffness [107]. Taken together, these data

underpin the importance of age-related alterations of the

ECM at the molecular level. ECM abnormalities can be

thought as the true origin of the pathological changes

responsible for tissutal degeneration and for mechanical/

hemodynamic failure of the MV. A careful exploitation of

the knowledge achieved in this context might in the future

lead to the development of preventive or therapeutic

strategies in cardiac disease. ECM changes occurring in

mitral leaflets over time are summarized in Fig. 2, and a

comprehensive schema of all the reported changes in MV

ECM is given in Table 2.

The genetics contribution

The role of genetics in the context of aging and develop-

ment of valvular disease is being increasingly recognized.

Genetic variations may act as a silent substrate which can
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be triggered by environmental variables to initiate the

process of valvular degeneration. The knowledge of the

genetic determinants of valvular disease may foster the

development of new therapies to prevent, rather than treat,

these diseases [94]. Particular interest has been lavished in

the study of valvular calcification, however, the exact role

of specific genetic variations is still under investigation [22,

79, 133].

Fig. 2 Schematic diagram showing ECM changes in mitral valve

leaflets and potential mechanisms underlying valve alterations during

aging. Note the progression of changes in extracellular matrix

composition and arrangement during aging (blue arrow). Potential

therapeutic approaches to counteract age-related alterations and

consequences are reported. Note that pharmacologic approaches

followed by the question mark indicate only presumably effective

treatments, as studies evaluating those compounds are still required
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Wnt signaling has multiple functions at different stages

of heart development, and its signaling sustained by Wnt

receptor Lrp5 and stabilized b-catenin has been associated

with adult calcific valve disease in humans [7, 32, 138].

The polymorphism rs13290979 of NOTCH gene was sig-

nificantly associated with adult-onset of aortic stenosis

[52], probably via enhanced BMP-2 production and

osteogenic differentiation of the interstitial cells [12, 109].

In a study comparing the transcriptional profiles and cel-

lular functions of human aortic VICs and mitral VICs, a

higher expression of cardiac-specific transcription factor

NKX2-5 and a lower expression of TBX5 were found in

aortic VICs compared to mitral VICs [167]. NKX2-5 is an

important transcriptional regulator during early embryonic

development regulating the conduction system [140], while

TBX5 plays a key role in cardiogenesis since its mutations

result in Holt–Oram syndrome [19]. TBX5 expression in

developing atrioventricular valves and ventricular trabec-

ulae has been shown to account for the structural and

functional defects in mitral and tricuspid valves [28, 33]

and might represent an important actor in the aging

process.

Lipoprotein(a) is known to be a risk factor for coronary

artery disease, and several evidences have convincingly

shown its causal role in ischemic heart disease due to lipid

oxidation and an induction of a prothrombotic state [40,

89]. In a large cohort of patients, one single nucleotide

polymorphism in the lipoprotein(a) locus (rs10455872) was

associated with aortic valve calcification, and, in prospec-

tive analyses, was related to aortic stenosis and aortic valve

replacement. Two single nucleotide polymorphisms (SNPs)

(rs17659543 and rs13415097) located in vicinity of the

proinflammatory gene IL1F9 achieved genomewide sig-

nificance for mitral annular calcification [169].

Inflammation is a prominent feature of valve calcifica-

tion and plays an important role in the development of

valvular calcification [42]. Therefore, many genes involved

in the process of inflammation have been considered to be

candidate genes predisposing to valvular calcification. IL-

10 is an anti-inflammatory cytokine that is secreted by

various cells inhibiting TNF-a production by activated

macrophages [175] and its production is genetically regu-

lated [182]. Polymorphisms in the IL-10 gene (rs1800871,

rs1800872, rs1801082, rs1800819, rs1800592 and

rs1800872) have been found associated with valvular cal-

cification in population studies [9, 66, 123].

Low-density lipoprotein cholesterol (LDL-C) and adult

atherosclerosis risk factors are important in the determinism

of aortic and mitral valve disease in epidemiologic studies

[163, 170], and a large cohort study confirmed that genetic

predisposition to elevated LDL-C levels is linked to devel-

opment of aortic calcific disease and aortic stenosis in the

adulthood [153]. Indeed, LDL-C play an important role in the

early calcification and mineralization phase through the

formation of cholesterol micro-crystals that act as pabulum

for initial calcification. Additionally, oxidized-LDL enhan-

ces the osteogenic phenotype in valvular cells [76, 126].

Clinical significance

This review underlined the relevance of ECM changes

during aging process in heart valves demonstrating its

influence on both their mechanical and functional

Table 2 ECM changes and functional consequences in the mitral valve

Component Mechanism leading to component alteration Findings in aged valve Pathobiological effect

Collagen Increased expression of proteolytic enzymes,

as MMPs [136]

Impaired MMPs and cathepsins activity [136]

Mechanical stress results in VICs maintaining

an ‘‘activated’’ phenotype with increase in

proteolytic enzymes production [106, 160]

Breakdown of type I collagen by collagenase

[90]

Excessive collagenolytic activity [136]

Increased collagen production and remodeling

[158]

Increased cross-linking [158]

Increased diameter of collagen fibrils [89]

Leaflet thickening [150,

151, 158]

Loss of tensile strength,

weakness [136, 150, 151]

Elastin Increased cathepsin K activation [164] Reduced by degradation and fragmentation [105,

164]

Loss of elastomechanical

properties [105, 164]

GAG Mechanical stress Reduction in 4-sulfated and increase in 6-sulfated

GAGs in the compressive regions of the mitral

valve; opposite pattern in the tensile regions of

the leaflet [157]

More pronounced

differences between

tensile and compressive

regions [157]

Myxomatous degeneration

[157]

SLRP Unknown Increased [157] Altered mechanical support

to collagen [157]
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properties and in the development of aged-related

disease.

Several findings in this review point at the idea of aging

as an underlying background for the establishment of

pathology and that age-related structural changes of the

ECM components can constitute a trigger for pathological

alterations to occur. This might further explain the overlap

in the biochemical and mechanical features seen in aged

and diseased valves. The factors responsible to determine a

shift of this delicate balance towards the disease are

numerous and not completely identified, but genetic pre-

disposition, environment, life-style, controllable risk fac-

tors are all relevant. From these observations a number of

clinical implications and insights might be drawn.

Characterization of ECM modifications associated to

aging and to valve disease is crucial in the development of

valve substitutes or living tissue engineered constructs.

Indeed, in the recently affirming field of detergent-based

tissue decellularization for tissue engineering purposes, the

importance of protecting and preserving the molecular and

structural arrangement of ECM, including both proteins

GAGs and regulatory molecules of matrix homeostasis, has

been acknowledged [11]. Detergents have been shown to

be retained in the ECM affecting cell survival rate when re-

cellularization is attempted and the role of specific bio-

chemicals to enhance matrix production and thereby cre-

ating a protective environment for the seeded cells while

nourishing them, has been advocated [11]. These examples,

further remark the importance of ECM and its activity.

Additionally, a deep understanding of the mechanism

underlying age-related ECM changes is fundamental to

optimize and ameliorate currently used prosthetic valves

which are widely known to undergo deterioration and

aging processes. A close interplay between ECM and cells

populating the valve has also been unveiled, enlightening a

reciprocal influence on the development and progression of

valve disease. VICs and VECs actively contribute to valve

remodeling being extremely sensitive to changes of the

ECM and of the surrounding hemodynamic environment.

Several examples of functional VICs biosynthetic reactions

aimed at maintaining valvular tissue homeostasis or com-

pensating functional loss in leaflet mechanical properties

have been reported in in vitro studies [17, 92, 107] and in

clinical scenarios [21]. In light of such an adaptive mech-

anism inherent in the biology of the valve itself, pharma-

cological or molecular means of augmentation and

assistance of leaflet remodeling might be developed. It has

been suggested that the local delivery of biological medi-

ators able to enhance the endogenous VICs compensating

activity might be attractive and enlighten new avenues also

in the surgical treatment of valve disease [157].

However, biological changes occurring at the cellular

and ECM levels in the aging valve are likely to have an

impact also on the clinical management of valve disease.

Several pharmacological attempts have been done to

inhibit or slow down valvular calcification or degeneration

especially in aortic stenosis. Those approaches are mostly

based on the concept of an atherosclerosis-like pathogen-

esis for aortic valve disease, in which an initial valvular

lesion due to mechanical or increased shear stress deter-

mines lipids deposition resulting in an early subendothelial

plaque which further triggers the development of the

classic fibrocalcific remodeling. This phenomenon is sus-

tained partially by VICs dysfunction, but is caused mainly

by the ECM disarrangement occurring during aging.

Indeed, the mentioned disproportion in collagen content

and characteristics together with the reduction in elastin

and the reported connectival modifications, lead to pro-

gressive loss of leaflet and aortic compliance and increase

in valvular stiffness rendering the endocardium more prone

to pressure or shear-mediated damage [74]. Pharmacolog-

ical approaches currently tested consist in lipid-based

intervention and aim to reduce the biological cascade

triggered by lipid deposition [48]. Statins have been firstly

used for both their lipid lowering action and for their

pleiotropic anti-inflammatory and antioxidant effect with

the aim to biologically stabilize the lesions and avoid

fibrocalcific progressions. However, the unsatisfactory

results of large clinical trials as the SEAS or the SALTIRE

put on hold the initial enthusiasms about these compounds

[74]. Also, statins failed to demonstrate any impact on

aortic valve disease in three prospective randomized trials

[37, 43, 142]. Increased presence of angiotensin-converting

enzyme (ACE), angiotensin-II, and angiotensin-II type 1

receptor in fibrocalcific valves, together with the proin-

flammatory effect of the biological pathway sustained by

macrophage-associated ACE and mast cell chymase,

prompted the clinical use of ACE inhibitors in aortic

stenosis. Renin-aldosterone system blockade proved to

slow calcium accumulation but, disappointingly, did not

show any benefit on stenosis progression [118]. Addition-

ally, bisphosphonates have been shown to have a role in the

inhibition of calcium deposition in vascular and valvular

tissues in preclinical models. This effect has been claimed

to be due to an inhibitory action on the release of calcium

phosphate particles from bone [132]. However, nitrogen-

containing bisphosphonates exert statin-like actions as they

inhibit the farnesyl-pyrophosphate synthase, an enzyme

distal to 3-hydroxy-3-methylglutaryl coenzyme A (HMG-

CoA) reductase in the cholesterol biosynthesis pathway

[41]. Bisphosphonates might therefore share calcium reg-

ulating effects and pleiotropic anti-inflammatory actions

resulting in appealing tools against valvular calcification.

Pretreatment of bioprosthetic valve with bisphosphonate

inhibited calcific degeneration [139], but, taking from the

MESA study, there was an increase in the risk of
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calcification in women younger than 65 years [58]. In

recent years, monoclonal antibodies targeting specific sig-

nal transduction pathways have been used clinically. Since

one of the key regulatory roles in leaflet calcification is

played by the OPG/RANK/RANKL system, denosumab

(an anti-RANKL monoclonal antibody) is a promising

pharmacologic approach to prevent aortic valve calcifica-

tion [53].

Pharmacologic treatment against advanced glycation

end products (AGEs) and their receptors has been gradually

introduced in preclinical settings and in clinical research,

with encouraging results in diabetic patients with cardio-

vascular disease [114]. In rabbits, inflammation induced by

RAGE activation promotes aortic valve calcification, but

both inflammation and RAGE expression can be attenuated

by pioglitazone, a thiazolidinedione normally used in

clinical settings for diabetes [100]. A more profound

understanding of AGE role in ECM remodeling might

potentially stimulate further research on pharmacologic

approaches in the next years.

Aging has been associated to a shift towards a pro-

thrombotic balance in the secretion of hemostatic protein

by VECs and the structural disarray typical of old valves

contribute to sequester thrombotic mediators within the

leaflet. This phenomenon on a side favors the calcific

nucleation inside the leaflet, but on the other exposes to an

increased risk of valve thrombosis [17]. Additionally, the

reduced endothelial expression and release of the leaflet

accumulated vWF might justify the clinically reported

augmented sensibility of elderly patients to anticoagulant

drugs and their reduced clotting ability [143]. Another

important lesson from aging-related ECM biology appli-

cable in the clinical scene regards the possible detrimental

effect of vitamin K-antagonists in the management of

elderly patients in need of anticoagulant treatment or

bearing prosthetic valves. Inhibiting vitamin K activity

through coumarinic agents blunts c-carboxylation of MGP

leading to a rescue of the BMP-2-mediated osteogenic

activity with eventual initiation of the calcific processes.

This process has been clinically described but is still

poorly understood [78]. A recent study showed that an

increase in the decarboxylated, and thus inactive, form of

MGP was associated with an increase in vascular calcifi-

cation [50]. Accurate knowledge on these mechanisms

could on a side discourage the use of standard anticoag-

ulant in these patients, and on the other side prompt fur-

ther research on both alternative anticoagulation options

and on prosthetic valve design to avoid the risk of long-

term calcification.

However, this delicate balance of cellular activities finds

its substrate in the valve ECM which, far to behave as a

mere support, is dynamically affected by hemodynamic

conditions and aging and exert an active role in the

interplay with VIC and VEC providing fundamental bio-

logical signaling [184]. The evidence that structural dis-

array induced by fixation methods in prosthetic valve might

lead to premature valve degeneration and failure, supports

this idea [23, 122]. Miscomprehension of the significance

of ECM role in this context might explain the failure of

anti-calcification approaches uniquely directed to the cel-

lular component of valve leaflet and might also explain the

contradictory results of the SEAS trial.

However, conclusions of this review are remarking the

importance of the ECM in valve aging and might trigger

new experimental efforts aimed at controlling or modu-

lating age-related changes of its components to avoid

premature degeneration of both native and prosthetic bio-

logical valve.
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