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Abstract Several lines of evidence suggest that altera-

tions of the ubiquitin-proteasome system (UPS) and

autophagy-lysosome pathway (ALP) may be involved in

cardiac diseases. Little is known, however, in hypertrophic

cardiomyopathy (HCM). This study studied these pathways

in two mouse models of HCM that mainly differ by the

presence or absence of truncated mutant proteins. Analyses

were performed in homozygous Mybpc3-targeted knock-in

(KI) mice, carrying a HCM mutation and exhibiting low

levels of mutant cardiac myosin-binding protein C

(cMyBP-C), and in Mybpc3-targeted knock-out (KO) mice

expressing no cMyBP-C, thus serving as a model of pure

cMyBP-C insufficiency. In the early postnatal development

of cardiac hypertrophy, both models showed higher levels

of ubiquitinated proteins and greater proteasomal activities.

To specifically monitor the degradation capacity of the

UPS with age, mice were crossed with transgenic mice that

overexpress UbG76V-GFP. UbG76V-GFP protein levels were

fourfold higher in 1-year-old KI, but not KO mice, sug-

gesting a specific UPS impairment in mice expressing

truncated cMyBP-C. Whereas protein levels of key ALP

markers were higher, suggesting ALP activation in both

mutant mice, their mRNA levels did not differ between the

groups, underlying rather defective ALP-mediated degra-

dation. Analysis of key proteins regulated in heart failure

did not reveal specific alterations in KI and KO mice. Our

data suggest (1) UPS activation in early postnatal devel-

opment of cardiac hypertrophy, (2) specific UPS impair-

ment in old KI mice carrying a HCM mutation, and (3)

defective ALP as a common mechanism in genetically

engineered mice with cardiac hypertrophy.
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Introduction

Eukaryotic cells possess two major proteolytic systems, the

ubiquitin-proteasome system (UPS) and the autophagy-

lysosome pathway (ALP) [26, 61]. The UPS is a highly

selective degradation pathway of short-lived cytosolic,

nuclear and myofibrillar proteins [61]. A main function of

the UPS is to prevent accumulation of damaged, misfolded

and mutant proteins, but it is also involved in several

biological processes including cell proliferation, adaptation

to stress and cell death [61]. The UPS is an ATP-dependent

system that requires polyubiquitination of the target protein

prior to its degradation by the 26S proteasome (for review,

see [34]). Polyubiquitination involves the concerted action

of three different ubiquitin enzymes: E1 (ubiquitin-acti-

vating), E2 (ubiquitin-conjugating) and E3 (ubiquitin

ligase). The 26S proteasome is a large, multicatalytic
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protein complex composed of the 19S regulatory particle,

which recognizes, deubiquitinates and unfolds the target

protein, and the 20S core, which subsequently degrades the

target protein through three major proteolytic activities

(chymotrypsin-like, trypsin-like and caspase-like).

The ALP is a bulk protein degradation process that

engulfs long-lived proteins as well as cytoplasmic organ-

elles into autophagosomes, which subsequently fuse with

lysosomes to form autophagolysosomes, in which lyso-

somal proteases degrade autophagosomal content [26].

ALP has been shown to play a pro-survival role in a variety

of physiological and pathophysiological processes such as

cell growth, tissue homeostasis and intracellular clearance

of mutated and misfolded proteins as well as damaged

organelles [26]. On the other hand, excessive activity of

ALP leads to self-digestion, degradation of essential

intracellular components and finally cell death [35].

Although autophagy has been considered to be non-selec-

tive and independent of the UPS, growing lines of evidence

indicate the presence of selective autophagy, including

mitophagy, pexophagy, and the p62/sequestosome 1 (p62/

SQSTM1)-dependent degradation of ubiquitin-positive

aggregates (for reviews, see [23, 49]).

The activity of the UPS and ALP has been found to be

altered in several human and experimental cardiac diseases

(for reviews, see [12, 34, 59]). In failing human hearts,

prominent accumulation of ubiquitinated proteins has been

reported [4, 25, 39, 51, 56]. Anti-proteasomal auto-immu-

nity was found to be markedly increased in patients with

dilated cardiomyopathy [54, 55]. Experimental animal

models of hypertrophy induced by transverse aortic con-

striction (TAC) showed either an increase [13] or a

decrease [51] in proteasomal activity, increased transcript

levels of UPS regulators [13, 39, 40], as well as induced

autophagic activity [50]. Involvement of the UPS in genetic

cardiac diseases has been first suspected in myocardial

tissue of patients with hypertrophic cardiomyopathy

(HCM; for review see [8]). HCM is characterized by left

ventricular hypertrophy (LVH), which is frequently

asymmetric, involving the interventricular septum. It is

caused by more than 450 mutations in at least 13 genes

encoding proteins of the cardiac sarcomere (for recent

reviews, see [8, 46]). One of the two most frequently

mutated genes [41], MYBPC3 encoding cardiac myosin-

binding protein C (cMyBP-C), mainly exhibits frameshift

mutations, which were expected to produce C-terminal

truncated cMyBP-C [6]. However, despite the presence of

nonsense mRNAs, truncated cMyBP-Cs were consistently

undetectable in myocardial tissue of patients with frame-

shift MYBPC3 mutations [31, 36, 43, 52]. Similarly, pro-

tein levels of truncated cMyBP-Cs were very low after

gene transfer in cells or in transgenic mice [16, 44, 57],

and blockade of the UPS by proteasome inhibitors

markedly increased mutant protein levels [1, 44]. Impor-

tantly, marked degradation of truncated cMyBP-C was

associated with the formation of ubiquitin-positive aggre-

gates and impairment of the UPS as evidenced with a

fluorescent reporter system [44]. The initial signal that

promotes targeting of mutant cMyBP-C to the UPS is not

yet elucidated. It could be due to low steady-state levels of

cMyBP-C phosphorylation [52], which is known to be

regulated by cAMP-dependent protein kinase [17], Ca2?/

Calmodulin kinase II [32], protein kinase C e [24], protein

kinase D [3] and/or by p90 ribosomal S6 kinase [10]. More

recently, proteasomal activities were found to be lower in

myocardial tissue from HCM patients [39]. Involvement of

ALP in HCM has not been described. However, we previ-

ously showed that the lysosome inhibitor bafilomycin A1

slightly increased the level of truncated cMyBP-C after

gene transfer in cardiomyocytes [44], suggesting potential

involvement of ALP in the degradation of mutant sarco-

meric proteins. Taken together, these data led us to

hypothesize that HCM mutations that result in the produc-

tion of abnormal sarcomeric proteins can impair the activity

of the major proteolytic systems in the heart and that this

may play a pathophysiological role in HCM on its own.

In order to gain more insights into the pattern and

specificity of UPS and ALP alterations during the evolution

of HCM, and to test our hypothesis in an in vivo context we

investigated these protein quality controls at different

postnatal windows in two mouse models of HCM.

Homozygous Mybpc3-targeted knock-in (KI) mice exhibit

LVH with reduced fractional shortening and express low

levels of mutant cMyBP-C proteins (10% of normal). The

reduction in cMyBP-C results from the activation of both

the nonsense-mediated mRNA decay and the UPS [53]. KI

mice were compared to homozygous Mybpc3-targeted

knock-out (KO) mice, which also exhibit LVH with

reduced fractional shortening, but do not express any

cMyBP-C [7], thus serving as a pure model of cMyBP-C

insufficiency.

Methods

The investigation conforms to the guide for the care and

use of laboratory animals published by the NIH (Publica-

tion No. 85-23, revised 1985).

Animal models

Creation and initial characterizations of Mybpc3-targeted

KI- and KO-mice were previously reported [7, 53]. Both

mouse lines were created and maintained on the Black

Swiss genetic background and wild-type (WT) mice were

used as controls. The UbG76V-GFP/1 mice ubiquitously
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express a green fluorescent protein (GFP)-fused protea-

some substrate [30], and were on the C57BL/6 J back-

ground. Crossed KI/, KO/ and WT/UbG76V-GFP mice were

therefore on a mixed genetic background.

Analysis of mRNAs

Total RNA was extracted from mouse ventricles using the

SV Total RNA Isolation Kit (Promega) according to the

manufacturer’s instructions. RNA concentration, purity and

quality were determined using the NanoDrop� ND-1000

spectrophotometer. Reverse transcription was performed

using oligo-dT primers with the RevertAidTM First Strand

cDNA Synthesis Kit (Fermentas) from 100 ng RNA. The

quantitative determination of the UbG76V-GFP, beclin-1,

microtubule-associated protein 1 light chain 3 (LC3), p62/

sequestosome 1 (p62/SQSTM1) and GaS mRNAs was

performed by qPCR using the MaximaTM SYBR Green/

ROX qPCR Master Mix (Fermentas), and primers specific

for every mouse sequence (see supplemental Table). GaS

was used as an endogenous control to normalize the

quantification of the target mRNAs for difference in the

amount of total RNA added to each reaction. Experiments

were performed on the ABI PRISM� 7900HT Sequence

Detection System (Applied Biosystems). The mRNA

amount was estimated according to the comparative Ct

method with the 2-DDCt formula.

Cytosolic and crude protein extracts from ventricular

tissue

About 50 mg of mouse ventricular tissue was frozen–

thawed 3 times in 250 ll of H2O containing a protease-

inhibitor cocktail (complete miniTM, Roche Diagnostics),

and homogenized using the Tissue Lyser (2 9 30 s at

20 Hz). Soluble material (cytosolic fraction) was recovered

by centrifugation at 13,200 rpm for 30 min at 4�C. Crude

protein extract was obtained from about 50 mg of ven-

tricular tissue homogenized in 3% SDS, 30 mM Tris-base,

pH 8.8, 5 mM EDTA, 30 mM NaF, 10% glycerol and

1 mM DTT and centrifuged at 13,200 rpm for 10 min. The

supernatants were collected and their concentrations were

determined using the BioRad protein assay reagent

(BioRad).

Western blot analysis

Proteins were loaded on acrylamide/bisacrylamide (29:1)

gels and electrotransferred to nitrocellulose membranes

with a 0.45 lm-pore size. For LC3 analysis, proteins were

electrotransferred to polyvinylidene fluoride membranes.

Membranes were stained overnight with the monoclonal

antibodies directed against ubiquitin (FK2, Biomol,

1:50,000), phospholamban (total PLB, A1, Badrilla,

1:5,000) and glyceraldehyde-3-phosphate dehydrogenase

(GAPDH, HyTest, 1:2,000) and the polyclonal antibodies

directed against ubiquitin (Santa-Cruz Biotechnology,

1:750) GFP (Santa-Cruz Biotechnology, 1:2,000), p62/Se-

questosome 1 (p62/SQSTM1; Sigma, 1:1,000), beclin-1

(Cell Signaling Technology, 1:1,000), microtubule-associ-

ated protein-1 light chain 3 (LC3; Novus Biologicals,

1:500), phosphorylated phospholamban (Ser16-PLB and

Thr17-PLB, Badrilla, 1:5,000), phosphorylated cardiac

troponin I (Ser23/24-cTnI, Cell Signaling Technology,

1:1,000), sarcoplasmic reticulum (SR) Ca2?-ATPase

(SERCA2; Santa-Cruz Biotechnology, 1:500) and calse-

questrin (CSQ; Dianova, 1:2,500). The secondary anti-

bodies were coupled to HRP (Dianova). Signals were

revealed with SuperSignal� West Dura extended duration

substrate (Pierce) and acquired with the Chemie Genius2

Bio Imaging System. Quantification of the signal was done

using the Gene Tools software.

Determination of proteasomal activities

The chymotrypsin-like, trypsin-like and caspase-like

activities of the proteasome were assessed in ventricular

cytosolic lysates using the synthetic peptide substrates

Suc-LLVY-AMC, Bz-VGR-AMC and Z-LLE-ßNA,

respectively, as described previously [33, 53]. For deter-

mination of the activities, 30 lg of protein were incubated

in the dark for 1 h at 37�C in an incubation buffer

(225 mM Tris–HCl, pH 8.2, 45 mM KCl, 7.5 mM

Mg(CH3COO)2-4H2O, 7.5 mM MgCl2-6H2O, 1.1 mM

DTT) containing an ATP-regenerating system (6 mM

ATP, 5 mM phosphocreatine, 0.2 U phosphocreatinekin-

ase) and the specific fluorogenic substrates Suc-LLVY-

AMC (60 lM, Merck Biosciences), Bz-VGR-AMC

(20 lM, Biomol) and Z-LLE-bNA (200 lM, Biomol) for

measuring the chymotrypsin-like, the trypsin-like and the

caspase-like activity, respectively. The fluorescence of the

released AMC or bNA reporter was measured using the

TECAN Safire2 microplate reader at an excitation wave-

length of 380 and 350 nm, respectively, and an emission

wavelength of 460 and 450 nm, repectively. Each sample

was measured in triplicates. The mean of the blank

(incubation buffer and H2O) was subtracted from the

mean of each sample triplicate.

Statistical analysis

Data are presented as mean ± SEM. Statistical analyses

were performed using the unpaired Student’s t test or two-

way ANOVA as indicated in the legends. All analyses were

realized using the GraphPad Software Inc. A value of

P \ 0.05 was considered statistically significant.
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Results

Cardiac hypertrophy in Mybpc3-KI and -KO mice

We first evaluated the heart-to-body weight ratio (HW/BW)

from birth to 13 weeks of age. Whereas it did not differ

between KO and WT mice at birth, it was higher in KO than

WT mice after 2 weeks of age and during all subsequent

postnatal windows (Fig. 1). Interestingly, the HW/BW was

already 22% higher in KI than in WT at birth and remained

higher at all investigated ages (Fig. 1). This was not asso-

ciated with a difference in BW between the groups.

Activation of the ubiquitin-proteasome system

during early postnatal development in KI and KO mice

To investigate whether the UPS is altered during the evo-

lution of hypertrophy, we determined the steady-state

levels of ubiquitinated proteins by Western blot. Ventric-

ular protein extracts from eight gender-matched mice were

first pooled to have an overview of the evolution in the

early postnatal development on one blot (Fig. 2a). The

steady-state levels of ubiquitinated proteins were elevated

at birth, dropped thereafter and remained low with post-

natal development in WT mice (Fig. 2a). Similarly, in both

KI and KO mice, the amount of ubiquitinated proteins was

also high at birth and dropped in the first 2–4 weeks of age,

but then increased again with time (Fig. 2a). We then

precisely quantified the levels of ubiquitinated proteins in

KI and KO and compared them to those in WT mice at

birth and at 2, 4, 6, 9 and 13 weeks of age (Fig. 2b, c). In

both KO and KI, the steady-state level of ubiquitinated

proteins was higher than in WT mice.

To evaluate whether the higher steady-state levels of

ubiquitinated proteins result from proteasome impairment,

proteasomal activities (chymotrypsin-like, trypsin-like and

caspase-like activity) were determined in ventricular cyto-

solic protein extracts at each predefined postnatal time

point. At birth, the three proteasomal activities did not differ

between KO and WT mice, whereas they were slightly

higher in KI than in WT mice (Fig. 3a, b, c). In both KO and

KI mice, the three proteasomal activities were higher

throughout the development and showed a progressive

relative increase over WT between 9 and 13 weeks of age.

The increase in proteasomal activities appeared overall

similar in KI and KO and positively correlated with the

degree of cardiac hypertrophy as determined by HW/BW

ratio (Fig. 4). No such correlation was observed in WT

(Fig. 4). These data suggest activation rather than the

inhibition of the UPS during the early postnatal develop-

ment of cardiac hypertrophy in both KI and KO mice.

Impairment of the ubiquitin-proteasome system

with age only in KI mice

Neither the steady-state levels of ubiquitinated proteins nor

the in vitro-determined proteasomal activities answer the

question of whether the UPS is meeting its demand or not. To

answer this question, KI, KO and WT mice were crossed

with the UbG76V-GFP mice, which provide the opportunity to

monitor the global function of the UPS in vivo [30]. The

UbG76V-GFP mice ubiquitously express a fluorescent sub-

strate of the UPS, which is normally degraded by this system.

When the UPS is pharmacologically inhibited or impaired/

saturated, the UbG76V-GFP substrate is accumulated [11].

We hypothesized that chronic usage of the UPS to degrade

mutant cMyBP-Cs leads to UPS saturation with age in KI,

but not in KO mice. The HW/BW was 54 and 32% higher in

57 ± 5-week-old KI/UbG76V-GFP and KO/UbG76V-GFP

than in WT/UbG76V-GFP mice, respectively (Fig. 5a). Sim-

ilarly, the HW/tibia length was 64 and 30% higher in KI/

UbG76V-GFP and KO/UbG76V-GFP than in WT/UbG76V-

GFP mice (Fig. 5b). This indicates marked cardiac hyper-

trophy in KI, and, to a lesser extent, in KO mice. The protein

level of UbG76V-GFP was determined by Western blot using

an antibody directed against GFP (Fig. 5c). Whereas

UbG76V-GFP level did not differ between KO and WT, it was

fourfold higher in KI than in WT and KO mice (Fig. 5c, d).

In contrast, UbG76V-GFP mRNA level did not differ between

the groups (Fig. 5e), suggesting a posttranslational mecha-

nism for the observed increase in protein level. Furthermore,

whereas the amount of ubiquitinated proteins was higher in
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Fig. 1 Degree of cardiac

hypertrophy during the early

postnatal development in KO,

KI and WT mice. Heart-to-body

weight ratio (HW/BW) was

determined at different postnatal

windows in KO (black squares),

KI (black triangles) and WT

(empty symbols) mice. Data are

expressed as mean ± SEM

(n = 8 animals per group and

age) with ***P \ 0.001, two-

way ANOVA
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mutant than in WT mice (Fig. 5g), the chymotrypsin-like

activity was[25% lower in KI than in WT, but normal in KO

mice (Fig. 5F). These data suggest UPS saturation/impair-

ment in old KI mice.

Defective autophagy-lysosome pathway in KI and KO

mice

In cell lines, inhibition of the proteasome has been shown

to activate ALP in order to clear polyubiquitinated proteins

[14, 50]. We therefore hypothesized that UPS impairment

results in activation of ALP in KI, but not in KO mice. ALP

was evaluated at different steps in 1-year-old KI/UbG76V-

GFP, KO/UbG76V-GFP and WT/UbG76V-GFP mice

(Fig. 6). It has been previously shown that higher protein

levels of beclin-1, microtubule-associated protein 1 light

chain 3 (LC3), and p62/sequestosome 1 (p62/SQSTM1)

underline heightened autophagic activity [22, 23, 60]. We

first investigated beclin-1, which is required in membrane

nucleation, an early step of autophagy. Beclin-1 protein
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Fig. 2 Steady-state levels of ubiquitinated proteins during the early

postnatal development in KO, KI and WT mice. Analyses were

performed in ventricular crude protein extracts. a Expression pattern

of ubiquitinated proteins in the first 3 months. Ventricular proteins of

eight gender-matched mice were pooled for each time point (from

neonates (NN) to 13 weeks of age) in KO, KI and WT mice. Western

blot stained with an anti-ubiquitin antibody (from Biomol for KO and

WT littermates and from Santa-Cruz for KI and WT littermates).

b Representative Western blot of ubiquitinated proteins and corre-

sponding Ponceau in 13-week-old KO and WT mice. c Representative

time courses of the steady-state levels of ubiquitinated proteins

normalized to Ponceau in neonatal to 13-week-old KO (black
squares) and KI (black triangles) mice related to WT (empty
symbols). Data are expressed as mean ± SEM with ***P \ 0.001,

two-way ANOVA. The number of animals per timepoint was n = 6
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levels were 74 and 32% higher in KO and KI than in WT

mice, respectively (Fig. 6a, b), suggesting autophagy

induction. However, beclin-1 mRNA levels did not differ

between the groups (Fig. 6f), supporting reduced beclin-1

degradation rather than activated synthesis. Then we

investigated the conversion of soluble LC3-I to lipidated

LC3-II, which is involved in the formation of autophago-

somes [26]. The level of LC3-II was 66% higher in KI and

52% higher, although not significant in KO than in WT

mice (Fig. 6a, c). However, and in contrast to our expec-

tations, the level of LC3-I did vary and was also higher,

resulting in almost twofold higher level of total LC3 in
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Fig. 3 Proteasomal activities

during the early postnatal

development in KO, KI and WT

mice. Analyses were performed

in ventricular cytosolic protein

extracts. Representative time

courses of a chymotrypsin-like

activity, b trypsin-like activity

and c caspase-like activity of the

proteasome in KO (black
squares), KI (black triangles)

and WT (empty symbols) mice.

Data are related to WT and

expressed as mean ± SEM

(n = 8 animals per group and

age) with *P \ 0.05,

**P \ 0.01 ***P \ 0.001, two-

way ANOVA
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both KO and KI than in WT mice (Fig. 6d). The absence of

regulation at the mRNA levels (Fig. 6g), together with

higher levels of LC3 protein suggests a reduced lysosomal-

mediated LC3 degradation. We finally investigated p62/

SQSTM1, which acts as a shuttle protein that binds ubiqui-

tinated proteins and LC3 and directs ALP-mediated degra-

dation of ubiquitinated proteins [38]. The p62/SQSTM1

protein level was more than twofold higher in both KI and
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Fig. 5 Evaluation of the global function of the ubiquitin-proteasome

system in 1-year-old KO/UbG76V-GFP, KI/UbG76V-GFP and WT/

UbG76V-GFP mice. Analyses were performed in hearts isolated

from * 57-week-old KO (light gray), KI (dark gray) and

WT (white) mice. a Heart-to-body weight ratio (HW/BW). b Heart

weight-to-tibia length ratio (HW/TL). c Representative Western blots

of ventricular crude protein extracts stained with anti-GFP and anti-

GAPDH antibodies. d Levels of UbG76V-GFP protein normalized to

GAPDH. e UbG76V-GFP mRNA levels normalized to Gas determined

by RT-qPCR in ventricular total RNA extracts. f Chymotryspin-like

activity of the proteasome determined in ventricular cytosolic protein

extracts. g Steady-state levels of ubiquitinated proteins normalized to

Ponceau determined by Western blot of ventricular crude protein

extracts using an anti-ubiquitin antibody. Data are related to WT and

expressed as the mean ± SEM with *P \ 0.05, **P \ 0.01 and

***P \ 0.001 versus WT, and with #P \ 0.05 and ###P \ 0.001

versus KO, Student’s t test. The number of animals is indicated in the

bars
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Fig. 6 Evaluation of the autophagy/lysosome pathway in 1-year-old

KO/UbG76V-GFP, KI/UbG76V-GFP and WT/UbG76V-GFP mice. Anal-

yses were performed in ventricular protein or RNA extracts isolated

from *57-week-old KO (light gray), KI (dark gray) and WT (white)

mice. a Representative Western blots stained with antibodies directed

against the indicated proteins; b Protein levels of beclin-1 normalized

to Ponceau; c Protein levels of LC3-II normalized to CSQ; d Protein

levels of total LC3 (LC3-I ? LC3-II) normalized to CSQ; e Protein

levels of p62/SQSTM1 normalized to Ponceau, f Beclin-1 mRNA

levels normalized to Gas; g LC3 mRNA levels normalized to Gas;

h p62/SQSTM1 mRNA levels normalized to Gas. Data are related to

WT. Bars represent the mean ± SEM with *P \ 0.05, **P \ 0.01

and ***P \ 0.001 versus WT, and with #P \ 0.05 versus KO,

Student’s t test. The number of animals is indicated in the bars
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KO than in WT mice (Fig. 6a,e), whereas p62/SQSTM1

mRNA level did not differ between the groups (Fig. 6h).

Furthermore, a marked and significant positive correlation

was found between the levels of ubiquitinated proteins and

p62/SQSTM1 in KI and KO mice (Spearman correlation

factor r = 0.81, p \ 0.001; Fig. 7). These data suggest ALP

impairment rather than activation in both KI and KO mice.

No molecular signature of heart failure in KI mice

Since KI mice specifically exhibit UPS impairment with

age, we suspected a specific phenotype in these mice, and

therefore evaluated whether this could be associated with a

specific molecular signature of heart failure [15]. Protein

levels of phosphorylated cTnI (Ser23/24-cTnI), SERCA2,

as well as total and phosphorylated phospholamban (total

PLB, Ser16-PLB and Thr17-PLB) were determined in all

groups. The levels of Ser23/24-cTnI, SERCA2 and total

PLB did not differ between KI than WT mice (Fig. 8). On

the other hand, the levels of SERCA2/PLB ratio and

Thr17-PLB were higher in KI (Fig. 8). Overall, KO did not

differ to WT mice, except for a slightly lower Ser16-PLB

level (Fig. 8). These data suggest no specific signature of

heart failure in KI and KO mice.

Discussion

In the present study we investigated the major proteolytic

systems UPS and ALP at different postnatal windows in

homozygous Mybpc3-targeted KI and KO mice. Both

models develop LVH and cardiac dysfunction [7, 53].

Whereas KI mice exhibit low levels of mutant cMyBP-C

proteins due, at least in part, to their degradation by the UPS

[53], KO mice do not express any cMyBP-C [7], thus serving

as a model of pure cMyBP-C insufficiency. We

hypothesized that chronic degradation of mutant cMyBP-C

proteins may specifically cause saturation of the UPS and

compensatory ALP activation, which might play an own role

in the evolution of the disease in KI mice. All analyses were

performed in neonates to 1-year-old mice. The major find-

ings of the present study are: (1) accumulation of ubiquiti-

nated proteins and greater proteasomal activities, suggesting

UPS activation during the early postnatal development of

cardiac hypertrophy in both KI and KO mice, (2) accumu-

lation of the UPS substrate UbG76V-GFP protein, but not

mRNA, suggesting UPS impairment in 1-year-old KI, but

not KO mice, (3) higher levels of proteins, but not mRNA of

beclin-1, LC3-I, LC3-II and p62/SQSTM1, suggesting

defective ALP in 1-year-old KI and KO mice, and (4) no

overall molecular signature of heart failure in 1-year-old KI

and KO mice. Our findings support the view of (i) a specific

impairment of the UPS in a KI mouse model of HCM, and

(ii) ALP impairment as a common mechanism in genetically

engineered mice with cardiac hypertrophy.

Over the last two decades, the UPS has been increas-

ingly recognized as a major system in several biological

processes including cell proliferation, adaption to stress

and cell death [5, 20, 21, 27, 37, 42]. More recently,

activation or impairment of the UPS has been reported in

cardiac disease (for recent reviews, see [34, 45, 48]). Par-

ticularly, accumulation of ubiquitinated proteins has been

reported in failing human hearts [4, 25, 51, 56]. This argues

in principle for an impairment of the UPS, which in turn is

expected to be associated with lower proteasomal activities

as previously observed in human and experimental model

of heart failure [39, 51], and in human HCM [39]. Inter-

estingly, in the early postnatal development, KI and KO

mice exhibited elevated steady-state levels of ubiquitinated

proteins, but higher proteasomal activities, which were

positively correlated to the degree of LVH in both mutant

mice. These data are in agreement with previous observa-

tions of greater proteasomal activities in murine, canine

and feline models of TAC-induced cardiac hypertrophy

[2, 13], and in transgenic mice with cardiac hypertrophy

[9, 19]. Therefore, we propose that the UPS is rather

activated than inhibited in the early postnatal development

of cardiac hypertrophy in KI and KO mice. Both accu-

mulation of ubiquitinated proteins and activation of the

proteasome could result from accelerated protein turnover

in the development of cardiac hypertrophy. Alternatively,

accelerated degradation may be an adaptive mechanism to

reduce the level of hypertrophic, hypertrophy-promoting

and proapoptotic factors and therefore to prevent further

cardiac hypertrophy. Indeed, a number of key factors that

promote cardiac hypertrophy such as b-catenin or calci-

neurin are targeted for degradation by the UPS [18, 28].

The examination of KI and KO mouse lines crossed with

the UbG76V-GFP transgenic mice gave the unique
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Fig. 7 Correlation between the steady-state levels of ubiquitinated

proteins and the levels of p62/SQSTM1 in KO plus KI mice
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opportunity to evaluate the global function of the UPS in

vivo [30]. In contrast to the determination of steady-state

levels of ubiquitinated proteins, which monitors the balance

between ubiquitination and deubiquitination, the level of

UbG76V-GFP protein specifically underlines the degradation

rate since the UbG76V-GFP protein is a specific substrate of

the UPS, which is accumulated when proteasome function

is inhibited [30]. The UbG76V-GFP protein levels, but not

the mRNA levels were markedly higher in 1-year-old KI

than in KO or WT mice. This suggests reduced

proteasomal-mediated degradation, which was supported

by a lower chymotrypsin-like activity in KI than in KO

mice. These in vivo data support our previous findings of

UPS impairment after gene transfer of truncated cMyBP-C

in cardiac myocytes [44]. Furthermore, our data are in

agreement with recent findings of proteasomal dysfunction

in human HCM, and particularly in patients with sarcomeric

gene mutations [39], as well as in heterozygous KI mice

after adrenergic stress [47]. We propose that chronic deg-

radation of mutant cMyBP-Cs leads to saturation of the UPS
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Fig. 8 Evaluation of the levels of heart failure markers in 1-year-old

KO/UbG76V-GFP, KI/UbG76V-GFP and WT/UbG76V-GFP mice. Anal-

yses were performed in ventricular protein extracts isolated

from *57-week-old KO (light gray), KI (dark gray) and WT (white)

mice. a Representative Western blots stained with the indicated

antibodies; b Levels of the indicated proteins (normalized to ponceau

or calsequestrin, CSQ). Data are related to WT and expressed as the

mean ± SEM with *P \ 0.05 versus WT and with #P \ 0.05 versus

KO, Student’s t test. The number of animals is indicated in the bars
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in aged KI mice. Although no specific molecular signature

of heart failure was detected in KI mice, our data underlined

specific differences between KI and KO mice, which, we

propose, are related to the presence/absence of mutant

cMyBP-C. Further analyses will evaluate whether inhibi-

tion/activation of proteasome function will worsen or

ameliorate the phenotype in old KI mice, as recently shown

in another cardiac proteinopathy [29].

It has been generally assumed that the UPS and ALP

act separately. However, several studies suggest that they

may function in concert to regulate the turnover of pro-

teins (reviewed in [58, 59]). Particularly the induction of

autophagy by inadequate UPS proteolytic function would

be critical to alleviate proteotoxicity. In line with this, it

was shown that pharmacological inhibition of the protea-

some by MG132 induced autophagy in rat cardiac myo-

cytes and other mammalian cell types [14, 50]. Therefore,

we hypothesized that UPS dysfunction may induce

autophagy in KI mice. The findings of higher protein

levels of three major markers of ALP, beclin-1, LC3-II,

and p62/SQTSM1 at first suggest activation of autophagy

and formation of autophagosomes [49]. However, the

absence of transcriptional activation of these proteins

supports rather the view of defective degradation via ALP

in KI, and also even to a greater extent in KO mice. The

marked positive correlation between levels of ubiquiti-

nated protein and p62/SQSTM1 in both mutant mice,

support previous findings of selective autophagy, in which

p62/SQSTM1 binds, via LC3, ubiquitinated proteins and

sequester them into autophagosomes [23, 38]. Our find-

ings suggest a blockade of the fusion between auto-

phagosome and lysosome, which prevents the formation

of the autophagolysosome and therefore degradation of the

autophagosome content.

In conclusion, our data show overall alterations of the

UPS and ALP in genetically engineered cardiomyopathic

mice. Most of these alterations appear to be part of the

general pathology related to the massive cardiac hyper-

trophy present in both mouse strains and are in accordance

with published data in other animal models of cardiac

hypertrophy. Importantly, our data support the view that

(1) chronic degradation of mutant cMyBP-Cs via the UPS

results in UPS impairment only in mutant mice carrying a

human HCM mutation, and (2) defective ALP-mediated

degradation is a common mechanism in genetically engi-

neered mice with cardiac hypertrophy.
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