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Abstract Myocardial dysfunction is an important mani-

festation of sepsis. Previous studies suggest that melatonin

is protective against sepsis. In addition, activation of the

phosphatidylinositol 3-kinase (PI3K)/protein kinase B

(Akt) signaling pathway has been reported to be beneficial

in sepsis. However, the role of PI3K/Akt signaling in the

protective effect of melatonin against sepsis-induced

myocardial dysfunction remains unclear. Here, LY294002,

a PI3K inhibitor, was used to investigate the role of PI3K/

Akt signaling in mediating the effects of melatonin on

sepsis-induced myocardial injury. Cecal ligation and

puncture (CLP) surgery was used to establish a rat model

of sepsis. Melatonin was administrated to rats intraperi-

toneally (30 mg/kg). The survival rate, measures of

myocardial injury and cardiac performance, serum lactate

dehydrogenase level, inflammatory cytokine levels,

oxidative stress level, and the extent of myocardial apop-

tosis were assessed. The results suggest that melatonin

administration after CLP surgery improved survival rates

and cardiac function, attenuated myocardial injury and

apoptosis, and decreased the serum lactate dehydrogenase

level. Melatonin decreased the production of the inflam-

matory cytokines TNF-a, IL-1b, and HMGB1, increased

anti-oxidant enzyme activity, and decreased the expression

of markers of oxidative damage. Levels of phosphorylated

Akt (p-Akt), unphosphorylated Akt (Akt), Bcl-2, and Bax

were measured by Western blot. Melatonin increased p-Akt

levels, which suggests Akt pathway activation. Melatonin

induced higher Bcl-2 expression and lower Bax expression,

suggesting inhibition of apoptosis. All protective effects of

melatonin were abolished by LY294002, the PI3K inhi-

bitor. In conclusion, our results demonstrate that melatonin

mitigates myocardial injury in sepsis via PI3K/Akt sig-

naling activation.
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Introduction

Sepsis, which is characterized by a systemic inflammatory

response to severe infection and progressive organ damage,

is the leading cause of death in hospitalized patients

worldwide [6, 76]. Sepsis can trigger damage to various

organs; for instance, it can cause brain injury, cardiac

dysfunction, kidney injury, liver injury, and lung injury [7,

24, 38, 44, 63, 67, 87, 94, 106, 107, 127]. Of the compli-

cations of sepsis, cardiac dysfunction is a typical mani-

festation and is closely associated with increased mortality

[80, 94, 105]. Sepsis patients experiencing cardiac dys-

function have a 70–90 % mortality rate, while patients

without cardiac dysfunction experience only a 20 %
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mortality rate [80, 86]. Therefore, it is important to develop

a novel therapeutic agent against sepsis-induced cardiac

depression.

Melatonin, a hormone mainly secreted by the pineal

gland, is known to exert various biological effects, such as

cardioprotection [4, 82, 108], neuroprotection [3, 117], anti-

tumor activity [42, 43], anti-inflammatory activity [2, 78],

and anti-oxidant activity [35, 124]. Recently, it has been

suggested that melatonin exhibits protective effects against

cardiac dysfunction induced by ischemia/reperfusion [25,

36, 68, 119, 121]. In addition, there is some evidence that

melatonin protects against sepsis-induced cardiac dysfunc-

tion, which may be related to melatonin’s ability to attenuate

mitochondrial dysfunction, disrupt apoptosis, decrease

inflammation, and prevent oxidative damage [64, 85, 123],

but the mechanisms of these actions are unclear.

The phosphatidylinositol-3-kinase (PI3K)/Akt pathway,

a well-conserved family of signal transduction molecules,

coordinates a variety of intracellular signals, controls cell

response to extrinsic stimuli, and regulates cell prolifera-

tion and survival [16, 30, 81, 101]. The PI3Ks and the

downstream serine/threonine kinase Akt (also known as

protein kinase B or PKB) regulate cellular activation,

inflammatory responses, chemotaxis, and apoptosis [16]. It

has been demonstrated that PI3K/Akt pathway activation is

protective against myocardial ischemia–reperfusion injury

[31, 41, 53, 88, 99]. Furthermore, of critical significance to

the present study, activation of the PI3K/Akt signaling

pathway has been suggested to improve cardiac dysfunc-

tion and mortality during sepsis [18, 33, 51, 55, 61, 65, 75,

104, 120, 129]. However, the precise role of the PI3K/Akt

signaling pathway in melatonin’s protection against sepsis-

induced myocardial injury remains unclear.

Therefore, we hypothesized that melatonin protects

against sepsis-induced myocardial injury via a PI3K-de-

pendent mechanism. In order to investigate the underlying

mechanism of melatonin’s cardioprotective effects, we

established an animal septic model using the cecal ligation

and puncture (CLP) method and then evaluated cardiac

function in the presence and absence of LY294002 (LY), a

PI3K inhibitor.

Materials and methods

Animals

All experiments were performed on healthy adult male

Sprague–Dawley rats that weighed between 220 and 250 g.

The rats were obtained from the animal center of the Fourth

Military Medical University. Rats were kept under patho-

gen-free conditions at about 22 �C on a 12 h light–dark

cycle with free access to food and water. This study was

performed according to the Guide for the Care and Use of

Laboratory Animals, published by the US National Insti-

tutes of Health (National Institutes of Health Publication

No. 85-23, revised 1996) and was approved by the Ethics

Committee of the Fourth Military Medical University.

Reagents

Melatonin (Mel), LY294002 (LY), and 40,6-diamino-2-

phenylindole (DAPI) were purchased from Sigma-Aldrich

(St. Louis, MO, USA). The lactate dehydrogenase (LDH)

ELISA kit was purchased from Jiancheng Bioengineering

Institute (Nanjing, China). Rat TNF-a and IL-1b ELISA

kits were purchased from Thermo Fisher Scientific (MA,

USA). The HMGB1 ELISA kit was purchased from IBL

International (Germany). Superoxide dismutase (SOD) and

malondialdehyde (MDA) kits were purchased from Sigma-

Aldrich (St. Louis, MO, USA). The catalase (CAT) kit was

purchased from Beyotime (Shanghai, China). Antibodies

against Akt, phospho-Akt (Ser473), Bcl-2, Bax, and b-actin
were purchased from Cell Signaling Technology (Beverly,

MA, USA). The rabbit anti-goat, goat anti-rabbit, and goat

anti-mouse secondary antibodies were purchased from

Beyotime (Shanghai, China). Terminal deoxynucleotidyl

transferase dUTP nick-end labeling (TUNEL) kits were

purchased from Roche (Mannheim, Germany).

Cecal ligation and puncture (CLP) model

Fasting was performed for 8 h for all rats but water was

allowed ad libitum before the experiments. The CLP model

was established as previously reported with some modifi-

cations [113]. In brief, after rats were anesthetized with

intraperitoneal injection of chloral hydrate (350 mg/kg),

they were immobilized on an aseptic operating table. In a

sterile operation environment, a 2–3 cm abdominal midline

incision was made to expose the cecum, which was ligated

below the ileocecal valve and punctured once with an

18-gauge needle. A small amount of stool was squeezed

through the puncture site. The bowel was then situated

back in the abdomen and the incision was sutured with a

sterile 5–0 silk. The rats in sham-operated group underwent

a similar operation without cecal ligation and puncture. All

animals received fluid resuscitation with 0.9 % saline

solution (subcutaneously, 40 mL/kg of body weight)

immediately after the surgery.

Experimental protocol

Three-hundred rats were randomly assigned to five groups:

the Sham group received the sham operation and no drug

treatments; the CLP group received the cecal ligation and

puncture (CLP) surgery; the CLP ? Mel group received
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the CLP surgery and melatonin; the CLP ? Mel ? LY

group received the CLP surgery and both melatonin and

LY treatments; and the CLP ? LY group received the CLP

surgery and LY treatment. All rats had free access to food

and water. Twenty rats from each group were used to

evaluate survival rates, and forty rats from each group were

used for other experiments. The survival rate was evaluated

7 days after the sham or CLP operation. Melatonin dis-

solved in 1 % ethanol (dissolved in normal saline) was

administered intraperitoneally at a dose of 30 mg/kg per

injection per rat, at 3, 6, 12, 18, and 24 h after surgery. LY

or the same volume of vehicle was intraperitoneally

injected at a dose of 10 mg/kg per rat every 2 days for a

total of four times before CLP surgery. The dose and

administration routes of melatonin and LY were chosen

based on previous reports [69, 123].

Evaluation of survival rate

The rats in each group had free access to food and water

and were kept under pathogen-free conditions. The survival

rate was evaluated within 7 days after the sham or CLP

operation.

Evaluation of cardiac function by echocardiography

and invasive hemodynamic assessment

Transthoracic echocardiographic examinations were

established under isoflurane anesthesia (2 %) of rats in

each group 48 h after CLP. Echocardiographic images

were obtained using an ACUSON echocardiography

instrument equipped with a 13 MHz phased-array trans-

ducer (Siemens, USA). The M-mode images of left ven-

tricular (LV) dimensions were obtained. The left

ventricular ejection fraction (LVEF) and left ventricular

fractional shortening (LVFS) were recorded.

After the echocardiography, a high-fidelity pressure-

transducing catheter was inserted via the right carotid

artery into the left ventricle to measure the left ventricular

pressure (LVP). When the rats returned to stable condi-

tions, left ventricular systolic pressure (LVSP), left ven-

tricular end-diastolic pressure (LVEDP), and their first

derivative with respect to time (±dp/dtmax) were continu-

ously measured.

Evaluation of morphological changes of myocardial

tissues

Rats were killed at 48 h after surgery, and left ventricular

myocardial tissues were collected. Tissue sections of the

myocardium were stained with hematoxylin–eosin (H&E)

staining, and morphological changes were evaluated using

light microscopy at a magnification of 4009.

TUNEL staining

Myocardial apoptosis was analyzed using a terminal

deoxynucleotidyl transferase dUTP nick-end labeling

(TUNEL) assay. The paraffin-embedded tissue was cut into

sections 4–5 lm thick. Then, 50 lL of TUNEL reaction

mixture was added to each sample, and the slides were

incubated in humidified atmosphere for 60 min at 37 �C in

the dark and then rinsed with PBS (pH 7.4) three times, for

5 min each time. To detect the nuclei, the slides were

incubated with DAPI for 5 min at room temperature in the

dark, rinsed with PBS three times, for 5 min each time, and

observed using fluorescence microscopy. The TUNEL-

positive cells produced green fluorescence and the nuclei

produced with blue fluorescence. The apoptotic index was

calculated as the ratio of the number of TUNEL-positive

neurons to the total number of nuclei.

Measurement of LDH release

The activity of lactate dehydrogenase in the serum was

detected using a commercially available ELISA kit,

according to the manufacturer’s instructions. The LDH

activity was expressed as U/L.

Evaluation of inflammatory cytokines

Inflammatory cytokines in the serum and myocardial tissue

were measured 48 h after surgery by using commercially

available TNF-a, IL-1b, and HMGB1 ELISA kits,

according to the manufacturer’s instructions. Data were

analyzed using a microplate reader (Multiskan Spectrum,

Thermo Scientific, USA).

Measurement of CAT, SOD, and MDA

The serum and myocardial tissue were collected 48 h after

surgery to measure CAT and SOD activities and MDA

content using commercially available kits, according to the

manufacturer’s instructions. Data were analyzed using a

microplate reader (Multiskan Spectrum, Thermo Scientific,

USA).

Western blot

Left ventricular myocardial tissues were collected and

lysed with lysis buffer. After sonication, the lysates were

centrifuged, and the proteins were separated using SDS–

PAGE and then transferred to Immobilon-NC membranes

(Millipore, Boston, MA, USA). After being blocked with

5 % skim milk in Tris-buffered saline at room temperature

for 2 h, the membrane was incubated with primary anti-

bodies against p-Akt, Akt, Bcl-2, Bax, and b-actin (1:1000)
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overnight at 4 �C, washed three times with TBST, and then

incubated with horseradish peroxidase-conjugated sec-

ondary antibody for 1 h at 37 �C. The blots were imaged

using a Bio-Rad imaging system (Bio-Rad, Hercules, CA,

USA) and quantified using the Quantity One software

package (West Berkeley, CA, USA). The value for the

sham group was defined as 100 %.

Statistical analysis

Data are presented as the mean ± standard error of the

mean (SEM). SPSS 18.0 was used to analyze data in this

study. Survival rates were calculated using Fisher’s exact

test. Comparisons among multiple groups were assessed by

one-way analysis of variance. The LSD t test was used to

make intergroup comparisons. Probabilities of 0.05 or less

were considered statistically significant.

Results

Melatonin improved survival rate in septic rats

The survival rate is shown in Fig. 1. The 7-day survival

rate in the sham group was almost 100 %. However, 7 days

after CLP surgery, there was a dramatic decrease in the

survival rate for the CLP group (17.8 %) (versus sham

group, P\ 0.05). With the administration of melatonin,

the survival rate in the CLP ? Mel group increased

significantly to nearly 50 % (versus CLP group, P\ 0.05).

However, LY294002 treatment abolished the protective

effect of melatonin; the survival in the CLP ? Mel ? LY

group (28.6 %) was much lower than that in the

CLP ? Mel group (versus CLP ? Mel group, P\ 0.05).

Melatonin improved cardiac function in septic rats

We assessed cardiac function with echocardiography. As

shown in Fig. 2, melatonin significantly decreased myocar-

dial injury induced by sepsis in the CLP ? Mel group

(versus CLP group, P\ 0.05), as evidenced by improved

cardiac function. To investigate whether PI3K plays a criti-

cal role in melatonin’s cardioprotective effect, LY294002

was used to inhibit the PI3K/Akt pathway. As expected, the

cardiac function of rats in the CLP ? Mel ? LY group was

lower than that in the CLP ? Mel group, indicating that

PI3K plays a key role in the protective effect of melatonin

against sepsis-induced myocardial injury.

In addition, we used invasive hemodynamic evaluation

methods to assess cardiac function. As shown in Fig. 3,

melatonin treatment significantly caused an increase in

LVSP and LV ± dP/dtmax and a dramatic decrease in

LVEDP in the CLP ? Mel group (versus CLP group,

P\ 0.05). Consistent with electrocardiography results,

LY294002 markedly suppressed cardiac function in the

CLP ? Mel ? LY group (versus CLP ? Mel group,

P\ 0.05), suggesting again that the PI3K pathway plays a

role in protection against sepsis-induced myocardial injury

by melatonin.

Melatonin attenuated myocardial injury

as indicated by HE staining

As shown in Fig. 4, the myocardial sections were stained

with hematoxylin and eosin to evaluate damage to the

myocardium. In the sham group, the cardiomyocytes were

intact and there was no evidence of necrosis or inflam-

matory cell infiltration. The cardiac muscle cross striations

were clearly visible. In the CLP group, necrosis and

inflammatory cell infiltration were evident and the cardiac

muscle cross striations were no longer visible. Melatonin

administration attenuated the injury due to CLP surgery.

However, co-treatment with melatonin and LY abolished

melatonin’s protection against sepsis-induced myocardial

injury, indicating that PI3K activation is involved in

melatonin’s protective effect.

Melatonin alleviated myocardial apoptosis in septic

rats

To evaluate apoptosis induced by sepsis, TUNEL was per-

formed. As shown in Fig. 5, melatonin treatment significantly

Fig. 1 Effect of melatonin on the 7-day survival rate after CLP

surgery. Rats were treated with melatonin after CLP, and melatonin

was given at 3, 6, 12, 18, and 24 h after CLP surgery. LY294002 was

intraperitoneally injected at a dose of 10 mg/kg or the same volume of

vehicle every 2 days for a total of four times before CLP surgery.

Values are expressed as survival percentage (n = 20 for each group).

**P\ 0.05 in comparison to the sham group, ##P\ 0.05 in

comparison to the CLP group, and $$P\ 0.05 in comparison to the

CLP ? Mel group. CLP cecal ligation and puncture, Mel melatonin,

LY LY294002
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decreased the apoptotic index in the CLP ? Mel group (ver-

sus CLP group, P\ 0.05). However, LY abolished the pro-

tective effect of melatonin in the CLP ? Mel ? LY group

(versus CLP ? Mel group, P\ 0.05), revealing that PI3K

activation is associated with melatonin’s protection against

sepsis-induced myocardial apoptosis.

Fig. 2 Echocardiography evaluation suggests that cardiac dysfunc-

tion is attenuated by melatonin. a The evaluation of cardiac function

by echocardiography. Representative M-mode images are shown.

b Left ventricle ejection fraction. The results are expressed as the

mean ± SEM (n = 8 for each group). **P\ 0.05 in comparison to

the sham group, ##P\ 0.05 in comparison to the CLP group, and
$$P\ 0.05 in comparison to the CLP ? Mel group. Mel melatonin,

CLP cecal ligation and puncture, LVEF left ventricle ejection fraction,

LY LY294002

Fig. 3 Invasive hemodynamic

evaluation suggests that

melatonin improves cardiac

function. The results are

expressed as the mean ± SEM

(n = 8 for each group).

**P\ 0.05 in comparison to

the sham group, ##P\ 0.05 in

comparison to the CLP group,

and $$P\ 0.05 in comparison

to the CLP ? Mel group. Mel

melatonin, CLP cecal ligation

and puncture, LY LY294002,

LVSP left ventricular systolic

pressure, LVEDP left

ventricular end-diastolic

pressure, LV ± dP/dtmax the

instantaneous first derivation of

left ventricle pressure
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Melatonin mitigated LDH leakage in septic rats

LDH release is an indicator of myocardial injury, so we

measured LDH levels in the serum. As shown in Fig. 6,

CLP surgery triggered a dramatic increase in serum LDH

release. Melatonin administration significantly decreased

the LDH release after surgery in the CLP ? Mel group

(versus CLP group, P\ 0.05). As expected, LDH release

was markedly higher for the CLP ? Mel ? LY group

(versus CLP ? Mel group, P\ 0.05), indicating that PI3K

participates in melatonin’s protection against sepsis-in-

duced myocardial injury.

Fig. 4 Hematoxylin–eosin staining suggests that melatonin attenuates myocardial injury. Representative images of HE staining are shown

(magnification 9400, n = 8 for each group). Mel melatonin, CLP cecal ligation and puncture, LY LY294002

Fig. 5 Melatonin attenuation of sepsis-induced myocardial apoptosis

is abolished by LY294002. Representative images of apoptosis are

shown. The apoptotic cells were detected by TUNEL (green), and the

nuclei were detected by DAPI (blue). The scale bar 20 lm. The

results are expressed as the mean ± SEM (n = 8 for each group).

**P\ 0.05 in comparison to the sham group, ##P\ 0.05 in

comparison to the CLP group, and $$P\ 0.05 in comparison to the

CLP ? Mel group. Mel melatonin, CLP cecal ligation and puncture,

LY LY294002
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Melatonin lowered inflammatory cytokines

production in serum and myocardial tissue of septic

rats

Subsequently, the effects of melatonin on inflammatory

cytokines in serum and myocardial tissue of septic rats

were assessed as another measure of myocardial injury. As

shown in Fig. 7, the levels of the inflammatory cytokines

TNF-a, IL-1b and HMGB1 in the serum and myocardial

tissue were markedly lower in the CLP ? Mel group than

those in the CLP group (P\ 0.05); LY abolished the effect

of melatonin.

Melatonin decreased oxidative stress in serum

and myocardial tissue of septic rats

As shown in Fig. 8, the effects of melatonin on sepsis-

induced oxidative stress in the serum and myocardial tis-

sues were evaluated. In the CLP ? Mel group, the levels of

SOD and CAT in both the serum and myocardial tissues

were markedly higher than those in the CLP group

(P\ 0.05); LY abolished the effect of melatonin. MDA

level, which is a marker of oxidative damage, was lower in

the CLP ? Mel group than that in the CLP group; LY

abolished the effect of melatonin.

The role of Akt, Bcl-2, and Bax in the protective

effects of melatonin

To further investigate the molecular mechanism underlying

melatonin-mediated cardioprotection against sepsis, we

detected p-Akt/Akt, Bcl-2, and Bax protein levels by

Western blot. As shown in Fig. 9, CLP surgery signifi-

cantly increased Akt phosphorylation relative to the sham

group. Akt phosphorylation was further enhanced with

melatonin administration. However, LY abolished the

increase in Akt phosphorylation when co-administered

with melatonin. As shown in Fig. 9, CLP surgery induced a

dramatic increase in Bax expression relative to the sham

group. Melatonin administration decreased the expression

of Bax, but this decrease was significantly abolished by co-

administration with LY. In contrast, CLP dramatically

decreased Bcl-2 expression. Melatonin administration

increased the expression of Bcl-2, but this increase was

significantly abolished by co-administration with LY.

Discussion

In this study, we found that melatonin attenuated myocardial

dysfunction induced by sepsis. Melatonin improved cardiac

function, mitigated myocardial apoptosis, and decreased

inflammation and oxidative stress associated with sepsis. The

protective effect of melatonin was closely associated with the

activation of the PI3K/Akt signaling pathway. Melatonin

administration dramatically increased the 7-day survival rate

of rats that underwent CLP surgery and attenuated cardiac

dysfunction and myocardial apoptosis observed 48 h after

CLP surgery. Moreover, melatonin lowered the release of

inflammatory cytokines such as TNF-a, IL-1b, and HMGB1

as well as the production ofMDA, which is an oxidative lipid

product. It also increased the activity of anti-oxidant enzymes,

such as SOD and CAT. However, these protective effects of

melatonin were abolished by treatment with LY294002, a

PI3K signaling inhibitor, indicating thatmelatonin acts via the

activation of PI3K/Akt signaling.

Sepsis, the systemic inflammatory response to infection,

causes high mortality among the critically ill [6, 45], pri-

marily as a result of multiple organ damage. Myocardial

dysfunction is regarded as a critical manifestation of this

syndrome [21, 32, 58, 71, 89, 95, 110]. The underlying

mechanisms of myocardial dysfunction during sepsis

include circulatory changes [46, 93, 94], autonomic dys-

regulation [96, 97], metabolic changes [102], mitochon-

drial dysfunction [15, 22], cell death (necrosis and

apoptosis) [47, 84], inflammation, and oxidative stress [8,

23, 59]. However, the pathogenesis of sepsis-induced

myocardial dysfunction is complex and involves a multi-

tude of molecular players. Studies have suggested that

there is a reduction in the levels of cardiac dihydropyridine

receptors, such as L-type calcium channels, during sepsis

[60, 128]. A recent study suggested that mitochondrial

nitric oxide (NO) could be involved in myocardial

depression [115]. As for the inflammatory cytokines, TNF-

a and IL-1 might be involved [8].

Fig. 6 Effects of melatonin and LY294002 on sepsis-induced LDH

release. The LDH release was determined using an ELISA kit

according to the manufacturer’s instructions. The results are

expressed as the mean ± SEM (n = 8 for each group). **P\ 0.05

in comparison to the sham group, ##P\ 0.05 in comparison to the

CLP group, and $$P\ 0.05 in comparison to the CLP ? Mel group.

Mel melatonin, CLP cecal ligation and puncture, LY LY294002
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Previous studies have demonstrated the protective role

of melatonin against sepsis. It has been reported that

5-hydroxy-20-isobutyl-streptochlorin (HIS), a novel

derivative of melatonin, inhibits inflammation via regula-

tion of TRIF-dependent signaling and inflammasome acti-

vation [98]. It has been reported that melatonin is

protective against sepsis-induced kidney injury [19]. In

addition, with respect to sepsis-induced myocardial injury,

melatonin attenuated mitochondrial impairment and

improved survival rates [85, 123]. Consistent with previous

results, we found that melatonin improved the 7-day sur-

vival rate after CLP surgery. The cardiac dysfunction

induced by sepsis is mitigated by melatonin as evidenced

by the echocardiography, hemodynamic evaluation, and

morphology. Garcia et al. demonstrated the NF-jB/NLRP3

inflammasome connection during sepsis, leading to a dis-

proportionate inflammatory response to sepsis [34]. Mela-

tonin administration blunts NF-jB transcriptional activity

via a sirtuin1-dependent NF-jB deacetylation in septic

mice. In addition, melatonin decreased NF-jB-dependent
proinflammatory response and restored redox balance and

mitochondrial homeostasis, thus inhibiting the NLRP3

inflammasome. The study heralds a promising therapeutic

application for melatonin in the treatment of sepsis. In our

present study, we found that melatonin protects the heart

from sepsis via a PI3K/Akt-dependent mechanism and the

protective effects of melatonin can be abolished by

LY294002, a specific PI3K antagonist. Therefore, mela-

tonin, as a promising therapeutic application in the treat-

ment of sepsis, may exert its protection via PI3K, which

Fig. 7 Melatonin decreased the

levels of inflammatory

cytokines in the serum and

myocardial tissues. a Serum

TNF-a level. b Myocardial

TNF-a level. c Serum IL-1b
level. d Myocardial IL-1b level.

e Serum HMGB1 level.

f Myocardial HMGB1 level.

The values are expressed as the

mean ± SEM (n = 8 for each

group). **P\ 0.05 in

comparison to the sham group,
##P\ 0.05 in comparison to the

CLP group, and $$P\ 0.05 in

comparison to the CLP ? Mel

group. Mel melatonin, CLP

cecal ligation and puncture, LY

LY294002, HMGB1 high-

mobility group box 1
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provides another therapeutic target. Recently, Lorente et al.

described higher mortality rates for sepsis patients with

high melatonin levels [70], which appears inconsistent with

our results. However, some problems should be considered:

(1) differences may exist between the treatment of sepsis in

a CLP-induced rat model treatment and in human beings.

Patients with sepsis are treated with certain kinds of anti-

bodies and medications, which are not used in a rat model.

(2) Melatonin in human originates endogenously mainly

from the pineal gland in humans. In this study, increased

melatonin levels in septic patients might have resulted from

sepsis-induced pineal damage. However, we considered

melatonin as a treatment reagent that was obtained from an

exogenous source. Furthermore, melatonin has a protective

effect against sepsis-induced myocardial injury. (3) Mela-

tonin, as an endogenous hormone, is expressed at different

levels at different times. Moreover, melatonin levels are

associated with the circadian rhythm and may differ among

individuals.

Sepsis induces the release of enormous endotoxins, such

as lipopolysaccharide (LPS), triggering a cascade of

proinflammatory cytokines (TNF-a, IL-1, etc.) [122].

Among the cytokines, TNF-a induces apoptosis in rat heart

[83, 125]. In addition, high-mobility group box 1 protein

(HMGB1) has been identified as an important late-acting

mediator of inflammation in sepsis [5, 109]. HMGB1 is a

nuclear non-histone DNA-binding protein that is produced

extracellularly during inflammation [62]. Previous studies

have demonstrated that HMGB1 can activate the immune

system and induce cell proliferation, adhesion, migration,

and cytokine release [40, 52, 56, 72]. In the present study,

melatonin treatment significantly attenuated inflammation

by suppressing the levels of TNF-a, IL-1b, and HMGB1 in

the serum and myocardial tissue. Additionally, melatonin

Fig. 8 Melatonin increased the

levels of SOD and CAT and

decreased MDA content in the

serum and myocardial tissues.

a Serum SOD level.

b Myocardial SOD level.

c Serum CAT level.

d Myocardial CAT level.

e Serum MDA level.

f Myocardial MDA level. The

values are expressed as the

mean ± SEM (n = 8 for each

group). **P\ 0.05 in

comparison to the sham group,
##P\ 0.05 in comparison to the

CLP group, and $$P\ 0.05 in

comparison to the CLP ? Mel

group. Mel melatonin, CLP

cecal ligation and puncture, LY

LY294002, SOD superoxide

dismutase, CAT catalase, MDA

malondialdehyde
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treatment also significantly decreased myocardial apopto-

sis, as evidenced by the lowered apoptotic index, the

increased level of Bcl-2, and decreased level of Bax.

However, Gerd et al. demonstrated that the release of

endotoxins is beneficial under certain conditions [9]. Pre-

conditioned hearts (Ischemic/LPS pretreated) demonstrated

increased tolerance against myocardial ischemia that was

associated with a reduced TNF-a concentration and an

increased TNF-a inhibitory plasma activity. Their study

illustrated the important role for TNF-a as well as the TNF-

a inhibitory serum activity in the progress of myocardial

ischemia with respect to mortality, hemodynamics and

regional myocardial blood flow, and infarct size. Conse-

quently, TNF-a inhibitory serum activity is expected to

provide new insights into cardioprotection against ische-

mia–reperfusion afforded by ischemic preconditioning and

early exposure to LPS. Dipeptidyl peptidase (DPP)-4,

which is responsible for a degradation of the hormone

glucagon-like peptide-1 (GLP-1), plays a key role in glu-

cose metabolism and in the control of glycemic status.

Sebastian et al. demonstrated the DPP-4 inhibitor lina-

gliptin improves survival and suppresses LPS-induced

inflammatory pathways, improving vascular dysfunction

and reducing oxidative stress in endotoxemic rats. These

protective effects are associated with GLP-1-mediated

decrease of iNOS expression as well as activation of the

AMPK signaling pathway. And this study heralds a

promising therapeutic application for linagliptin in the

treatment of sepsis [103]. Another study investigated

whether phosphorylation of RISK (reperfusion injury sal-

vage kinases, proposed to be protective by previous reports

in mostly rodent models) is causal for the protection of

ischemia postconditioning (IPoC) [100]. In pig model of

IPoC, pharmacological RISK inhibitors were used to block

increases in RISK phosphorylation during reperfusion.

However, differences in the infarct size were not signifi-

cant, which may be attributed to species differences

between rodents and larger mammals. Additionally,

maintenance of acidosis and subsequent inhibition of

mitochondrial permeability rather than phosphorylation of

RISK mediates postconditioning in pigs [20]. To further

elucidate the underlying mechanisms, Langendorff appa-

ratus can be used to establish the global ischemia model to

diminish the latent errors in sampling tissues. For now, few

studies have analyzed the RISK in different species and

further research is warrant.

Oxidative stress during sepsis is also another critical

factor contributing to the myocardial dysfunction [57, 66].

During sepsis, excessive reactive oxygen species (ROS)

production activates lipid peroxidation, leading to cell and

mitochondrial membrane damage, which triggers cell

apoptosis and necrosis [17, 49, 50]. In addition, ROS can

modify the inner mitochondrial membrane potential and

induce the release of cytochrome c into the cytosol,

Fig. 9 Effect of melatonin on the expression of phosphorylation-Akt,

Bcl-2, and Bax following sepsis. Representative images of the

Western blot results are shown. Melatonin increased the ratio of

p-Akt/Akt, which was significantly abolished by Akt-inhibitor

LY294002. Melatonin increased Bcl-2 expression and decreases

Bax expression, an effect that is reversed by the by Akt-inhibitor

LY294002. The values are expressed as the mean ± SEM (n = 8 for

each group). **P\ 0.05 in comparison to the sham group,
##P\ 0.05 in comparison to the CLP group, and $$P\ 0.05 in

comparison to the CLP ? Mel group. Mel melatonin, CLP cecal

ligation and puncture, LY LY294002
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eventually leading to cell apoptosis [37, 111, 118]. SOD

and CAT are anti-oxidant enzymes that serve as ROS

scavengers [130], and MDA is an indicator of lipid per-

oxidation [13, 116]. In our study, the results suggest that

melatonin treatment alleviates oxidative stress via

increasing the activity of CAT and SOD and decreasing the

production of MDA.

PI3K/Akt signaling has been reported to play a protec-

tive role in sepsis [12, 51, 65, 112, 126]. Moreover,

transgenic overexpression of Akt protects against sepsis in

the mice infected with the Gram-negative bacteria [90].

Once activated, PI3K leads to the phosphorylation of Akt,

leading to the phosphorylation of diverse target molecules

(such as Bcl-2 family) that act to preserve mitochondrial

integrity and promote cell survival [69]. Melatonin has

been reported to be protective against hemorrhagic shock-

induced liver injury in rats through an Akt-dependent HO-1

pathway [48]. Our results suggested that melatonin treat-

ment significantly increased Akt phosphorylation. Taken

together, our results suggest that PI3K/Akt signaling

pathway is involved in the protective effect of melatonin.

We hypothesize that melatonin protects against sepsis-in-

duced myocardial dysfunction via the PI3K/Akt pathway.

MT1 and MT2, both G-protein coupled receptors, are

involved in the transduction of melatonin signaling [92].

These receptors are expressed in several different organs

and tissues; therefore melatonin modulates multiple aspects

of human physiology, and melatonin dysfunction and its

receptors are associated with sleep and circadian dysfunc-

tion [39], diabetes [14, 73], and Alzheimer’s and Parkin-

son’s diseases [1, 114]. Melatonin as a free-radical

scavenger is receptor-independent; however, its indirect

anti-oxidative action may be mediated by receptors [54,

91]. In addition, melatonin interacts with intracellular

proteins such as calmodulin [11], calreticulin [74], or

tubulin [79], and antagonizes the binding of Ca2? to

calmodulin [10]. Furthermore, melatonin receptors have

been identified in the cardiovascular system [26, 121].

Animal studies have indicated that melatonin has dual

effects on the vasculature with vasoconstriction being

observed through MT1 receptor activation, and vasodi-

latation through MT2 receptor activation [27, 77]. Addi-

tionally, melatonin has been shown to activate PI3K/Akt

pathway via its receptors [28]. As for sepsis, melatonin

receptors have been suggested to mediate improvements

with respect to survival in a septic model [29]. The results

showed that MT1 and MT2 mediate at least a part of the

effects induced by melatonin to improve survival. There-

fore, we hypothesize that the activation of PI3K/Akt sig-

naling by melatonin in septic rats is likely mediated by

melatonin receptors. This, however, requires further vali-

dation using melatonin receptor antagonists.

Melatonin has not only been widely used in experi-

mental animal research but also in clinic for human beings.

It shows a relatively high adaptation for most people with

different pathologies, and can be safely used in numerous

disorders. The toxic dose, however, remains unknown

owing to a lack of research. Our results (150 mg/kg for

sepsis rats) suggest that the possible melatonin dose that

can be administered for myocardial dysfunction in sepsis

patients was 3 mg/kg according to dosage conversion ratio

between species (human:rat is nearly 1:25–50). However,

further research is needed in clinical scenarios.

In summary, our study suggests that melatonin treatment

confers a significant protective effect against myocardial

dysfunction induced by sepsis in a PI3K/Akt-dependent

manner. PI3K/Akt activation augments anti-oxidant activ-

ity, inhibits inflammation, and suppresses apoptosis, con-

tributing to the attenuation of myocardial depression. Our

work warrants a more thorough examination of the clinical

use of melatonin in the treatment of sepsis-induced

myocardial injury.
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