
Introduction

Myocardial infarction (MI) is a leading cause of heart
failure. Because of the ingrained concept of the myo-
cardium as a terminally differentiated organ, it has
been assumed that any attempt to replace the lost
myocytes using cellular therapy would require the

introduction of exogenous cells into the myocardium.
However, it has recently been reported that the adult
heart harbors primitive stem/progenitor cells [4, 7, 8,
18, 24]. Beltrami et al. [4] demonstrated that cardiac
stem cells (CSCs) are a pure population of cloned c-
kit-positive cells that can be differentiated into
cardiomyocytes, smooth muscle cells and vascular
endothelium. Previous studies have documented the
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j Abstract Objective It was reported that there are cardiac stem cells
(CSCs) in the rat heart, and they could reconstitute well-differentiated
myocardium that are formed by blood-carrying new vessels and
myocytes. However, how do the CSCs migrate into the peri-infarcted
areas after myocardial infarction (MI)? It remains entirely unknown
about the signal transduction involved in the migration of CSCs. Methods
and results Rat heart MI was induced by left coronary artery ligation.
Both immunohistochemical staining and Western blotting analysis was
performed to detect the expression of SCF protein, and RT-PCR was
conducted for the expression of SCF mRNA. Cardiac stem cells were
isolated from rat hearts, and a cardiac stem cell migration assay was
performed using a 48-well chemotaxis chamber system. On day 5 after MI
in rats, the expression of stem cell factor (SCF) mRNA and protein was
significantly increased in the peri-infarcted area, which was matched with
more accumulation of CSCs in the region and improvement of cardiac
function, which was blocked by p38 MAPK selective inhibitor SB203580.
In in vitro experiments, SCF induced CSC migration in a concentration-
dependent manner, and the antibody against SCF receptor (c-kit) blocked
the SCF-induced CSC migration. Western blot analysis showed that the
phosphorylated p38 MAPK (Phospho-p38 MAPK) was highly increased
in the SCF-treated CSCs, and the inhibition of p38 MAPK activity
significantly attenuated SCF-induced the migration of CSCs. Conclusion
It demonstrated that SCF/c-kit signaling may mediate the migration of
CSCs via activation of p38 MAPK.

j Key words cardiac stem cell – stem cell factor – migration – myo-
cardial infarction
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ability of CSCs to regenerate infarcted myocardium
when CSCs were injected intramyocardially in the per-
infarct region after a permanent coronary occlusion.
Dawn et al. [8] also reported that after intracoronary
administration, CSCs could traverse the vessel barrier,
regenerate infarcted myocardium, and improve car-
diac function. Despite these encouraging observations,
the mechanism of CSCs to repair the heart remains
unclear. Especially, how do the CSCs migrate into the
peri-infarcted areas when myocardial infarction oc-
curs? Little has been reported on the migration of
CSCs, and it remains entirely unknown about the
signal transduction involved in the migration of CSCs.

Stem cell factor (SCF, also called c-kit ligand) is a
critical factor for the development, survival, prolifera-
tion and migration of mast cells [12, 32]. By binding to
c-kit, a tyrosine kinase-containing receptor, SCF can
induce cell migration, adhesion to extracellualar matrix
components and secretion of mediators [17, 39]. Our
previous study has shown that SCF induced the bone
marrow stem cell migration and improved the cardiac
function [40]. However, whether SCF is involved in the
cardiac stem cell migration remains unknown.

It was well known that the family of MAPKs plays a
key role in cellular response to cytokine stimulation.
The main extracellular signal-regulated kinase of
MAPKs consists of ERK1/2, p38 MAPK and JNK.
However, the JNK and p38 MAPK pathways have been
reported to be responsible for the cytokine-induced
signaling of cell migration [21].

In the present study, we reported the identification
of SCF as a cytokine that is highly expressed in peri-
infarcted areas after MI, and mediated the migration
of CSCs via activation of p38 MAPK.

Materials and methods

j Rat myocardial infarction model

A rat myocardial infarction model leading to left
ventricle dysfunction was used in present study. Male
Wistar rats (250–300 g) were randomized to coronary
artery ligation or sham-operated groups. At day 5
after ligation, heart tissues were prepared for the
detection of SCF mRNA and protein. All procedures
were performed in accordance with the Guidelines of
the Hubei Council of Animal Care and approved by
the Animal Use Subcommittee at the Huazhong
University of Science and Technology, China.

j Hemodynamic measurement

Three weeks after coronary artery ligation or sham
operation, rats were re-anesthetized with sodium

pentobarbital. The right carotid artery was cannulated
with a Millar microtip pressure transducer catheter.
After arterial blood pressure and heart rate mea-
surements were obtained, the catheter was advanced
into the left ventricle (LV) for the measurement of LV
systolic and end-diastolic pressures as well as the
maximal rate of pressure development (+dP/dtmax)
and rate of relaxation ()dP/dtmin) of LV.

j Immunohistochemical staining

To detect the expression of SCF in the heart tissues,
the rabbit antibody (1:100, Pepro Tech EC Ltd)
against murine SCF was used. Endogenous peroxidase
was blocked by 0.3% H2O2 for 20 min. The secondary
antibody for immunostaining was biotin-conjugated
anti-rabbit immunoglobulin (1:200, Dako).

j Isolation and culture of CSCs from the adult rat
heart

CSCs were isolated from the hearts of male Wistar rats
(250–300 g) by a method described previously with a
minor modification [4]. Briefly, the rat was injected
with heparin (5,000 IU/kg, i.p.) 20 min prior to the
experimental protocol, and then was killed by cervical
dislocation. The heart was excised and the aorta was
cannulated rapidly. The cannulated heart was mounted
on a Langendorff perfusion apparatus with constant
flow and perfusion pressure was monitored. The heart
was firstly perfused with Ca2+-free Tyrode solution for
10 min to remove the blood and then digested by
0.5 mg/ml collagenase (Sigma) and 0.05 mg/ml trypsin
(Difoo) at 37�C for 30 min. After the enzymatic diges-
tion was terminated, the heart tissue was chopped and
cell suspension collected was filtered with a strainer
(Becton Dickson). Afterward, cells were incubated with
a rabbit anti-c-kit antibody (Santa Cruz) and separated
by using sheep anti-rabbit immunomagnetic micro-
beads (Dynal Biotech). Small round cells, containing
most of the c-kitpos population, were separated. These
c-kitpos cells were cultured for 3–5 days with Dul-
becco’s MEM (Invitrogen) containing fetal calf serum,
bFGF, and LIF at 37�C. After recovery, they were used
for subsequent experiments.

j Western immunoblotting analysis

The protein level of SCF in heart tissues was deter-
mined by Western immunoblotting analysis. Briefly, a
total of 50 lg of protein in each sample were separated
by SDS polyacrylamide gel (12.5%) electrophoresis
followed by electrophoretic transfer of proteins from
the gel to a nitrocellulose membrane. The membrane
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was probed with rabbit anti-SCF antibody (Santa Cruz
Biotechnology). Bands corresponding to SCF protein
were visualized using enhanced chemiluminescence
reagents and analyzed with a gel documentation sys-
tem. For the detection of phosphorylation of p38
MAPK, the anti-phosphotyrosin antibody (Cell Sig-
naling Technology, Inc., USA) against P38 was used. To
ensure similar amounts of proteins in each sample, the
same membrane was stripped off, and reprobed with
the antibodies against p38 MAPK.

j Reverse transcription (RT)-PCR analysis

Total RNA was extracted from the left ventricle with
Trizol reagent. RT-PCR was performed to analyze
mRNA expression of SCF or c-kit with the primers
and conditions as described previously [14, 41]. PCR
products were separated on 1.5% of agarose gel.

j Chemotaxis assay

Chemotaxis experiments were performed using a 48-
well chemotaxis chamber technique (Neuro Probe) as
previously described with a minor modification [29].
Briefly, 25 ll of medium (RPMI 1640, Gibco) alone or
medium containing 5, 10, 30, 50, 100 ng/ml SCF
(Santa Cruz) was placed in the lower chamber. A
polycarbonate membrane with a 5-lm pore size sep-
arated the upper and lower chamber. CSCs resus-
pended in RPMI 1640 (50 ll) were placed in each well
of the upper chamber. For inhibition experiment,
CSCs were preincubated with these inhibitors for
20 min, and then added into the upper chamber. The
chamber was then incubated for 3 h at 37�C in a
humidified atmosphere with 5% CO2 and then disas-
sembled. The membrane was removed and scraped to
remove non-migrating CSCs from the upper surface.
Then the membrane was fixed and stained. The
numbers of CSCs that had migrated to the lower
surface of the membrane were counted in ten random
high-power fields (HPFs) by light microscopy, and a
chemotactic index (CI) was calculated to express
stimulated migration. Each assay was performed in
triplicate wells.

CI ¼ Stimulated migration (CSCs number per HPF)

Random migration (CSCs number per HPF)

j Cell labeling and assessment of cell migration
in vivo

To detect the response of CSCs to SCF in vivo, the
cultured CSCs were labeled with the thymidine ana-

logue 5-bromo-2¢deoxyuridine (BrdU; Zymed) as de-
scribed previously [3]. The labeled cells (1 · 105)
were injected into AV-groove followed by a coronary
ligation. For the inhibition experiment, the labeled
cells were suspended in the medium containing
10 lM SB203580, then were injected into AV-groove.
At day 5 after ligation, histological examination was
performed in peri-infarcted regions to localize the
BrdU-labeled cells which migrated from AV-groove
after myocardial infarction by using mouse anti-BrdU
(Zymed) antibody and fluorescent antibody (second-
ary antibody) in the heart. For the cardiac function, at
three weeks, the hemodynamic parameters were
measured.

j Statistics analysis

All data are expressed as mean ± SEM. For analysis of
differences between two groups, Student’s t test was
performed. For multiple groups, ANOVA was carried
out followed by Student–Newman–Keuls test. The
level of statistical significance was set at P < 0.05.

Results

j SCF expression in rat left ventricle myocardium
after MI

The expression of SCF mRNA in LV myocardium was
studied at day 5 after MI in rats. As shown in Fig. 1A,
quantitative analysis of SCF mRNA expression to b-
actin was illustrated. The result showed that the
sham-operated heart tissue exhibited weak expression
of SCF mRNA, however, after MI, SCF mRNA
expression was significantly increased in the peri-in-
farcted area. To further confirm this result, we de-
tected SCF expression at protein level by
immunohistochemical staining and Western blotting
analysis. The results showed that SCF protein
expression was markedly increased in peri-infarcted
area compared to the sham (Fig. 1B, C).

j CSC migration to the peri-infarcted regions after
MI

In order to understand whether the increased SCF
expression in the peri-infarcted area led to more
accumulation of CSCs after MI, the assessment of CSC
migration in vivo was performed by using BrdU-
labeled CSCs, which were injected into AV-groove. As
shown as in Fig. 2A, the increased SCF expression was
matched with more accumulation of CSCs in the peri-
infarcted regions at 5 days after MI. The administra-
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tion of SB203580 resulted in a significant reduction of
the accumulation of CSCs in the peri-infarcted re-
gions (Fig. 2B) at day 5 after MI, which demonstrated
that p38 MAPK may play important roles in SCF-
induced CSC migration.

j The effect of SB203580 on cardiac function

In order to understand the functional relevance of the
reduction of CSC migration into the peri-infarcted
regions via the inhibition of p38 MAPK, the cardiac
function was measured at 3 weeks after MI. Treat-
ment with SB203580 significantly decreased LV +dP/
dt and )dP/dt to a greater extent in the rats compared
to no treatment after MI (Fig. 2C, D), however, there
were no significant differences in heart rate, mean
arterial pressure, or LV systolic pressure and LV end-
diastolic pressure between SB203580-treated and non-
treatment.

j Features and identification of c-kitpos cells from the
adult rat heart

By using immunomagnetic microbeads, the c-kitpos

cells were isolated and collected from adult rat hearts
[4]. This can finally result in the c-kitpos cells with a

purity of 92%. Under light microscopy, they were small,
round, phase-bright, and suspended in the medium.
The expression of c-kit was detected by RT-PCR. As
shown in Fig. 3A, c-kit mRNA was detectable in iso-
lated CSCs, however, as a negative control, the NIH 3T3
cells cannot express c-kit mRNA. These results con-
firmed that these isolated cell were really c-kitpos CSCs.

j Chemoattractant effects of SCF on CSC migration

During myocardial infarction, SCF was rapidly in-
duced by the peri-infarcted area, and the increased
SCF was matched with more accumulation of CSCs.
We next asked if the SCF upregulation in the injured
myocardium was functionally relevant for CSC
migration. A Boyden chamber-based migration assay
was established to quantitatively evaluate CSC
migration in vitro. The lower chamber was placed
with medium (RPMI 1640) alone or medium con-
taining 5, 10, 30, 50, 100 ng/ml SCF, while the upper
chamber was placed with CSCs. As shown in Fig. 3B,
compared with the control group, the averaged
numbers of migrated CSCs increased significantly as
the concentration of SCF increased, which reach a
peak at 30 ng/ml (n = 30, P < 0.05 compared with
medium alone). As c-kit mRNA was not detectable in
the NIH 3T3 cells [30], therefore we included NIH 3T3
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Fig. 1 SCF expression in left ventricle
tissues at day 5 following myocardial
infarction in rats. A SCF mRNA expression
by RT-PCR. B SCF protein expression by
immunohistochemical staining (. indi-
cates expression of SCF in peri-infarcted
areas). C SCF protein levels by Western
blot analysis in left ventricle tissues fol-
lowing myocardial infarction or sham
operation. N = 5–7 per group. Results
are mean ± SEM from four independent
experiments. * Means P < 0.05 versus
corresponding sham
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cells in the Boyden chamber assay as a negative
control, which did not induce migration of CSCs
regardless of the concentration of SCF used. However,
SCF resulted in a significant chemoattractant effect on
CSCs in a dose dependent manner in vitro. This result
documented that SCF could serve as a chemoattrac-
tant of CSCs in acute MI.

j Role of c-kit antibody in SCF-induced CSC
migration

SCF-induced CSC migration could be abolished by the
pretreatment of the CSCs with c-kit blocking anti-

body, as shown in Fig. 3C. This migration inhibition
did not occur after pretreatment with a control IgG

j P38 MAPK was involved in the SCF-induced CSC
migration

To explore whether SCF induced migration through
the P38-dependent pathways in CSCs, the specific
inhibitor SB203580, an agent that selectively inhibits
p38 MAPK, was tested for the effect on SCF-induced
CSC migration. CSCs were preincubated with
SB203580 (10 lM) for 30 min, the cells were then
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Fig. 2 The effect of SB203580 on the
migration of BrdU labeled CSCs into the
peri-infarcted regions. The migrated CSCs to
the peri-infarcted areas was detected by
using mouse anti-BrdU antibody and fluo-
rescent-labeled antibody (secondary anti-
body) A, the BrdU-labeled cell was
troponon-I positive (A d). The effect of
SB203580 on the migration was assessed (B)
at day 5 after MI, the administration of
SB203580 was conducted to detect the
blockage of SB203580 on the accumulation
of CSCs in the peri-infarcted regions. The
cardiac function was measured at 3 weeks
after MI, the changes of LV +dP/dtmax and
)dP/dtmin were shown in C and D, respec-
tively. N = 7–9 per group * Means P < 0.05
versus corresponding sham; ** means
P < 0.05 versus peri-infarct or MI; D means
P < 0.05 versus group MI + C
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added to the upper chambers for the CSC migration
assay. As shown in Fig. 3D, application of the inhibitor
significantly attenuated the effect of SCF on CSC
migration. However, the number of migrated cells in
the presence of inhibitor remains significantly greater
than the control group which suggests that other sig-
naling pathways may be involved in SCF-induced CSC
migration. Western blot analysis showed that the
levels of phospho-p38 MAPK were significantly in-
creased in SCF-treated CSCs, however the total protein
levels of p38 MAPK were not markedly altered in SCF-
treated cells. The phospho-p38 MAPK reached a peak
after a 15 min-incubation with SCF, and returned to
basal level 60 min after application of SCF (Fig. 4).

Discussion

One of the contributing factors in the progression of
heart failure is the loss of cardiomyocytes after
myocardial infarction, combined with the absence of
an adequate endogenous repair mechanism. A fibrous
scar finally replaces the injured myocardium. The
significance of cardiac c-kit positive cells has recently
demonstrated that the result from Dr. Li’s lab showed
that cardioprotective c-kit+ cells were from the bone
marrow and regulated the myocardial balance of
angiogenic cytokines in infarcted myocardium,
thereby driving efficient cardiac repair [11]. Stem cell
factor receptor induced progenitor and natural killer
cell-mediated cardiac survival and repair after MI,
which contributed to improved remodeling and car-

diac function after MI [2]. Recently, stem cell based
therapy has become a realistic option to replace
damaged cardiomyocytes [13, 34]. Several cardiac
stem/progenitor cells have been identified, which ex-
pressed the stem cell-related antigens c-kit, MDR1,
Sca-1 or islet-1 [1, 4–7, 22]. In vitro data suggest that
the growth potential of c-kit-positive CSCs is greater
than that of others, although these cell categories give
rise to all cardiac cell lineages [19]. The extraordinary
clinical potential of myocardial regeneration makes
the dissection of the biology of CSCs a challenging
and exciting endeavor.

Since in fetal life, c-kit-positive cells colonize the
yolk sack, liver, and probably other organs. The col-
onized organs express SCF, the ligand of the c-kit
receptor [16, 33], so it was reasonable to assume that
stem like cells are present in the heart from fetal life.
Recently, CSC clusters have been found in the adult
heart [5, 23, 37]. Although CSC clusters are scattered
throughout the myocardium, they accumulate in the
atria and apex, and are less numerous at the base and
mid-portion of the left ventricle [1]. The cardiac ni-
ches are expected to control the physiological turn-
over of myocardial cells and the growth, migration,
and commitment of primitive cells leaving the niches
to replace old dying cells in the myocardium. How-
ever, it remains unknown how these CSCs migrate
into the injured myocardium after MI. Anversa’s
group has reported that HGF plays a critical role in
migration and proliferation of c-kit positive CSC [36].
Our results showed an increased expression of SCF in
the peri-infarcted area at the levels of mRNA and

c-kit

β-actin

3T3 CSC

0 25 50 75 100 125
0

1

2

3

4

5

SCF concentration 
(ng/ml)

M
ig

ra
tio

n 
in

de
x

0
1
2
3
4
5
6
7
8

control SCF 
+ c-kit Ab

SCF SCF 
+ IgG

M
ig

ra
tio

n 
in

de
x

*

**

∇

control SCF SCF+SB
0

1

2

3

4

5

6

M
ig

ra
tio

n 
in

de
x

*

**

A

C D

B

Fig. 3 CSC migration induced by SCF. CSCs
were isolated from adult rat heart and RT-PCR
analysis of c-kit mRNA was performed in the
isolated cells A, NIH 3T3 cells were used as a
negative control, and b-actin as an internal
control for RT-PCR. In vitro CSC chemotaxsis
assays were performed on a 48-well Boyden
chamber system. The lower chamber was placed
with medium (RPMI 1640) alone or medium
containing 5, 10, 30, 50, 100 ng/ml SCF, while
CSCs were added in the upper chamber. The
medium alone was used in negative control
experiments. Data are mean ± SEM, from four
independent experiments. B Showed SCF-in-
duced CSC migration with a dose dependent
manner. C CSCs were pre-incubated with c-kit
antibody (or IgG non-specific antibody) for
20 min, then were added into upper chamber
for the migration assay (30 ng/ml of SCF). D
The cells were pre-incubated with the P38 MAPK
selective inhibitor SB203580 for 20 min, then
added into upper chamber for the migration
assay. * Means P < 0.05 versus corresponding
control, ** means P < 0.05 versus correspond-
ing SCF, � means P > 0.05 versus corre-
sponding SCF

270 Basic Research in Cardiology, Vol. 103, No. 3 (2008)
� Steinkopff Verlag 2007



protein, which was matched with more accumulation
of CSCs in the region. It drew the hypothesis that SCF
may be involved in the activation of resident primitive
c-kit-positive cells which migrate into the peri-in-
farcted area, thereby, in the increased formation of
myocytes in the acutely infarcted heart, but it remains
undetermined whether SCF could play a crucial role
in this process.

For the purpose in the present study, the CSCs
were isolated from heart tissues, and the migration
assay was carried out by using 48-well chemotaxis
chamber. Our data documented that SCF could attract
migration of CSCs in a dose-dependent manner in
vitro, which suggests that SCF may attract CSCs to
injured myocardium and participate in the repair of
heart in acute MI.

C-kit is a receptor tyrosine kinase (RTK), which
constitutes a type III RTK subfamily with the
receptors for platelet-derived growth factor (PDGF),
colony-stimulating factor 1 (CSF-1), and flt-3 ligand
[26, 43]. C-kit and its ligand stem cell factor (SCF)
play an important role in hematopoiesis, malano-
genesis, and gametogenesis [42]. Upon ligand stim-
ulation, c-kit receptors dimerize, activate its intrinsic
tyrosine kinase, and autophosphorylate. The phos-
phorylated c-kit receptor generates binding sites for
SH2 domain-containing proteins, which include
proteins of the p21 Ras-mitogen-activated protein
kinase (MAPK) pathway [9], the p85 subunit of

phosphatidylinositol 3¢ kinase (PI3K) [28], phos-
pholipase C-c1, the Grb2 adaptor protein, the Src
family kinases [20], Cbl, CRKL [27], p62Dok-1 [38],
SHP1, and SHP2 [15]. Those proteins are subse-
quently activated or phosphorylated and further
transduce signaling cascades that lead to various
cellular responses. Migration is one of the unique
and important cell functions undertaken by SCF/c-
kit system. Much effort has been done to clarify
signal transduction leading to SCF/c-kit-mediated
proliferation and survival, but the signaling mecha-
nism in SCF-mediated cell migration has not been
clarified yet. Recently, a few reports indicated that
JNK or p38 MAPK plays an important role in cell
migration [21, 25, 31]. Shuji Ueda et al. [35] has
provided evidence that SFK and PI3K cooperatively
contribute to SCF-mediated cell migration through
Ca2+ mobilization, and the signaling of SFK is
transduced sequentially from p38 MAPK, Ca2+ in-
flux, to Erk1/2. The JNK and p38 MAPK pathways
have been reported to be responsible for the cyto-
kine-induced signaling of cell migration [21]. We
hypothesized that these signaling molecules may also
play roles in SCF-mediated CSCs migration. To test
the hypothesis, c-kit antibody and the specific
inhibitors of JNK and p38 MAPK were used to block
the SCF-induced migration of CSCs. Our present
results showed that SCF-induced CSC migration was
blocked by the antibody against c-kit, and signifi-
cantly attenuated by a specific inhibitor of p38
MAPK in vivo and in vitro, and the functional rel-
evance of the reduction of CSC migration into the
peri-infarcted regions via the inhibition of p38
MAPK was assessed. The improvement of cardiac
function after MI was significantly blocked by
administration of p38 MAPK inhibitor. However,
Engel et al. [10] reported that FGF1/p38 MAPK
inhibitor therapy improves recovery after myocardial
infarction, a long term observation on systemic
administration of p38 MAPK inhibitor should be
further carried out. Additionally, in the present
study, the SCF-induced migration of CSCs cannot be
influenced by specific inhibitor of JNK, although a
higher concentration of JNK inhibitor was used (data
not shown). However, the number of migrated cells
in the presence of inhibitor remains significantly
greater than the control group even if a higher
concentration of SB203580 was used, which suggests
that other signaling pathways may be involved in
SCF-induced CSC migration. Further stimulation of
CSCs with SCF markedly increased the phosphory-
lation of proteins of p38 MAPK, however the total
protein levels of p38 MAPK did not change. It
indicated that phosphorylation of proteins of p38
MAPK may be involved in SCF-induced migration of
CSCs.
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In summary, our study showed that myocardial
infarction of rat heart led to an increased expression
of SCF, which mediated migration of CSCs via stim-
ulation of c-kit and activation of p38 MAPK.
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