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Abstract Cyclic GMP-dependent protein kinase (PKG) is

a serine-threonine kinase that mediates the cardioprotective

effect of ischemic and pharmacologic preconditioning.

Since hydrogen sulfide (H2S) has been implicated in me-

diating the cardioprotective effects of the cGMP modula-

tors tadalafil and cinaciguat, we tested the hypothesis that

myocardial gene therapy with PKG exerts cardioprotection

against ischemia/reperfusion (I/R) injury through a

mechanism involving H2S. Adult rat cardiomyocytes were

infected with adenoviral vector encoding PKGIa or inac-

tive mutant PKGIaK390A (K390A) for 24 h. Necrosis and

apoptosis (n = 6/group) were determined after 90 min of

simulated ischemia and 1 or 18 h of reoxygenation, re-

spectively. To study the effect of PKGIa in vivo, mice

received intramyocardial injections of adenoviral PKGIa
or K390A. Four days later, the hearts were subjected to

30 min of ischemia followed by reperfusion for 24 h. The

inhibitor of H2S-producing enzyme, cystathionine-c-lyase
(CSE), dl-propargylglycine (PAG, 50 mg/kg, ip) was given

30 min before ischemia. PKGIa overexpression induced

CSE expression, whereas cystathionine-b-synthase (CBS)

and 3-mercaptopyruvate sulfurtransferase expression was

not changed. PKGIa overexpression increased H2S in the

heart and cardiomyocytes in relation to control and

PKGIaK390A. Moreover, PAG abolished protection with

PKGIa in vitro by increasing necrosis (35.2 ± 1.7 %,

P\ 0.05) and apoptosis (23.5 ± 1.8 %, P\ 0.05) as

compared to PKGIa-overexpressing cells (necrosis:

17.2 ± 0.9 % and apoptosis: 13.2 ± 0.8 %). In vivo,

PKGIa overexpression reduced infarct size and preserved

left ventricular fractional shortening as compared with

K390A (P\ 0.05) and PAG abolished the cardioprotective

effect of PKGIa. The protective effect of myocardial gene

therapy with PKGIa against I/R injury is mediated through

a mechanism involving H2S signaling.

Keywords Gene therapy � Ischemia/reperfusion injury �
PKG � CSE � H2S

Introduction

Cyclic GMP-dependent protein kinase (PKG)Ia and

PKGIß are major mediators of cGMP signaling in the

cardiovascular system. Two PKG genes have been identi-

fied in mammalian cells encoding for PKG type I (in-

cluding a- and ß- splice variants) and PKG type II [18]. In

particular, the PKGIa isozyme is mainly found in lung,

heart, platelets, and cerebellum while the Ib form is highly

expressed with Ia in smooth muscle, including uterus,

vessels, intestine, and trachea [22, 25]. Several cardiopro-

tective strategies including ischemic preconditioning, nitric

oxide (NO), and ANP/BNP have been shown to ischemia/

reperfusion (I/R) injury through PKG [28, 30, 37]. In ad-

dition, the importance of restoring PKG signaling with

selective phosphodiesterase-5 (PDE5) inhibitors [9, 12, 29,

30, 47] has been shown to be protective against several

pathologies [23, 34]. At the cellular level, PKGIa overex-

pression in isolated primary cardiomyocytes protected

against cell death caused by simulated ischemia and re-

oxygenation (SI/RO) [14]. PKGIa overexpression triggered

a number of signaling events, which involved the opening
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of mitochondrial KATP channels, phosphorylation of Akt,

MAPKs including ERK and JNK, increased the expression

of nitric oxide synthase (NOS) and Bcl-2 leading to re-

duction in necrosis and apoptosis in cardiomyocytes.

However, considering the diverse population of cells in the

heart, it is not known whether in vivo gene transfer of

PKGIa would also salvage the intact myocardium follow-

ing I/R injury.

A number of recent studies have shown that H2S pro-

tects the heart through anti-apoptotic, anti-inflammatory,

antioxidant, and mitochondrial actions of H2S [35, 39].

H2S is one of the gasotransmitters (similar to NO and

CO), which is produced enzymatically in the cardiovas-

cular system. Cystathionine-b-synthase (CBS), cys-

tathionine-c-lyase (CSE), and 3-mercaptopyruvate

sulfurtransferase (3-MST) are the key enzymes responsi-

ble for the endogenous production of H2S in mammalian

cells and tissues. Both CBS and CSE enzymes are pyri-

doxal-5-phosphate-dependent and use L-cysteine as the

main substrate [36]. Although other enzymes can catalyze

the production of H2S [17], CBS seems to be the main

H2S-forming enzyme in the central nervous system,

whereas CSE is important for H2S generation in the car-

diovascular system including the heart [19]. We demon-

strated that protection against myocardial I/R injury with

the long-acting PDE5 inhibitor, tadalafil, was dependent

upon PKG [41]. In these studies, the protective effect of

tadalafil was abolished by treatment with a CSE inhibitor,

dl-propargylglycine (PAG), as well as in CSE-knockout

mice, suggesting a definite role of endogenous H2S in

cardioprotection. Similarly, reduction of infarct size fol-

lowing treatment with NO-independent soluble guanylate

cyclase (sGC) activator, Cinaciguat, was associated with

increased expression of CSE and augmented levels of H2S

in the heart [42]. These studies provided evidence that

cGMP-generating drugs with consequent activation of

PKG produced therapeutic levels of H2S. Nevertheless,

considering the confounding or potentially off-target and

non-specific effects of pharmacological generators of

cGMP, it is critical to further evaluate the direct role of

PKG in H2S generation and demonstrate its protective

effects against I/R injury in vivo. Therefore, the first goal

of the current investigation was to show whether my-

ocardial gene therapy with PKGIa overexpression reduces

infarct size and improves cardiac function following I/R

injury. A second goal was to examine whether H2S is one

of the critical gasotransmitters involved in reducing car-

diomyocyte death in vitro and myocardial injury in vivo

following PKGIa overexpression. Our results provide

evidence that overexpression of PKGIa protects against

I/R injury through CSE-dependent generation of H2S in

the heart as well as adult cardiomyocytes.

Materials and methods

Animals

Adult male out-bred CD-1 mice were purchased from

Charles River Laboratories International, Inc. (Wilming-

ton, MA); the body weight ranged from 30 to 34 g. Adult

male Wistar rats (300 g) were purchased from Harlan

Sprague–Dawley, Inc. (Indianapolis, IN). All animal ex-

periments were conducted under the guidelines on humane

use and care of laboratory animals for biomedical research

published by National Institutes of Health (No. 85-23, re-

vised 1996).

Drugs and chemicals

Triphenyltetrazolium chloride (TTC) and dl-propargyl-

glycine (PAG) were purchased from Sigma-Aldrich (St.

Louis, MO). PKG and CSE antibodies were purchased

from Santa Cruz. KT5823 (Cat # 420321) was purchased

from Calbiochem (La Jolla, CA). Adenoviral vectors to

overexpress PKG were obtained from Dr. Suzanne M.

Lohmann (Institut für Klinische Biochemie und Pathobio-

chemie, Medizinische Universitätsklinik, Würzburg, Ger-

many), which were amplified and maintained in our

laboratory.

Adult primary cardiomyocyte preparation

and overexpression of PKG-Ia protocol

Ventricular cardiomyocytes were isolated using an enzy-

matic technique as previously reported [14]. The freshly

isolated cardiomyocytes were plated with Medium 199

containing 2 mM L-carnitine, 5 mM creatine, 5 mM tau-

rine, 5 mM glucose, 0.1 lM insulin, and 1 % penicillin–

streptomycin. After 1 h of plating, the myocytes were in-

fected with adenoviral vectors containing hPKGIa
(PKGIa) or catalytically inactive hPKGIaK390A (K390A)

[14] in serum-free growth medium for 24 h. In this study,

we chose adult rat primary cardiomyocytes because the

stability of these cells is superior to primary mouse car-

diomyocytes especially with the use of adenoviral vectors

to overexpress PKGIa.

Simulated ischemia/reoxygenation protocol

After 24 h of adenoviral infection, the cells were subjected

to simulated ischemia (SI) for 90 min by replacing the cell

medium with an ‘‘ischemia buffer’’ that contained 118 mM

NaCl, 24 mM NaHCO3, 1.0 mM NaH2PO4, 2.5 mM

CaCl2-2H2O, 1.2 mM MgCl2, 20 mM sodium lactate,

16 mM KCl, and 10 mM 2-deoxyglucose (pH adjusted to
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6.2) as reported previously [15]. The cells were incubated

at 37 �C in tri-gas incubator adjusting 1–2 % O2 (mon-

itored by the incubator sensors) and 5 % CO2 during the

entire SI period. Reoxygenation (RO) was accomplished by

replacing the ischemic buffer with normal cell medium

under normoxic conditions. Cell necrosis and apoptosis

were assessed after 1 or 18 h of RO, respectively.

Experimental groups (in vitro)

Five groups of adult primary rat cardiomyocytes were used.

Cardiomyocytes isolated from 6 rat hearts were used to

conduct our experiments. Then, cardiomyocytes isolated

from each heart were plated in 4 wells/group for each ex-

periment. 1- Control cardiomyocytes were prepared and

24 h later, they were subjected to SI/RO; 2- PKGIa car-

diomyocytes were infected with Ad.PKGIa (1 9 105 pfu)

24 h prior to SI/RO; 3- PKGIa ? PAG cardiomyocytes

were infected with Ad.PKGIa 24 h prior to incubation with

PAG (2 mmol/L) for 30 min before SI/RO; 4-

PKGIaK390A: Cardiomyocytes were infected with cat-

alytically inactive PKGIa (1 9 105 pfu), as control for

group 2, 24 h prior to SI/RO; 5- PAG: Cardiomyocytes

were prepared as in Group 1 and incubated with PAG as in

Group 3 followed by SI/RO.

Assessment of necrosis and apoptosis

Trypan blue exclusion assay and lactate dehydrogenase

(LDH) release into the medium were used to assess cell

necrosis [15]. Cardiomyocyte apoptosis was analyzed by

TUNEL staining as reported previously [15].

Myocardial overexpression of PKG-Ia

Mice were anesthetized with the injection of pentobarbital

(70 mg/kg ip), intubated orotracheally and ventilated on a

positive-pressure ventilator. The tidal volume was set at

0.2 ml, and the respiratory rate was adjusted to 133 cycles/

min. A left thoracotomy was performed at the fourth in-

tercostal space, and the heart was exposed by stripping the

pericardium. After the heart was exposed, 1.5 9 109 pfu in

30 ll total (3 injections of 10 ll at different locations)

were administered intramyocardially in the LV wall adja-

cent to the LAD in the prospective area at risk for ex-

perimental ischemia.

Real-time PCR

Ninety-six hours after intramyocardial injection of

adenoviral vectors encoding PKG-Ia or its inactive mutant,

the transcript levels of PKG were quantified by real-time

PCR performed in the ABI prism 7900HT sequence

detector system (Applied Biosystems, Foster City, CA)

using the TaqMan� One Step PCR Master reagent kit

(product number 4309169). All of the samples were pro-

cessed in triplicates according to the manufacturers’ rec-

ommended conditions. The cycling conditions were as

follows: 48 �C for 30 min, 95 �C for 10 min, 40 cycles of

95 �C for 15 s and 60 �C for 1 min. The cycle threshold

was determined to provide the optimal standard curve

values (0.98–1.0). The primers used for PKG were as fol-

lows: forward, 50-TGGTCACTAGGAATTCTGATGTAT-
GAG-30 and reverse, 50-TGATATTGTAGGTTTTCATTG
GATCTG-30 and the TaqMan probe was as follows: 50-TC
TGACTGGCAGCCCACCTTTCTCA-30. The probes and

primers were designed using the Primer Express� 2.0

version and synthesized in the Nucleic Acid Research Fa-

cilities of Virginia Commonwealth University. The probes

were labeled in the 50 end with FAM (6-carboxyfluores-

cein) and in the 30 end with TAMRA (6-carboxytetram-

ethylrhodamine). Ribosomal RNA (18S rRNA) from the

predeveloped TaqMan Assay Reagents (product number

4310893E) was used as an endogenous control.

Western blot analysis

Total soluble protein was extracted from the whole heart

tissue with RIPA buffer. The homogenate was centrifuged

at 14,0009g for 15 min under 4 �C and the supernatant

was recovered. 50 lg of protein from each sample was

separated by SDS-PAGE and transferred onto nitrocellu-

lose membrane [16]. The membrane was incubated with

primary antibody for each of the respective proteins, i.e.,

PKG and actin, GAPDH (goat polyclonal, 1:1000 dilution),

CSE, CBS, and 3-MST (mouse monoclonal 1:500 dilution)

(Santa Cruz Biotechnology). The membrane was washed

and incubated with horseradish peroxidase-conjugated

secondary antibody (1:2000 dilution, 1 h at room tem-

perature). The blots were developed using a chemilumi-

nescent system (ECL Plus; Amersham Biosciences). The

densitometric analysis for the corresponding PKG, CSE,

CBS, 3-MST, actin, and GAPDH bands was done using

ImageJ software.

Myocardial infarction protocol

The methodology of myocardial infarction was described

previously [40]. In brief, 96 h after intramyocardial injec-

tion of PKGIa or K390A viral vectors, the left descending

coronary artery was identified and occluded for 30 min by

a 7.0 silk ligature that was placed around it and a small

piece of polyethylene tubing (PE10) that was positioned on

top of it. After coronary artery occlusion for 30 min,

reperfusion was established by removing the PE10 tube

that was compressing the coronary artery. After
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reperfusion, the air was expelled from the chest and the

animals were extubated and then received analgesia

(buprenorphine SR LAB; 0.1 mg/kg; sc, which last for

72 h) and antibiotic (Gentamicin; 0.7 mg/kg; IM).

Experimental groups (in vivo)

Eight groups were used. 1- PBS (Control) Each mouse re-

ceived 30 ll of PBS (3 intramyocardial injections of 10 ll
in the prospective area at risk for ischemia) 96 h prior to

I/R; 2- PKGIa Mice received intramyocardial injections of

Ad.PKGIa (1.5 9 109 pfu; 3 injections of 10 ll in the

prospective area at risk for ischemia) 96 h prior to I/R; 3-

Ad.PKGIa ? PAGAd.PKGIawas administered as in group

2 and PAG (50 mg/kg, ip) was injected 30 min prior to

ischemia; 4- PKGIaK390A Catalytically inactive Ad.PKG-

Ia was injected as in group 2; 5- PAG PAG was adminis-

tered as in group 3; 6- PKGIa ? KT5823 Ad.PKGIa was

administered as in group 2 and KT5823 (PKG inhibitor,

1 mg/kg, ip) was injected 5 min prior to reperfusion; 7-

KT5823 KT5823 (1 mg/kg, ip) was injected 5 min prior to

reperfusion. 8- Sham Mice were subjected to a left thora-

cotomy without coronary artery ligation as a control for the

surgical procedure (the animals in this group received no

treatment until sampling of the heart). In all groups, infarct

size was measured 24 h after I/R. Prior to sacrifice, left

ventricular (LV) function was analyzed using echocar-

diography. Six to eight mice in each group were used for

infarct size assessment and for functional analysis using

echocardiography. The detailed experimental protocol is

shown in Fig. 1. Three additional mice in groups 2 and 4

were used for measurement of myocardial H2S concentra-

tion at 96 h after infection and compared to group 8.

Infarct size assessment

As described previously [40], after 24 h of reperfusion, the

heart was quickly removed and mounted on a Langendorff

apparatus. The coronary arteries were perfused with 0.9 %

NaCl containing 2.5 mM CaCl2. After the blood was

washed out, *1 ml of 10 % Phthalo blue dye was injected

as a bolus into the aorta until most of the heart turned blue.

The heart was perfused with saline to wash out the excess

Phthalo blue. Finally, the heart was removed, frozen, and

cut into 8–10 transverse slices from apex to base of equal

thickness (*1 mm). The slices were then incubated in

10 % TTC in isotonic phosphate buffer (pH 7.4) at room

temperature for 30 min. The areas of infarcted tissue, the

risk zone, and the whole left ventricle were determined by

computer morphometry using a Bioquant imaging software.

Measurement of H2S in cardiomyocytes and heart

tissue

Isolated cardiomyocytes were lysed and passaged through a

syringe after adding 500 ll of 100 mM potassium phos-

phate buffer (pH 7.4). For the intact heart, the tissue was

homogenized in 1 mL of 100 mM potassium phosphate

buffer (pH 7.4). To trap H2S, 250 lL of zinc acetate (1 %

wt/vol) was added to the cell or tissue homogenate fol-

lowed by 30 min incubation at 37 �C. The reaction was

stopped by adding 250 lL of trichloroacetic acid (10 % wt/

vol) to the assay mixture and incubated for 60 min at 37 �C
before centrifugation at 14,000g for 10 min. H2S concen-

tration of the supernatants was measured using a highly

specific H2S sensor connected to a single channel analyzer

(Apollo 1000, WPI, Sarasota, FL) and was calculated using

30 min. 

PAG (50 mg/kg) 
30  prior to Ischemia 

Ischemia Reperfusion 

Survival 
Echocardiography 

Infarct Size 
H2S Tissue Levels 

•PBS 
•Ad.PKG-Iα
•Ad.PKG-IαK390A 

h42h69

KT5823 (1 mg/kg) 
5  prior to Reperfusion 

Fig. 1 Experimental protocol for in vivo experiments. Arrows indicate time points for treatment, performance of surgical procedures, and

measurement of various parameters
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a calibration curve of NaHS standards. Protein concentra-

tion was measured spectrophotometrically at 595 nm. The

results were calculated as lM/mg of protein [45].

Echocardiography

Echocardiography was performed using the Vevo770TM

imaging system (VisualSonics Inc., Toronto, Canada) prior

to surgery (baseline) and 24 h after surgery prior to sacri-

ficing the animal. Pentobarbital (30 mg/kg; ip) was used

for anesthesia and the procedure was carried out as previ-

ously described [40] to measure LV end-diastolic diameter

(LVEDD) and end-systolic diameter (LVESD). LV frac-

tional shortening (FS) was calculated as (LVEDD - L-

VESD)/LVEDD 9 100.

Statistics

All measurements are expressed as group mean ± SE. The

data were analyzed by unpaired t test between 2 groups or

one-way ANOVA among 3 or more groups where normal

distribution was justified according to the Kolmogorov–

Smirnov test. If a significant value of F was obtained in

ANOVA, the Student–Newman–Keuls post hoc test was

further used for pair-wise comparisons. For data sets with

n B 3, non-parametric testing using Kruskal–Wallis test

was used. P\ 0.05 was considered significant.

Results

Cardioprotection with PKGIa overexpression

in vivo: role of H2S

A total of 106 mice for in vivo studies were used. Twenty-

four hours following I/R injury, 7 out of 8 (88 %) mice

survived with in vivo intraventricular injection of

Ad.PKGIa as compared to 6 out of 10 (60 %) with injec-

tion of inactive mutant PKGIaK390A. CSE inhibition with

PAG in mice treated with Ad.PKGIa reduced survival to

60 % following I/R. PAG administration in mice injected

with Ad.PKGIaK390A had no adverse effects on survival

as compared with PBS control. PKG inhibition with

KT5823 at the onset of reperfusion in mice treated with

Ad.PKGIa also reduced survival to 60 % following I/R,

which was similar to survival in the control group that

received KT5823 at reperfusion. The survival rate was

100 % in sham-operated mice.

Ad.PKGIa and Ad.PKGIaK390A injections in the LV

increased expression of PKGIa mRNA and protein as

compared with the hearts injected with vehicle (Fig. 2).

Overexpression of PKGIa also induced CSE expression

without altering the expression of CBS or 3-MST in the

heart as compared to control and PKGIaK390A as shown

in Fig. 3. Moreover myocardial H2S level was increased

8-Fold with PKGIa overexpression as compared to sham

and PKGIaK390A (P\ 0.01, Fig. 4a).

Myocardial infarct size (% of risk area, mean ± SEM)

was reduced from 37.5 ± 2.2 in PBS control to 14.1 ± 1.4

with PKGIa overexpression following 30 min of ischemia

and 24 h of reperfusion (P\ 0.05, Fig. 5a, b). PKG-

IaK390A mutant had no effect on infarct size (37.3 ± 3.6,

P[ 0.05 vs. control). The infarct-limiting effect of PKGIa
overexpression was abolished with PAG (45.2 ± 2.2,

P\ 0.05 vs. PKGIa). Treatment with PAG alone resulted

in infarct size similar to control. PKG inhibition with

KT5823 at the onset of reperfusion caused partial blockade

of the infarct-sparing effect of PKGIa overexpression

(27.5 ± 4.4, P\ 0.05 vs. control and PKGIa). Treatment

with KT5823 alone at reperfusion resulted in infarct size

similar to control. The risk areas (% LV) were not different

between the groups (Fig. 5c). Sham-operated mice did not

exhibit any infarction (not shown).

Figure 6 shows results of M-mode echocardiography

from baseline and I/R in the various treatment groups 24 h

following I/R injury. None of the groups showed sig-

nificant LV dilatation at 24 h (Fig. 6a). However, PKGIa
overexpression decreased LV end-systolic diameter

(LVESD: 2.5 ± 0.1 mm, Fig. 6b) and preserved fractional

shortening (FS: 32 ± 1.1 %, Fig. 6c) as compared to I/R

control (LVESD: 3.0 ± 0.2 mm and FS: 19 ± 3 %, re-

spectively; P\ 0.05) and mutant K390A (LVESD:

3.1 ± 0.1 mm and FS: 19 ± 1 %, respectively; P\ 0.05).

PAG and KT5823 abolished the protective effect of PKGIa
on cardiac contractility (P\ 0.05). Baseline LVESD and

FS were 2.0 ± 0.1 mm and 44 ± 2 %, respectively.

PKG-Ia overexpression protects against ischemia/

reoxygenation injury in cardiomyocytes

Infection with adenoviral PKGIa in cardiomyocytes caused

4.9-Fold increase in H2S concentration as compared to

control and PKGIaK390A mutant (P\ 0.05, Fig. 4b). The

percentage of trypan blue-positive cardiomyocytes de-

creased with PKGIa overexpression to 17.2 ± 0.9 % as

compared with SI-RO controls (37.1 ± 1.8 %) or

PKGIaK390A mutant overexpression (38.0 ± 2.0 %,

n = 6; P\ 0.05). Incubation with PAG abolished the

protective effect of PKGIa as evidenced by increased

necrosis (35.2 ± 1.7 %, Fig. 7a). Similarly, PKG1a over-

expression attenuated the release of LDH following SI/RO.

PKGIaK390A control did not exert any protective effects

as shown by elevated LDH release (Fig. 7b).

PKGIa overexpression also decreased apoptosis in car-

diomyocytes following SI/RO. The percentage of TUNEL-

positive nuclei was lower with PKGIa (13.2 ± 0.8 %,
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observed with PKG-Ia overexpression in the heart. PKG-Ia overex-

pression had no effect on the expression profiles of CBS and 3-MST
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P\ 0.05) as compared to the non-treated control group

(26.9 ± 2.8 %) and PKGIaK390A mutant (25.9 ± 1.9 %)

as shown in Fig. 7c.

Discussion

Our results show that direct overexpression of PKGIa in

the intact heart and adult cardiomyocytes protected against

I/R injury. Such protective effect of PKGIa gene therapy

was associated with significant increase in the levels of

H2S. Inhibition of CSE with PAG abolished the cardio-

protective effect of PKGIa, likely by decreasing H2S levels

both in cardiomyocytes as well as intact heart. These re-

sults suggest that H2S is an important mediator of the

cardioprotective effect of PKGIa.
There has been considerable interest in studying the role

of the NO-cGMP-PKG pathway in protection of the heart

against I/R injury [11, 21, 30, 38]. Inhibition of cGMP-

specific PDE5 with the selective potent inhibitors,
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sildenafil (Viagra), vardenafil (Levitra), and tadalafil

(Cialis), induced protective effects against I/R injury in the

heart [33, 41, 43] and adult cardiomyocytes [13, 15]. These

drugs inhibit the enzymatic hydrolysis of cGMP, which in

turn maintains its tissue accumulation, leading to down-

stream protective mechanisms involving activation of PKG

and opening of mitoKATP channels [33, 43]. Recently, we

also demonstrated that the NO-independent sGC activator,

cinaciguat, induced PKG-dependent generation of H2S

from CSE in the mouse heart [42]. In addition, several

studies have demonstrated the cardioprotective effects of

PKG modulation or activation prior to I/R injury or at the

time of reperfusion [3, 6, 10, 32]. The benefits of PKG

were not restricted to I/R injury since gene transfer of

PKGIb was shown to enhance the antihypertrophic effects

of NO in neonatal rat cardiomyocytes [48]. However, a

recent study demonstrated that deletion of PKGI in car-

diomyocytes did not amplify cardiac hypertrophy sec-

ondary to isoproterenol or trans-aortic constriction in vivo

[31]. We tested the effect of pharmacologic inhibition of

PKG with KT5823 at the time of reperfusion in our study

and our results demonstrate that KT5823 partially blocked

the infarct-sparing effect of PKG gene therapy, but com-

pletely abolished the preservation in LV function at 24 h

following I/R injury. This may be due to several reasons,

including late pharmacologic inhibition of PKG (96 h after

gene transfer) that may not block signaling pathways that

have been already initiated. Another reason may be the

half-life and duration of KT5823 in the system, which is

too short when compared to adenoviral gene transfer. Fi-

nally, side effects of pharmacologic inhibition cannot be

ruled out, which may affect function more than infarct

sparing in this model.

H2S protects cardiomyocytes by increasing cell viability

and improving cell function, and also attenuating I/R injury

in isolated-perfused hearts [50, 51]. Moreover, NaHS (H2S

donor), given at reperfusion and then daily for 7 days

following ischemia protected against the structural and

functional deterioration of the heart by attenuating oxida-

tive stress and mitochondrial dysfunction [7]. We previ-

ously showed that the long-acting PDE5 inhibitor, tadalafil,

reduced infarct size after I/R injury and attenuated LV

dysfunction through PKG-dependent generation of H2S

[41]. The infarct-sparing effect of tadalafil was abolished

by the CSE inhibitor, PAG, as well as in CSE-knockout

mice in these studies. Interestingly, the current study pro-

vides direct evidence that PKG is the central enzyme in the

cGMP signaling cascade that is responsible for protection

against I/R injury in vitro and in vivo, independent of

pharmacological agents such as PDE5 inhibitors or GC

activators, which may have off-target protective effects

secondary to PKG activation. Although we have previously

demonstrated that PKG overexpression protects primary

cardiomyocytes against SI/RO [14], the current study

highlights the role of H2S in mediating this cytoprotective

effect. Our results showed increase in H2S levels in car-

diomyocytes overexpressing PKGIa, but not its inactive

mutant form and also demonstrated that CSE inhibition
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Fig. 6 Representative M-mode images illustrating the preservation of

LV contractility with PKG gene therapy compared with other groups.

LV end-diastolic diameter (a), end-systolic diameter (b), and

fractional shortening (c) measured in the various treatment groups.

Although there was no marked dilatation at 24 h post-MI in all

groups, PKG-Ia overexpression prevented the increase in LV end-

systolic diameter seen in the other groups and preserved fractional

shortening
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abolished the cytoprotective effects of gene therapy with

PKG in cardiomyocytes. This observation also paralleled

our in vivo studies where the CSE enzyme in the heart

appears to be targeted by PKGIa because it significantly

increased H2S production and PAG was highly effective in

blunting myocardial protection following I/R injury. Fur-

thermore, myocardial overexpression of PKGIa caused

significant increase in CSE protein, which was not ob-

served in hearts overexpressing inactive PKGIaK390A.
Interestingly, the expression profile of the other H2S-pro-

ducing enzymes, CBS and 3-MST, was not changed by

PKG overexpression. These results further support the key

role that CSE-driven H2S generation plays in mediating the

protective effects of PKG.

A potential role of NO in protection against SI/RO in-

jury in cardiomyocytes following overexpression of PKGIa
was suggested in our previous study [14]. A clear identi-

fication of a potential cross-talk between NO and H2S

signaling in mediating the cardioprotective effects of

PKGIa requires further investigation, although recent re-

views have alluded to a relationship between these gaseous

molecules in the context of endothelial dysfunction [1]. Akt

phosphorylation was also implicated as a potential key

player in PKGIa-induced protection of primary rat car-

diomyocytes against SI/RO injury [14]. Interestingly, our

recent study demonstrating the infarct-sparing and anti-

inflammatory effects of H2S against myocardial I/R injury

also revealed an increase in Akt phosphorylation with

sulfide donor [46]. This possibly indicates that induction of

Akt phosphorylation with PKGIa overexpression may be

mediated by H2S. Further studies are warranted to explore

this premise.

Exactly how PKG overexpression is associated with

increased CSE is not clear from the present study although

it may be related to PKG-dependent enhancement of the

transcription factor Sp1. There is evidence that Sp1 plays

an important role in the basal transcriptional activity of

CSE enzyme [24] and regulates its gene expression in
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mutant groups. PAG blocked the protective effect of PKG
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vascular smooth muscle cells [49]. PKG can phosphorylate

Sp1 on serine residue(s), which results in transcriptional

activation of Sp1 in human SW480 colon cancer cells [8]

with consequent increase in CSE activity and possibly

generation of H2S. Future studies are warranted to inves-

tigate the mechanism through which PKG induces CSE

expression in the heart.

It is noteworthy that despite the cytoprotective effect of

PKGIa gene therapy in primary cardiomyocytes, it is un-

clear from our study whether other cardiac cell types also

profit from PKG overexpression and contribute to the

salutary effects following I/R injury in vivo. Although we

have previously shown that primary cardiomyocytes iso-

lated from adult mice do express PDE5, recent studies have

conveyed discrepant findings [31] and reported low con-

centrations of cGMP in these cells [20]. Therefore, iden-

tification of sGC- or particulate GC-regulated pool of

cGMP as the source of cardioprotection with PKG gene

therapy cannot be determined from our study. Future

studies are needed to dissect the involvement of individual

cell types and the regulatory source of cGMP contributing

toward such protection.

Recent studies have shown that oxidant sensing and

signaling by kinases play an important role in cardiovas-

cular function [5], although other studies have indicated

that cGMP-dependent activation of PKG renders it resistant

to disulfide formation and therefore desensitizes PKG to

oxidation [4]. This was shown to occur to a greater degree

in aorta as opposed to mesenteries since aorta has higher

peroxidase activity as demonstrated in the same study.

Based on this information, we believe that the primary

mechanism of PKG activation in the heart is cGMP-de-

pendent, which is supported by several studies demon-

strating significant increase in PKG activity with cGMP

regulating drugs, including PDE-5 inhibitors and sGC ac-

tivators [41, 42]. A very recent study showed that PKGIa
oxidation paradoxically mediates, to a certain extent, the

blood pressure-lowering effect of H2S [44]. Although this

signaling pathway seems contradictory to the findings in

the current study, in reality it highlights the possible in-

teraction between the NO and H2S axes whereby NO may

drive H2S generation through activation of PKG and H2S,

in turn, may activate PKG through either eNOS phospho-

rylation leading to increased cGMP [18] or by catalyzing

the formation of an activating interprotein disulfide within

PKG [44]. Moreover, H2S has been proposed as a non-

selective PDE inhibitor [2], which may also contribute to

cGMP/PKG axis activation.

In summary, we have provided evidence that myocardial

gene therapy with PKGIa protects against I/R injury by

reducing infarct size and preserving LV function through

H2S generation. We believe that gene therapy with PKGIa
or its pharmacologic activation may share a similar

signaling pathway involving generation of physiologic

levels of H2S in attenuating ischemic cardiomyopathy as

illustrated in Fig. 8. Although gene therapy for cardiovas-

cular disease is not currently practiced due to concerns

regarding viral delivery, the use of FDA-approved drugs

that can activate PKG (such as sildenafil and tadalafil) may

replace the need for such an approach. Therefore, this study

serves as a proof-of-concept for the importance of PKG

activators in cardioprotection with the involvement of H2S

as a mediator.
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