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Abstract Current concepts of vascular permeability

are largely still based on the Starling principle of 1896.

Starling’s contribution to understanding vascular fluid

homeostasis comes from realising that the transport of fluid

to and from the interstitial space of peripheral tissues fol-

lows the balance between opposing oncotic and hydrostatic

pressures. It is presumed that in peripheral tissues fluid is

readily filtered from blood to tissues at the arterial/arteri-

olar side of the circulation and largely reabsorbed at the

venular/venous aspect, excess fluid being removed from

the tissue by the lymphatic system. This balance is deter-

mined particularly by the properties of the vascular barrier.

Recent studies have shown that the endothelial glycocalyx,

located with a thickness of at least 200 nm on the luminal

side of healthy vasculature, plays a vital role in vascular

permeability by constituting the vascular barrier together

with the endothelial cells themselves. While water and

electrolytes can freely pass through the glycocalyx, plasma

proteins, especially albumin, interact strongly. Binding and

intercalating plasma constituents with the structural ele-

ments of the glycocalyx creates the so-called endothelial

surface layer. This is the actual interface between flowing

blood and the endothelial cell membrane in vivo. The

oncotic pressure difference pertinent to fluid homeostasis is

not built up between the intravascular and the interstitial

tissue spaces, but within a small protein-free zone beneath

the glycocalyx surface layer. This explains why perturba-

tion of the glycocalyx leads to a breakdown of both fluid

and protein handling in the coronary vascular bed. Pre-

venting damage to the glycocalyx seems to be a promising

goal in cardioprotection in many clinical scenarios,

including acute ischaemia, hypoxia and inflammation, and

chronic vascular disease as in atherosclerosis, diabetes and

hypertension.
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Basics

About 60% of the body mass of adults in good cardio-

pulmonary health consists of water, which is distributed to

two-thirds intracellularly and to one-thirds extracellularly.

Most of the latter is allocated in the interstitial space

(80%), while 20% contribute as the plasma volume to

cardiac preload. Intra- and extracellular spaces are sepa-

rated by the cell membranes. This lipid double layer is not

resistant against hydrostatic pressure, but is largely

impermeable for electrolytes and proteins. In contrast, the

vascular barrier, in total, permits hydrostatic pressure gra-

dients to be established, but does not retain electrolytes,

though it is supposedly largely impermeable for proteins.

Thus, water distributes passively over the compartments,

following the distribution of osmotically and oncotically

active substances.

This review was aimed to provide an integrative update

on current physiological knowledge of the properties of

the vascular barrier, focusing on the coronary system and

the role played by the endothelial glycocalyx. Other
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physiological functions of the glycocalyx such as the

mediation of shear stress from flowing blood to the endo-

thelial cells, the regulation of inflammatory interactions

and the prevention of firm adhesion of blood platelets and

leucocytes to the intact vessel wall will only be mentioned

in passing. The readers are referred to recent reviews and

papers covering these aspects [5, 14, 16, 26, 40, 54, 63, 79,

80, 85, 93, 102, 114].

Though the endothelial glycocalyx represents the pri-

mary, endothelially generated structure at the vessel wall/

blood interface, in vivo we are dealing with the endothelial

surface layer, formed when plasma constituents interact

with the molecules expressed at the cell membrane [86].

The two concepts are often not differentiated in the fol-

lowing text, but there are graded differences between them

in regard to hydraulic resistance and permeability.

Background

In 1896, the British physiologist Ernest Starling [100]

introduced his famous concept of vascular fluid homeo-

stasis, in which he schematically opposed hydrostatically

driven fluid losses towards the tissues against reabsorption

on the basis of an inwardly directed oncotic pressure gra-

dient. This model is still favoured in most text books of

physiology today and can be mathematically described by

the equation

F=A ¼ CH � PHV � PHIð Þ � r� ðpOV � pOIÞ½ �;

where F/A is filtration rate per area, CH hydraulic con-

ductivity, PHV - PHI = hydrostatic pressure (PH) gradient

between the vascular lumen (V) and the interstitial space

(I), r reflection coefficient for the respective colloids at the

vascular barrier and pOV - pOI is oncotic pressure (pO)

gradient between the vascular (V) lumen and the interstitial

space (I).

Starling [100] suggested a high filtration–high resorp-

tion scenario even for non-fenestrated microvessels where

fluid loss out of the vasculature on the arteriolar side

caused by the higher blood pressure in comparison to the

oncotic pressure is countered on the venular side by reab-

sorption due to the overbearing effect of intravascular

oncotic pressure (Fig. 1). If these forces are in near balance

when integrated along the microvascular length, the lym-

phatic system should be able to cope with any resulting,

relatively low excess of fluid left in the interstitial space.

The introduction of the term ‘‘sigma’’—the reflection

coefficient of colloids at the vascular barrier—within the

equation results from an uncertainty within the concept

concerning possible differences in behaviour of distinct

colloidal molecular species and variability of permeability

between different organs. In the special case of the blood–

brain barrier, r can be set as 1. However, also in all other

vascular beds, one must expect r to become totally

unnecessary under steady-state conditions, once the actual

net difference in oncotic pressure (DpO) is known.

Most clinical and experimental observations detailing

tissue oedema have been based on this historical principle.

It was also, apparently successfully, adopted for describing

myocardial fluid homeostasis [69]. This appears to be

inadequate in the face of several recent physiological

findings, but theoretical physiological considerations

clearly challenge the traditional view. For instance, Levick

[62] first noticed the ‘‘low lymph flow paradox’’, i.e., the

phenomenon that the vascular barrier is still competent

even when the interstitial oncotic pressure equals that of

the vascular lumen. In rat mesenteric microvessels, the

effective inwardly directed oncotic force opposing the

hydrostatic gradient was still 70% of the intravascular

Fig. 1 The classical principle

of Ernest Starling for fluid

homeostasis in peripheral

microvascular beds with

continuous endothelium: a high

filtration–high resorption

concept relying on very low

permeability of plasma proteins

and low interstitial protein

concentration
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colloid osmotic pressure even if the non-fenestrated

microvessels examined in this model were surrounded by

fluid containing colloid at the same concentration [2]. The

Starling hypothesis would have predicted the absence of

any inwardly directed force in this situation [100], hydro-

statically driven outflow of fluid merely being mechani-

cally hindered by physical properties of the vessel wall. As

illustrated schematically in Fig. 2, the steepness of the

graphs represents the hydraulic conductivity, i.e., the fil-

tration rate per unit area per unit pressure gradient, which is

the higher the steeper the line [2]. The intersection with the

abscissa represents the effective inwardly directed oncotic

force, which should lie at the point of origin if the oncotic

pressure gradient across the vessel wall is nullified. Any

resorptive force towards the vascular lumen should shift

the curve rightwards. Obviously, a non-fenestrated isolated

microvessel does not follow Starling’s suggestions con-

cerning a significant role of the interstitial oncotic pressure

for vascular barrier competence. Experimental research

using the isolated perfused heart, a whole organ model

providing a complete vascular bed with large vessels,

arterioles, capillaries and venules, plus the naturally sur-

rounding tissue, confirmed these findings. Consistently, the

interstitial and intravascular concentrations of any colloid

applied into the coronaries came to within about 90–95%

of each other inside of 20 min of onset of infusion [17, 48,

91]. Moreover, immunohistochemistry showed an even

distribution of albumin throughout the whole interstitial

compartment. The vascular barrier, however, was func-

tionally intact in these isolated organs [47].

A further, clinically important contradiction to Star-

ling’s concept was revealed in the perfused whole organ,

namely the ‘‘COP paradox’’ [48]. It is obviously not pri-

marily the intravascular colloid osmotic pressure (COP)

which determines the power limiting transvascular fluid

loss. Rather, the pivotal issue might be the type of colloid

active at the endothelial surface. Similar to the isolated

microvessel model, the coronary system of isolated guinea

pig hearts was pressurised with artificial perfusate at dif-

ferent levels. Using a Langendorff setup, hearts were per-

fused with Krebs-Henseleit buffer alone, buffer diluted

with isotonic saline, or buffer containing one of two dif-

ferent kinds of colloid at various concentrations [48]. The

resulting transvascular filtration rates gave rise to transu-

date fluid appearing on the epicardial surface, comparable

to the lymph flow in vivo, and were related to the

respective perfusion pressures (Fig. 3). Just as in the iso-

lated vessel model (Fig. 2) [2], a strictly linear dependency

was observed. Adding a colloid to the artificial perfusate

significantly lowered pressure-dependent transvascular fil-

tration. The natural protein human albumin, however,

appeared to be much more effective in sealing the vascu-

lature than the artificial alternative hydroxyethyl starch,

frequently used in clinically relevant bleeding to maintain

the plasma COP [48]. The sealing effect of albumin was

practically independent of the intracoronary COP it pro-

vided, down to a value only one quarter of the physiolog-

ical level. The special ability of albumin to prevent

coronary vascular extravasation of fluid has been noted

repeatedly before [42–44]. If such behaviour were to be

considered mathematically, then the reflection coefficient r
of the Starling formula would need to become greater than

unity for low concentrations of albumin.

Neither the ‘‘low lymph flow paradox’’ [62] nor the ‘‘COP

paradox’’ [48] is really compatible with the traditional con-

cept of Ernest Starling [100]. Furthermore, it surprises that

physiologists, including Starling, have ignored the fact that

lymphatic fluid is potentially able to coagulate. This ability,

Fig. 2 The effective oncotic

gradient across the vessel wall is

not determined by the

concentration gradient of

colloid between intravascular

and interstitial compartment

(schematic summary of results

of studies on isolated

microvessels; for detailed

description see [2])
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recognised already in 1653 (see [61]), implies that the

extravascular fluid must contain significant amounts of

coagulation factors derived from plasma and also all kinds

of other plasmatic proteins. Indeed, the interstitial space of

human heart tissue is rich in albumin, seen to be coating all

cardiomyocyte cell surfaces (Fig. 4) [52].

Introducing the endothelial glycocalyx

The endothelial glycocalyx is an intravascular fringe

of astounding functional significance. It participates in

numerous physiological processes, foremost in regulating

vascular permeability, preventing firm adhesion of leuco-

cytes and blood platelets to the vessel wall, transmission of

shear stress, and in modulation of inflammatory and hae-

mostatic processes [5, 16, 85, 86, 93, 102, 114]. Patho-

physiological sequelae of glycocalyx failure or perturbation

include generation of tissue oedema, systemic inflammatory

response syndrome, diabetic angiopathy and, possibly,

atherogenesis. Situations in which damage to the glycoca-

lyx has been reported include ischaemia/reperfusion,

hypoxia, sepsis, volume overload, diabetes and atheroscle-

rosis [74, 76, 88, 108, 112]. As already stated, this review

shall focus on the role played in fluid homeostasis and

colloid permeability in the heart.

Hydraulic conductance

First suspicions that there was something on the surface of

the vessel wall helping plasma proteins to attenuate the

development of oedema were published in 1940, but

without any supportive optical evidence [29]. On the basis

of chemical analysis, showing high content of sugars, this

lining was soon termed the ‘‘endothelial glycocalyx’’; the

physiological properties and true dimensions, however,

remained unclear for a long time [67]. There were first

substantial considerations about a significant contribution

of the endothelial glycocalyx to vascular barrier compe-

tence in the early 1980s [24]. Furthermore, the ability of

plasma albumin to significantly lower hydraulic conduc-

tivity in conjunction with the endothelial glycocalyx

was established [24, 42]. However, despite the formal

Fig. 3 The pressure dependency of net fluid filtration in the intact

coronary system of guinea pig hearts perfused with Krebs-Henseleit

buffer containing no colloid or 2 g% hydroxyethyl starch (HES) or

human albumin (1.7 or 0.85 g%). Lines represent mean values of five

hearts per condition, with the two albumin concentrations being

practically equipotent. COP colloid osmotic pressure; data taken from

[47, 48]

Fig. 4 Albumin (green stain) in

samples of human heart tissue.

Left panel immunohistology of

a healthy human heart; right
panel explanted human heart

with dilated cardiomyopathy;

for details see [52]. Albumin

coats all extravascular cell

surfaces and fills the interstitial

matrix
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attribution of a role as a ‘‘second barrier’’ [91], in addition

to that posed by the endothelial cell bodies themselves, the

exact contribution of the endothelial glycocalyx to vascular

barrier competence remained unclear until very recently.

Meanwhile, improved electron microscopical fixation

techniques [106], in particular one based on stabilisation of

the negatively charged structure (see below) by lanthanum

ions during fixation reaction with glutaraldehyde [111],

revealed that the first descriptions had gravely underesti-

mated its actual dimension [67, 112]. It could be demon-

strated repeatedly to be at least thicker than 200 nm in situ,

both in the coronary system and the human umbilical vein

(Fig. 5) [14, 15, 17, 19, 21, 47, 48, 54, 55, 91].

In its strictest sense, the endothelial glycocalyx consists

mainly of membrane-bound glycoproteins and proteogly-

cans, chiefly syndecans and glypicans, carrying negatively

charged heparan sulphate (about 70%) and chondroitin and

dermatan sulphate side chains (30%), accounting for much

of the biophysical properties [5, 85, 86, 114]. In addition,

the glycocalyx harbours the outer aspects of membrane

receptors, channels and adhesion molecules (within the

closest 10–20 nm). The non-sulphated, receptor-attached,

long-chain molecule hyaluronan is also often considered to

be an essential part of the surface lining (Fig. 6) [86, 103].

The endothelial glycocalyx by itself, however, is relatively

functionless in a model vasculature perfused with a pure

crystalloid buffer since it poses no great resistance against

passage of water, electrolytes and small uncharged osmo-

lytes [47, 48, 63, 91].

The situation is dramatically different in vivo when

natural proteins are present at the endothelial surface.

Albumin, for instance, has been shown to be tightly

attached to the endothelial surface, even after a protein-free

washout procedure lasting several minutes [47, 54].

Obviously, many proteins, peptides (including cytokines

and chemokines) and even lipids are bound to and inter-

calated in the endothelial glycocalyx, together constituting

the so-called ‘‘endothelial surface layer’’ (ESL) [114]. This

seems to possess a functional thickness of at least 1 lm

[85], but general consensus is that the width of the glyco-

calyx proper and that of the ESL varies in different regions

of the vascular system. Large vessels seem to support a

wider ESL than microvessels. A dynamic equilibrium in

vivo between the proteins of the flowing blood and those

bound to or within this structure has been described before

(Fig. 6) [85, 86].

The question exactly how this layer might be able to

generate an inwardly directed oncotic gradient even when

interstitial and intravascular protein concentrations are

comparable was answered in 2004 using isolated rat mes-

enteric microvessels as model [2]. Adamson et al. [2]

suggested a small space of much less than 100 nm width

situated directly beneath the endothelial surface layer to

remain practically protein-free when plasma is forced

outwards hydrostatically as proteins are excluded or

retained within the structure. Because the fluid, nonethe-

less, passing through will be extremely low in protein, an

inwardly directed oncotic gradient will be generated

between this small space and the protein-loaded endothelial

surface layer (Fig. 7) [47]. This force limits the net outflow

of ultrafiltrate towards the interstitial space. A further

limitation of hydraulic conductivity occurs on the basis of

Fig. 5 Transmission electron microscopy of the endothelial glyco-

calyx fixed with glutaraldehyde in the presence of lanthanum nitrate.

a, b Coronary capillary of guinea pig heart, in total and at high

magnification, respectively, perfused ex vivo after isolation (taken

from Chappell et al. [15]); c human umbilical vein, perfused ex vivo

within minutes of birth (for details, see Chappell et al. [21])
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the endothelial anatomy in continuous arteriolar and cap-

illary vessel segments. As described in detail by Adamson

et al. [2] as well as by Curry and Adamson [26] in a recent

review, fluid can only pass into the interstitial space in

these vessel segments via small infrequent breaks within

the junction strands of narrow clefts between the endo-

thelial cells. This normally small flow of ultrafiltrate is

important, because it prevents back-diffusion of colloid

from the interstitial space (see below) into the sub-glyco-

calyx zone, a process which would obliterate the oncotic

gradient developed across the luminal glycocalyx.

As formulated by Levick and Michel [63], the revised

Starling equation for continuous endothelia should read as

F=A ¼ CH � PHV � PHIð Þ � r� ðpOV � pOgÞ½ �;

where F/A is filtration rate per area, CH hydraulic con-

ductivity, PHV - PHI hydrostatic pressure (PH) gradient

between the vascular lumen (V) and the interstitial space

(I), r reflection coefficient for the respective colloids at the

vascular barrier and pOV - pOg is oncotic pressure (pO)

gradient between the vascular (V) lumen and the underside

of the glycocalyx (g).

The coronary venules, in contrast, appear to be more

porous than arterioles and capillaries. Qualitative obser-

vations in isolated heart preparations have shown that

highly charged positive ionic species such as lanthanum

ions, which should be retained by the strongly negatively

charged glycocalyx, and also plasma proteins such as

albumin pass into the interstitial space within minutes after

onset of intracoronary infusion, but only around venules

[47]. This relatively facile passage of colloids explains why

lymphatic fluid of the heart and the so-called ‘‘transudate’’

appearing on the epicardial surface of perfused heart

preparations contain colloid in such high concentrations in

the steady state (*90% of the arterial value) [91]. As a

consequence, there is practically no oncotic gradient hin-

dering outflow of plasma in the venular vessel segments, or

favouring resorption of interstitial fluid. On the other hand,

there is only a very small hydrostatic pressure gradient

across the vascular wall in this coronary section, limiting

fluid extravasation. Accordingly, the actual amount of

colloid passing into the interstitial space of the myocar-

dium via passive transport should be quite small in a

healthy coronary bed. Colloid that does extravasate will do

so largely via diffusion.

The present concept describing fluid homeostasis in the

intact cardiac microvascular bed is schematically outlined

in Fig. 7 [47]. In the arteriolar and capillary segments we

have a low-flow situation of protein-poor plasma filtrate; in

the venular section we have a low-flow exchange of pro-

tein-rich plasma with little or no direct resorption from the

Fig. 6 Schematic arrangement of the chief constituents of the

endothelial glycocalyx and the established endothelial surface layer.

Glycoproteins include intercellular and vascular adhesion molecules,

selectins and integrins. These all extend at most 10–20 nm from the

lipid double layer and are, consequently, normally sequestered

beneath a healthy surface layer [5]. Shed components of the

glycocalyx are to be found in normal plasma [11, 88]. CD44
membrane receptor binding hyaluronan (adapted from Pries et al. [86]

and Tarbell and Prahakis [103])

Fig. 7 The modern low filtration–(low) no resorption concept of fluid

homeostasis in the coronary system. In the capillary segments there is

a relatively high hydrostatic pressure gradient, but this is opposed by a

large oncotic pressure gradient established between the endothelial

surface layer and the underside of the glycocalyx. In addition, there is

a high resistance to flow through the narrow interendothelial clefts. In

the venular sections the hydrostatic pressure gradient is small and

owing to the easy egress of colloids, there is hardly any oncotic

pressure gradient. For details, see [47]. The enlargement of the

interendothelial cleft illustrates the ability of the endothelial glyco-

calyx to establish an oncotic gradient and the maintenance of the

protein-poor zone under the glycocalyx by the low flow of ultrafiltrate

through the narrow cleft. This convection prevents interstitial proteins

from diffusing up to the luminal side of the endothelial cells.

P hydrostatic pressure, P oncotic pressure, c capillary lumen,

e endothelial surface layer (ESL), g underside of the glycocalyx,

t tissue, IS interstitial space, v venular lumen
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interstitium, but with ready exchange (via diffusion) of all

dissolved constituents of the intra- and extravascular fluids.

Allowing such exchange answers the age-old problem of

how large molecules and essential nutrients such as low-

density lipoprotein particles gain access to the parenchymal

cells of the heart under physiological conditions. It, of

course, also explains why cardiac lymphatic fluid is

potentially able to coagulate.

Though neither r, the colloid reflection coefficient, nor

pOg, the oncotic pressure at the underside of the endothelial

glycocalyx, of the revised Starling formula will generally

be known, consequences of damaging or degrading the

endothelial surface layer (see below) are readily apparent:

Loss of the ability to form a transglyceal oncotic gradient

will heighten filtration forces in arteriolar and capillary

segments. Figure 7 also allows one to appreciate the

‘‘double barrier concept’’, exemplified in experiments with

histamine by Rehm et al. [91]. Histamine applied to iso-

lated heart preparations perfused at constant flow with a

purely crystalloid solution (Krebs-Henseleit buffer) did not

elevate net filtration of coronary perfusate unless the gly-

cocalyx had been enzymatically degraded beforehand.

Conversely, using heparinase to cleave off the heparan

sulphates causes collapse of the glycocalyx [22], but does

not elevate net filtration under constant flow conditions

unless histamine is applied to widen the endothelial clefts

[91].

Vascular permeability of colloidal and electrically

charged substances

With respect to short-term transport of substances across

the vascular wall, one must distinguish between changes in

vascular permeability and changes in hydraulic conduc-

tance. Alteration of the latter will influence solvent drag

(provided permeability is not zero); alteration alone of the

former will affect both diffusional transport and solvent

drag. Transport via solvent drag is discussed in detail in

recent reviews [46, 102].

Permeability of plasma proteins and of xenogenic col-

loids in the arterial and capillary sections of the coronary

bed is governed by the glycocalyx according to selectivity

based on size and charge. Especially, charge has been

implicated to play a major role [64]. Because of the pre-

ponderance of heparan and chondroitin sulphate side

chains, negatively charged molecules are excluded from

entry, while positively charged species will be bound and

retained. This has been shown for charged dextrans [7, 95,

110]. We have observed that infused antithrombin III, a

molecule with negative charge, lines the luminal vessel

wall, but does not enter the interstitial space of the heart

unless the glycocalyx is removed [19]. Albumin is a special

case; though the molecule carries a bulk negative charge at

physiological pH, there are also positively charged groups

along the protein chain. This amphoteric nature allows

albumin to interact particularly well with the glycocalyx.

Consequences are increased hydraulic resistance [43, 44,

68, 91, 112], stabilisation against degradation [54], and

facilitated transmission of shear stress as evidenced by

enhancement of flow-mediated dilatation of coronary ves-

sels [55].

Even in the relatively permeable venular region (large-

pore endothelial zone), the glycocalyx extends into the

pore and exerts a limiting action on protein and colloid

extravasation [112]. Equilibration of infused colloids

(albumin and hydroxyethyl starches) with the interstitial

space requires at least 20 min in isolated heart preparations

[91] and is, thus, far from being instantaneous. Similarly,

neither lanthanum ions nor antithrombin pass into the pe-

rivenular interstitial space readily as long as the glycocalyx

is intact [19].

Testing the ‘‘low-filtration, venular egress’’ concept

An immediate consequence of plasma proteins being able

to leave, albeit slowly, the coronary intravascular space via

large venular pores and of bulk extravasation not being

offset by high resorptive flow of interstitial fluid is that

cardiac lymphatic fluid will also contain plasma proteins in

appreciable concentrations. This is the case [4, 61]. While

this also satisfies the observation concerning coagulability

of lymphatic fluid, there is an evident problem: myocardial

tissue is rich in tissue factor, the strongest initiator of the

extrinsic pathway of coagulation [38, 101]. What then

prevents coagulation from starting in the interstitial spaces

of the heart under physiological conditions? Clearly, this

would be a devastating scenario.

With this in mind, we have recently examined human

heart tissue with respect to the distribution, in relation to

the vasculature, of coagulation-initiating (tissue factor) and

coagulation-inhibiting factors (thrombomodulin and acti-

vated protein C) [52]. Significantly, tissue factor was never

found in the vicinity of venules or small veins of the heart.

Instead, it was present subendothelially in arterioles and

capillaries (Fig. 8). This distribution corresponds with that

of pericytes in the vascular system, cells which have

recently been shown to express tissue factor exclusively in

the vessel wall under physiological conditions [56]. The

considerable intra-organ heterogeneity of distribution

observed supports the opinion that tissue factor forms a

haemostatic envelope preferably around high-pressure

segments of the vasculature to limit bleeding also in the

face of rupture or trauma [34]. Thrombomodulin, in con-

trast, was present on all endothelial surfaces of the coro-

nary system, indiscriminate of the vessel type or

magnitude, and particularly high concentrations were

Basic Res Cardiol (2010) 105:687–701 693
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localised in the interendothelial clefts [52]. Thus, any

thrombin being carried towards the interstitial space would

be expected to initiate the strongly anticoagulatory protein

C system [36]. Interestingly, there was little activated

protein C anywhere in the heart tissue. In those instances in

which it was detected, there were discrete amounts in areas

where tissue factor had typically been found, i.e., near

capillaries and arterioles [52].

Altogether, the inhomogeneous distribution of tissue

factor, with its noteworthy absence around venules, and the

strategic localisation of thrombomodulin at endothelial

junctions are in full accordance with the proposed easy

access of plasma constituents into the myocardial intersti-

tial space because there is a minimised risk of generating

fibrin. The result is also gratifying in the sense of Karl

Popper (1902–1994). This great philosopher of science

maintained that theories should be validated by asking

questions and designing experiments potentially likely to

disprove them. Fittingly, evidence for the important role of

the endothelial glycocalyx in regulating coronary perme-

ability comes from experiments designed to damage this

sensitive structure.

Deterioration and shedding of the endothelial

glycocalyx

Pathophysiological situations clearly leading to damage of

the glycocalyx are ischaemia/reperfusion, hypoxia, volume

loading and heart surgery and will be addressed in the

following. Deterioration due to sepsis and chronic alter-

ation as in atherosclerosis and diabetes mellitus are likely

but have not been expressly studied in the heart. There are

several recent publications and reviews dealing with these

aspects [5, 16, 70, 74, 76, 78, 81, 93, 105, 108].

Ischaemia/reperfusion and hypoxia

The hypoxia-induced increase in coronary permeability

was, surprisingly for early investigators, not visualised in

ultrastructural examinations of the endothelium [113].

However, these exact and detailed electron microscopical

studies did not conserve the endothelial glycocalyx during

fixation, so that it escaped notice.

Degradation of the endothelial glycocalyx due to

ischaemia/reperfusion and hypoxia has been demonstrated

in various experimental models. Rat intravital microscopy

revealed that intestinal ischaemia/reperfusion led to a

significant reduction of glycocalyx thickness due to

shedding of glycosaminoglycan chains [73]. Intravital

microscopy of the mouse cremaster muscle showed a

rapid deterioration of the endothelial glycocalyx after

reperfusion [82, 95]. Postischemic destruction of the

endothelial glycocalyx could also be demonstrated in

isolated heart models [3, 6, 10, 14, 15, 17, 19, 28, 48, 54,

91, 106]. Indicators for evaluation of disruption of the

endothelial glycocalyx included rate of formation of cor-

onary transudate (a direct measure of net fluid filtration),

colloid permeability, shedding and washout of major

components of the glycocalyx (syndecan, heparan sulphate

and hyaluronan) and direct visualisation of the glycocalyx

by electron microscopy [3, 12, 14, 17, 21, 54]. Hypoxia

also disrupted the endothelial glycocalyx of isolated rat

hearts [112].

Fig. 8 Immunohistology

showing the distribution of

tissue factor (left panel brown

granular deposits) and

thrombomodulin (right panel
brown luminal lining) in

explanted human heart tissue.

Arrows in the left panel indicate

some of the capillaries; asterisks
show some veins and venules.

For details, see [52]
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Recently, damage of the endothelial glycocalyx was

indirectly demonstrated in patients undergoing global or

regional ischaemia [88]. The level of two components of

the endothelial glycocalyx, syndecan and heparan sulphate,

increased multifold in arterial blood of patients undergoing

major vascular and heart surgery. Surprisingly, quantita-

tively identical increases in shed constituents were detected

in plasma of patients undergoing coronary artery bypass,

irrespective of whether the operation was performed with

or with cardiac arrest (on- vs. off-pump mode, see below)

[11].

Much remains unclear about the mechanisms involved

in ischaemia/reperfusion injury. Possible mediators of this

type of injury include free radicals [13, 23, 32, 95], com-

plement activation [23], TNF-a expression [59, 118] and

mast-cell degranulation [39, 57, 92]. The latter may be

induced by elevated levels of endogenous adenosine, via

adenosine A3 receptors [81], as recently discussed in a

review of van Teeffelen et al. [107]. Leucocyte activation

and adhesion have also been reported to contribute to

reperfusion injury [13, 23, 41, 60, 87]. Chappell et al. [14]

have recently demonstrated that intracoronary adhesion of

human polymorphonuclear leucocytes in the coronary

system, as in postischemic reperfusion, is only possible if

the glycocalyx has been largely shed (see also [5, 54]).

Postischemic or TNF-a-induced mast-cell degranulation

liberates cytokines such as TNF-a [39, 92, 117], demon-

strated to induce shedding of the glycocalyx [15], and

proteases such as tryptase and cathepsin B [3], which could

cleave syndecans and hyaluronan from the endothelial

membrane. Of particular note is our hitherto unpublished

finding that the resident mast cells are the sole store of the

enzyme heparanase in the human myocardium. This is

shown in Fig. 9. Liberation of heparanase would be

required to explain postischemic and postinflammatory

shedding and washout of heparan sulphates from the heart

as observed ex vivo [3, 10, 12, 14, 15, 17, 19, 54]. Hepa-

ranase acts just like heparinase, employed by us and others

to selectively degrade the glycocalyx [10, 17, 22, 31, 48,

91]. Interestingly, heparinase has been applied to human

patients undergoing coronary artery bypass grafting as an

alternative means of abrogating heparin anticoagulation

[99]. This clinical study was terminated ahead of time

because of an inferior safety profile to protamine, hardly

surprising in view of the strong degradative potential of

heparinase versus glycocalyx [22].

Hypervolemia

Atrial natriuretic peptide (ANP), a small peptide released

by the heart upon hypervolemia due to atrial stretch, acts

acutely to reduce plasma volume by renal excretion of

salt and water, vasodilatation and increasing vascular

permeability [25]. While several studies demonstrated

that ANP increased vascular permeability [45, 96, 104],

and Curry et al. [27] have since been able to show that

the permeabilising effect is mediated via endothelial ANP

guanylyl cyclase type-A receptors, the exact mechanism

remained undefined. In an isolated perfused heart model,

we have been able to identify a general feature, namely

that an increase in endothelial cyclic GMP always leads

to an increase in coronary leak, irrespective of whether

the agent is bradykinin, acetylcholine, nitroprusside or

ANP [20].

Fig. 9 Mast cells and

heparanase in human heart

tissue. Left panel Alcian blue

stain shows mast cells (arrows)

in an explanted human heart

with the typical perivascular

localisation (for details, see

Gilles et al. [39]). Right panel
immunohistological detection

shows heparanase (intense
brown stain) exclusively in the

granules of a cell in the same

perivascular localisation as mast

cells (rabbit anti-human

heparanase antibody A00078,

Genscript Corp., dilution 1:100

in formalin-fixed and paraffin

embedded ventricular

myocardium; for further details,

see [52])
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In this context, our group investigated a possible con-

nection between the ability of ANP to acutely shift volume

from the intra- to the extravascular space and the integrity

of the endothelial glycocalyx [10]. Low-dose infusion of

ANP (10-9 M) in isolated guinea pig hearts resulted in an

increase in fluid leak and an accelerated extravasation of

colloid. Moreover, ANP caused rapid shedding of syndecan

core protein and histologically detectable degradation of

the coronary glycocalyx [10]. Thus, the ANP-induced

increase in vascular permeability described in vivo might

be related to changes in the integrity of the endothelial

glycocalyx.

The results of this investigation are in accordance with

the findings of previous double-label blood volume mea-

surements in humans [89, 90]. As a substitute during acute

bleeding, iso-oncotic colloids had volume effects of more

than 90%, provided normovolaemia was carefully main-

tained [90]. In contrast, volume loading of normovolaemic

patients with the same iso-oncotic colloid led to volume

effects of only approximately 40% [89]. Consequently,

volume effects of colloids seem to depend on the ‘‘con-

text’’, i.e., the volume and hydration state of the patient

[18, 50, 51]. The most likely explanation for this phe-

nomenon is that volume loading resulted in an increased

level of plasma ANP, thereby degrading the endothelial

glycocalyx. Furthermore, a greater decrease in large vessel

haematocrit (measured by centrifugation of arterial blood

samples) in relation to whole body haematocrit (derived by

double-label measurements of erythrocyte and plasma

volume) was found during volume loading [89]. This

observation leads one to suspect that a considerable

decrease in the volume of the endothelial surface layer

occurred during volume loading, leading to a larger dis-

tribution space for red blood cells. Again, ANP-induced

alteration of the endothelial surface layer might be the

underlying cause.

The double-tracer dilution technique based on indocy-

anin green (as label for the total plasma space) and fluo-

rescein-labelled red blood cells (RBC) yielded a whole

body volume of the endothelial surface layer in man

amounting to about 730 ml, i.e., approximately 25% of the

total plasma volume [89]. This volume was diminished to

250–350 ml upon volume loading [89]. Double-tracer

dilution using fluorescent dextran and RBC has been

applied by others to assess the glycocalyx volume in

studies on goats and mice [7, 95, 110]. However, some of

the results were physiologically rather unlikely and have

been strongly criticised by Curry and Michel [71] for

methodological reasons, but also on principle. The meth-

odological shortcomings of the animal studies, for example

redistribution of plasma space tracer into other compart-

ments or inhomogeneous molecular size, were excluded in

the measurements on humans [49, 53]. The principal

criticism centred on whether a large molecular weight

tracer is at all able to distribute fully into a space filled by

the branched chains of glycocalyx molecules. In other

words, the tracer dilution values must fall short of the

mark. The validity of this argument is surely given, but the

extensive calculations performed to establish the magni-

tude of the under-representation of endothelial surface

layer volume far overrate the error. Curry and Michel

assume the glycocalyx to exist as a rigid, highly ordered

geometrical structure. However, this is not the case in vivo,

where fluctuations in blood flow and pressure and passage

of cells, especially that of leucocytes, constantly deform

and rearrange the glycocalyx fringe lining the endothelial

cells [70, 75, 109].

Cardiac bypass surgery and reperfusion after acute

myocardial infarction

Mechanical manipulation of the heart is another adequate

stimulus for the release of ANP, and robust handling

inadvertently takes place both in pump-assisted and off-

pump bypass surgeries. Indeed, systemic shedding of the

glycocalyx of equal magnitude was noted by us in patients

irrespective of whether they were subjected to the on- or

off-pump procedure, i.e., irrespective of whether the heart

had experienced ischaemia/reperfusion or not [11]. At

present it is not known whether shedding of the coronary

glycocalyx itself occurs in bypass patients, but there is no

reason to believe that the coronary system is exempt from

the systemic vascular phenomenon.

As a point of interest, ANP was applied pharmacologi-

cally to patients during reperfusion by percutaneous coro-

nary intervention after acute myocardial infarction [72].

The so-called J-WIND study was unable to show any

benefit 6–12 months after ANP treatment versus control

although the treatment had seemingly produced a 15%

decrease in infarct size. Also in the AMISTAD II trial, in

which adenosine was applied during reperfusion, there was

no benefit for the patients at 6-month follow-up despite

early pronounced reduction in infarct size [94]. It might be

a coincidence, but both ANP and adenosine have the

potential to deteriorate the coronary glycocalyx, thereby

enhancing oedema as well as adhesion of leucocytes and,

thus, secondary myocardial damage [87, 116].

Pathophysiological implications of damage

to the glycocalyx

As outlined above, volume overload can induce impressive

fluid and protein shifting towards the interstitium by

deteriorating the vascular barrier [18, 51]. Consequently,

and in accordance with clinical studies, volume loading in
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normovolaemic patients should most likely be abolished in

favour of demand-related fluid regimens [8, 65, 77]. Using

fluid in adequate amounts seems to have the power to

improve patient outcome by minimising perioperative fluid

shifting.

Interstitial oedema is a common problem in the critically

ill and in the surgical patients and appears to be related to

mortality [66, 74]. Therefore, protecting vascular barrier

competence is an important therapeutical issue. Until

today, it remains unclear what the best strategy might be in

practise to combine a sufficient cardiac preload with lim-

iting oedema, especially in patients already suffering from

capillary leakage. The introduced endothelial surface layer

concept might provide some new aspects in this standoff.

Therapeutic strategies targeting the endothelial glycocalyx

are in view, but clinically unproven at this stage [5].

In the heart, oedema leads to a loss of myocardial

compliance [30, 33]. As depicted in Fig. 10, this increase

in wall stiffness is equivalent to a shift-to-the-left and

steepening of the passive filling pressure curve of the

ventricles. Accordingly, the ventricular pressure–volume

loop for given pre- and afterload and inotropy will also be

shifted to the left, amounting to a loss of stroke volume. To

maintain cardiac output, preload enhancement, afterload

reduction, inotropic stimulation and heart rate increase are

required, either singly or in combination, to compensate.

Thus, prevention of myocardial oedema must be awarded

high priority in cardioprotection.

Improved magnetic resonance imaging techniques are

allowing the detection of myocardial oedema early after

cardiac infarction and coronary microembolisation in vivo

[9, 58]. It is tempting to relate this formation of oedema to

damage of the glycocalyx by ischaemia and secondary

inflammatory responses. Unfortunately, to date, it is (still)

impossible to simultaneously and repetitively assess the

state of the coronary endothelial glycocalyx by any means

of non-invasive imaging. Concerning functional conse-

quences, it is of interest that sites of myocardial oedema

matched areas of contractile dysfunction [9].

Jacob et al. [54] have examined experimentally the

ability of albumin, given as supplement to histidine–tryp-

tophan–ketoglutarate (HTK) cardioplegic solution, to pre-

vent postischemic damage in a glycocalyx-directed manner

in a transplantation setting. Guinea pig hearts were arrested

in situ by perfusion with either cold unaltered HTK solu-

tion or HTK solution containing 1% human albumin and

stored for 4 h at 4�C. The hearts were reperfused with

Krebs-Henseleit buffer containing 4% albumin at 37�C.

Pertinently, albumin supplementation lessened shedding of

syndecan and heparan sulphate, reduced myocardial

oedema and postischemic adhesion of granulocytes in the

coronary system, and improved pump function, especially

that of the intrinsically weaker right ventricle.

Apart from albumin, other experimentally promising

procedures aimed at preserving the coronary glycocalyx

from damage under various conditions include cardiac

(pre)treatment with hydrocortisone and antithrombin [5,

15, 17, 19]. Since full regeneration of the glycocalyx seems

to require 5–7 days in vivo [84], prevention is certainly

better than cure. However, partial recovery may occur

more rapidly because the endothelial cavaeolae are filled

with glycocalyx which could be externalised on short

notice [21]. The restitution of fluid homeostasis of septic

patients within just days in the advent of successful anti-

infectious therapy, a familiar clinical observation, suggests

pathways of quick repair of the glycocalyx. Indeed, nature

shows that extremely rapid turnover is possible. Trypano-

somes avoid immunological destruction by weaving a

dense coat of surface glycoproteins of constantly changing

composition to ward off attack by human antibodies [37].

Caveats and conclusions

1. Per definition, one may distinguish between the

endothelial glycocalyx proper, and the layer formed

when plasma constituents bind to and intercalate in the

structure. Although there are basic differences between

the endothelial glycocalyx and the endothelial surface

layer, it is the latter we are concerned with in vivo.

2. Serious differences exist between endothelial cells in

situ and cultured endothelial cells. This pertains,

for one, to the dimensions of the glycocalyx

(200–2,000 nm in situ, only 20–40 nm in culture [21,

55, 83]). For another, when studying permeability,

responses of cultured endothelial layers and endothe-

lial cells in situ differ so much that they cannot really

Fig. 10 Pressure–volume loop of the left ventricle (schematic

drawing), illustrating the consequence of tissue oedema. The passive

filling pressure curve becomes steeper, shifting the loop to the left

and, thus, reducing stroke volume at given filling and aortic pressures

and unaltered inotropic state
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be compared. Curry and Adamson [26] have listed a

great number of discrepant results and are adamant in

the claim that cultured cells are at best a model for

endothelium in a chronically inflamed state.

3. Gender may influence coronary permeability responses

[46]. However, hard data for the human heart is still

needed. Furthermore, the fundamental mechanisms

regarding the role of the endothelial glycocalyx can

hardly be different for males and females.

4. The main contradictions of the historical principle of

Ernest Starling with the modern Endothelial Surface

Layer Concept for the coronary system are:

• The endothelial glycocalyx is the basal structure

which creates, together with plasma proteins, the

physiological oncotic gradient at the vascular

barrier.

• The interstitial protein concentration is of little

consequence with respect to arteriolar and capillary

fluid filtration under physiological circumstances.

• Bulk colloid exchange between the vascular and

the interstitial spaces is substantial, but not indis-

criminate, and occurs mainly in the venular

segments. Tissue factor is sequestered away from

extravasating coagulation factors in intact heart

tissue.

• The endothelial cell bodies act as a second barrier,

the width of interendothelial clefts and pores

determining hydraulic conductivity, especially if

the endothelial glycocalyx is altered.

5. The endothelial glycocalyx is important for regulating

vascular permeability and fluid exchange in many

organs besides the heart [1, 35, 97, 98, 115]. However,

details are often still lacking, and the systemic

importance is just beginning to emerge.

6. These findings are interesting from a physiological

standpoint as they challenge old knowledge. More

importantly, however, they are crucial for the treating

physician. It is time to forcefully sound possibilities to

protect the endothelial surface layer in critically ill

patients [5].
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