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Regional differences of myocardial infarct
development and ischemic preconditioning

� Abstract The spatial and temporal development of myocardial infarction
depends on the area at risk (AAR), the severity and duration of blood flow
reduction (energy supply) as well as on heart rate and regional wall function
(energy demand). Both supply and demand can vary within the AAR of a
given heart, potentially resulting in differences in infarct development. We
therefore retrospectively analyzed infarct size (IS, %AAR, TTC) in 24 anes-
thetized pigs in vivo following 90 min hypoperfusion and 120 min reperfu-
sion of the LAD coronary artery, which supplies parts of the LV septum (LVS)
and anterior free wall (LVAFW). The total LAD perfusion territory averaged
49.8 ± 14.2 (SD) g (49.2 ± 8.4% of LV); 61.4 ± 8.1% of the AAR was LVAFW.
IS within the LVS was 25.3 ± 15.1%, while IS within the LVAFW was 16.6 ±
10.1% (p<0.05). While ischemic blood flow (radiolabeled microspheres) did
not differ between LVS (0.05 ± 0.02 ml/min/g) and LVAFW (0.05 ± 0.03
ml/min/g), perivascular connective tissue (56 ± 9 vs. 38±7 µm2, p < 0.05) and
the capillary-to-myocyte distance (1.65 ± 0.23 vs. 1.18 ± 0.23 mm, p < 0.05)
were larger in LVS than in LVAFW. Interestingly, IS in LVS (9.3 ± 9.6%, 
n = 24) and LVAFW (9.2 ± 9.1%) were reduced to the same absolute extent
by ischemic preconditioning with one cycle of 10 min ischemia and 15 min
reperfusion, suggesting that a similar regional difference exists also in the
protection afforded by ischemic preconditioning. The mechanism(s) for 
that remain(s) to be established. Conclusion In pigs, regional differences in
infarct development and protection from it exist in the LAD perfusion terri-
tory, which are independent of ischemic blood flow but apparently related to
pre-existing structural differences.

� Key words Myocardial infarction – heterogeneity – ischemic precondi-
tioning
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Introduction

Regional myocardial blood flow depends on the driving
pressure, the diastolic duration, the number and diame-
ter of blood vessels and their vasomotor tone [4]. Both
under physiological conditions and during ischemia,
there exists a substantial heterogeneity of blood flow
within the left ventricular (LV) myocardium (for review,

see [2, 5, 23]), which has been attributed to differences in
the metabolic rate [13, 14, 16, 42, 46] and/or altered pro-
tein expression [22]. 

The spatial and temporal development of myocardial
infarction depends on the size of the area at risk as well
as regional oxygen supply and demand during ischemia.
Regional oxygen supply to the cardiomyocytes during
ischemia depends on the duration and severity of blood
flow reduction and the diffusion distance for oxygen [53];

Prof. Dr. J. D. Schipke, Düsseldorf, Germany,
served as guest editor for the manuscript
and was responsible for all editorial deci-
sions, including the selection of reviewers.
The policy applies to all manuscripts with
authors from the editor’s institution.



R. Schulz et al. 49
Regional differences in infarct development

regional oxygen demand – in turn – depends on heart
rate [8] and regional wall stress [30]. Below a certain
blood flow threshold [28, 40], infarct size – for a given
area at risk and duration of ischemia – is inversely related
to ischemic myocardial blood flow [7, 29, 31]; a further
increase in regional oxygen demand by inotropic stimu-
lation, however, increases infarct size for a given
ischemic myocardial blood flow [40]. 

Ischemic preconditioning delays the development of
myocardial infarction [26]. The relationship between
infarct size and ischemic blood flow observed in non-pre-
conditioned myocardium is lost or almost lost with
ischemic preconditioning [26]. Thus, the protection
achieved by ischemic preconditioning , i.e., the extent of
infarct size reduction appears to be independent from
regional myocardial blood flow and might also differ
between different perfusion territories.

To analyze whether or not infarct size following
ischemia/reperfusion within the left ventricle (LV)
demonstrate regional differences, infarct size within the
perfusion territory of the left anterior descending coro-
nary artery (LAD) in pigs, which perfuses parts of the LV
anterior free wall and the LV septum [18, 19] was retro-
spectively analyzed. Resting myocardial blood flow in
the LV septum and LV anterior free wall differs in
humans [12], and differences in myocardial fiber diame-
ter within the LV septum and LV anterior free wall have
also been reported [20], the latter contributing to the dif-
fusion distance for oxygen. 

Materials and methods

In previous experiments, in which triggers and mediators
involved in ischemic preconditioning’s protection were
defined [38, 39, 41, 49, 50], it appeared that infarct size in
the LV septum was always greater than in the LV anterior
free wall. To obtain more detailed data on infarct devel-
opment, viable and infarcted tissue pieces of the LV sep-
tum and the LV anterior free wall were cut out separately
in subsequent experiments [35, 36, 43, 44], and only those
experiments were taken from previously published data
sets and included in the present, retrospective analysis.
For the histological analysis additional experiments were
performed to obtain tissue samples from both the LV
septum and the LV anterior free wall.

� Experimental model

Fourty-eight Göttinger minipigs were instrumented as
described previously [39]. In brief, the pigs were anes-
thetized with enflurane and N2O, and both common
carotid arteries were cannulated, one to measure arterial
pressure and one to supply blood for an extracorporeal

circuit. A micromanometer was placed into the left ven-
tricle for pressure recording. The LAD was cannulated
and perfused from an extracorporeal circuit including a
roller pump. Perfusion at constant low flow permits the
measurement of regional myocardial blood flow with an
intracoronary infusion of microspheres.

� Regional myocardial blood flow

Radiolabeled microspheres (15 µm diameter, 141Ce, 114In,
103Ru, 95Nb or 46Sc; NEN, Du Pont Co, Boston, MA, USA)
were injected into the coronary perfusion circuit (1.5–
3 � 105 suspended in 1 ml saline) to determine regional
myocardial blood flow. Regional myocardial blood flow
for a given tissue sample was calculated as the ratio of
tissue sample activity to total activity within the myo-
cardium times coronary inflow (given by the roller
pump). This procedure for the determination of blood
flow has been validated extensively [37]. The number of
microspheres in each tissue sample was calculated with
the predetermined number of radioactive counts per
sphere. For each isotope, samples contained  more than
400 microspheres as long as ischemic blood flow was
higher than 0.02 ml/min/g and sample weight was greater
than 0.5 g, resulting in an error of less than 10% [6, 10]. 

� Experimental protocols

In all experiments, heart rate under baseline conditions
was set to 10 beats/min above the spontaneous sinus
rhythm by left atrial pacing. 

90 min ischemia (group 1, n = 24) After control measure-
ments of systemic hemodynamics and regional myocar-
dial blood flow, pigs were subjected to 90 min ischemia.
Coronary inflow was reduced to decrease mean coronary
arterial pressure to 30 – 35 mmHg and then maintained
until the end of the ischemic period. At 5 and 85 min of
ischemia, further sets of hemodynamic measurements
were obtained. At 5 min ischemia, regional myocardial
blood flow was also measured. The myocardium was
reperfused for 120 min. 

Ischemic preconditioning with 10 min ischemia and 15 min
reperfusion preceding 90 min ischemia (group 2, n = 24)
After control measurements the pigs underwent a cycle
of 10 min ischemia of a severity to decrease mean coro-
nary arterial  pressure to 30 – 35 mmHg and 15 min
reperfusion at constant normal coronary arterial pres-
sure. Measurements were performed at the end of the
preconditioning ischemia and at 15 min reperfusion.
Thereafter, the protocol was identical to that of group 1.

Preparation of tissue At the end of each experiment fol-



lowing 120 min reperfusion the heart was excised, sec-
tioned into five to six slices parallel to the atrioventricu-
lar groove, and incubated in 1% TTC solution (25 min,
37 °C) to demarcate infarcted areas [15]. TTC positive
(viable) tissue was subdivided into subendocardial, mid-
myocardial and subepicardial layers of approximately
equal weight. Tissue without TTC staining was carefully
dissected from viable areas. 

� Histology

In a subset of experiments (n = 8), tissue samples from
both the LV anterior free wall and LV septum were fixed
in formalin and embedded in paraffin (for details, see [1,
34]). Sections of 4 µm thickness were cut, stained with
hematoxylin and eosin and examined by light mic-
roscopy. Images at a magnification �1000 were taken
(Leica DMLB and Leica DC 100, Leica Bensheim, Ger-
many), and the distance from the inner wall of a capillary
to the surrounding myocytes was measured and defined
as the capillary-to-myocyte distance (µm, total area ana-
lyzed for each wall: 0.06 mm2). The same images were
used to quantify the area of perivascular connective tis-
sue and the cross sectional cardiomyocyte area (µm2). In
addition, Masson Goldner staining was performed to
examine connective tissue. The area of connective tissue
was measured and calculated as a percentage per field of
view. Histological findings obtained in pig hearts were
confirmed in sections from normoperfused rabbit hearts
(n = 8). 

� Data analysis and statistics

Hemodynamic data were recorded on an 8-channel
recorder (Gould MK 200A, Cleveland, OH, USA), simul-
taneously digitized at 200 Hz and directly stored to the
hard disk of a personal computer. Systemic hemodyna-
mic parameters were recorded and digitized over a 20 s
period during each microspheres injection (approxima-
tely 33 consecutive beats over at least two complete res-
piratory cycles) using CORDAT II software [45]. Hemo-
dynamic parameters analyzed were heart rate, LV peak
and end-diastolic pressure, the maximum of the first
derivative of left ventricular pressure (dP/dtmax), mean
coronary arterial pressure (CAP) and mean coronary
inflow (CBF). Calculation of all hemodynamic parame-
ters was done on a beat-to-beat basis, and data were then
averaged. 

All data are reported as mean values ± SEM. A p-value
less than 0.05 was accepted as indicating a significant
difference in mean values. Systemic hemodynamic 
data were subjected to a two-way analysis of variance
(ANOVA) for repeated measures, accounting for the two
groups of pigs and the time course of the experiment. 

Regional myocardial blood flow data of each group
were also subjected to a two-way analysis ANOVA for
repeated measures, accounting for viable and infarcted
tissue samples and blood flow under control conditions
and at 5 min of the index ischemia. Regional blood flow
data for a given myocardial region were additionally sub-
jected to a two-way ANOVA for repeated measures,
accounting for the two groups of pigs and the time course
of the experiment.

When significant differences were detected, individ-
ual mean values were compared using Tukey’s post-hoc
tests. 

The area at risk and infarct size as a percent of the area
at risk of the 2 groups of pigs were analyzed by unpaired
t-test. Linear regression analyses between infarct size and
subendocardial blood flow at 5 min of ischemia were
performed and compared by analysis of covariance
(ANCOVA). 

Results

Systemic hemodynamics are shown in Table 1. There
were no significant differences in systemic hemodynam-
ics between the two groups of pigs during the time course
of the experiment. Heart rate remained unchanged
throughout the protocol in both groups. LV peak pres-
sure, dP/dtmax, CAP and CBF were significantly
decreased at 5 and 85 min of the sustained ischemia,
while LV end-diastolic pressure increased. 
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Table 1 Systemic hemodynamics 

Baseline 5 min 5 min 85 min
IP ischemia ischemia

HR Group 1 100 � 9 101 � 9 102 � 8
Group 2 99 � 9 103 � 19 100 � 11 105 � 18

LVPP Group 1 94 � 7 82 � 10* 81 � 12*
Group 2 94 � 11 82 � 11* 82 � 7* 78 � 11*

LVedP Group 1 6 � 3 14 � 4* 12 � 5*
Group 2 6 � 3 12 � 4* 13 � 3* 13 � 5*

dP/dtmax Group 1 1365 � 325 1082 � 290* 1087 � 247*
Group 2 1296 � 260 1008 � 178* 1027 � 160* 1004 � 179*

CAP Group 1 118 � 10 30 � 3* 30 � 5*
Group 2 113 � 22 29 � 4* 30 � 4* 30 � 4*

CBF Group 1 42.4 � 16.2 6.5 � 2.5* 6.6 � 2.6*
Group 2 40.3 � 12.4 6.3 � 2.8* 6.4 � 2.8* 6.5 � 2.8*

Group 1 90 min ischemia (n = 24); Group 2 Ischemic preconditioning + 90 min
ischemia (n = 24); HR heart rate (beats/min); LVPP left ventricular peak pressure
(mmHg); LVedP (mmHg) left ventricular end-diastolic pressure; dP/dtmax maximum
of the first derivative of left ventricular pressure (mmHg/s); CAP coronary arterial
pressure (mmHg); CBF coronary blood flow (ml/min). *p < 0.05 vs Baseline
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In the LV anterior free wall, baseline myocardial
blood flows of endocardial and epicardial layers were
similar (ratio: 1.05 ± 0.41) but baseline myocardial blood
flow to subsequently infarcted tissue was higher than
blood flow to viable tissue pieces in both groups of pigs
(Table 2). At 5 min ischemia, blood flow of viable and
infarcted tissue was reduced to similar absolute values.
Baseline myocardial blood flow in the septum did not
significantly differ between the subendocardial layer
towards the LV and the subendocardial layer towards the
right ventricle (ratio: 1.12 ± 0.67), but it was significantly
lower than that in the LV anterior free wall in both groups
of pigs. In the LV septum, baseline blood flow to subse-

quently infarcted tissue was not different from blood flow
to viable tissue pieces, again with no differences between
groups. At 5 min ischemia, blood flow of viable and
infarcted LV septum was reduced to similar absolute val-
ues, similar also to that measured in the LV anterior free
wall. Since baseline blood flow was higher in the LV ante-
rior free wall than in the LV septum, relative blood flows
during ischemia were lower in the LV anterior free wall
(5.0 ± 2.0% and 5.0 ± 3.1% of baseline in groups 1 and 2,
respectively) than in the LV septum (6.3 ± 2.1% and 6.6
± 3.1% of baseline in groups 1 and 2, respectively, both 
p < 0.05 vs. LV anterior free wall).

The area at risk – perfused by the LAD – was similar
in both groups of pigs (Fig. 1). Also the distribution of LV
anterior free wall and LV septum perfused by the LAD
was similar between groups. Infarct size was smaller in
the LV anterior free wall than in the LV septum follow-
ing ischemia/reperfusion in non-preconditioned hearts,
while it was similar in both LV areas in preconditioned
hearts (Fig. 2). The linear relationship between regional
myocardial blood flow at 5 min ischemia and infarct size
obtained in the LV septum (y = –368.5 · � +43.3, n = 24,
r = 0.56) was significantly shifted upwards compared to
that obtained in the LV anterior free wall (y = –172.3 · �
+24.4, n = 24, r = 0.47) (Fig. 3a). No significant correla-
tion between ischemic regional myocardial blood flow
and infarct size was found in preconditioned hearts 
(Fig. 3b).

In a subgroup of pigs, the cardiomyocyte cross-sec-
tional area was slightly increased in the LV septum (272

Table 2 Regional myocardial blood flow 

Group 1 Group 2

Baseline 5 min Baseline 5 min
ischemia ischemia

LVAFW 0.93 � 0.35 0.05 � 0.03* 1.06 � 0.31 0.05 � 0.03*

LVAFWINF 1.05 � 0.491 0.04 � 0.03* 1.28 � 0.461 0.06 � 0.03*

LVS 0.80 � 0.262 0.05 � 0.03* 0.90 � 0.302 0.05 � 0.03*

LVSINF 0.84 � 0.313 0.05 � 0.03* 0.94 � 0.313 0.06 � 0.03*

Group 1 90 min ischemia (n = 24); Group 2 Ischemic preconditioning + 90 min
ischemia (n = 24); LVAFW blood flow in the left ventricular anterior free wall
(ml/min/g); LVAFWINF blood flow in infarcted parts of the LVAFW (ml/min/g); LVS
blood flow in the left ventricular septum (ml/min/g);  LVSINF blood flow in infarcted
parts of the LVS (ml/min/g)
*p < 0.05 vs Baseline; 1p<0.05 vs LVAFW; 2p < 0.05 vs LVAFW; 3p < 0.05 vs LVAFWINF 

Fig. 1 The area at risk – perfused by the LAD – was similar in both groups of pigs
Also the distribution of LV anterior free wall and LV septum perfused by the LAD was
similar between groups

Fig. 2 Infarct size was smaller in the LV anterior free wall than in the LV septum fol-
lowing ischemia/reperfusion in non-preconditioned hearts, while it was similar in
both LV areas in preconditioned hearts



± 20 µm2) compared to the LV anterior free wall (254 ±
11 mm2, p = 0.05). Also total myocardial connective tis-
sue (Figs. 4 and 5), the amount of perivascular connec-
tive tissue (Fig. 6) and the capillary-to-myocyte distance
(Fig. 7) were increased in the LV septum compared to the
LV anterior free wall. These histological findings were
confirmed in healthy hearts from rabbits (Figs. 5–7). 

Discussion

In pigs, regional differences in infarct development and
protection from it by ischemic preconditioning exists in
the LAD perfusion territory, which is independent of
ischemic blood flow but apparently related to pre-exist-
ing structural differences.
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Fig. 3 Relationship between ischemic
myocardial blood flow and infarct size
following ischemia/reperfusion in non-
preconditioned (a) and preconditioned
(b) hearts. Infarct sizes of the left ven-
tricular anterior free wall (LVAFW) and
the LV septum are expressed as per-
centage of the respective area at risk.
While infarct size for a given ischemic
myocardial blood flow is higher in the
LV septum than in the LVAFW of non-
preconditoned hearts (a), it is similar  in
preconditioned hearts (b)

a

b

� Critique of methods

The present experiments were performed in pigs since
infarct development in this species, due to the sparsity of
the innate collateral circulation, most closely resembles
that observed in man [32]. 

Since collateral flow is small in pigs [32], complete
occlusion of the proximal left anterior descending coro-
nary artery results in extensive infarction of the left ven-
tricle and subsequent pump failure. Therefore in the
present study, the left anterior descending coronary
artery perfusion territory was hypoperfused at low, but
maintained flow, resulting in a large area at risk (49% of
the LV mass on the average), but a small infarct size when
expressed as a percent of the area at risk (16 – 25%).
However, infarct size expressed as a percent of the total
LV mass in the present study averaged 7–12% and was
thus comparable to that of previous studies using pigs
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Fig. 4 Tissue sections from the LV septum (upper two graphs) and the LV anterior
free wall (lower two graphs). The connective tissue (arrows) is increased in the LV
septum compared to the LV anterior free wall

Fig. 5 Total myocardial connective tissue was increased in the LV septum compared
to the LV anterior free wall in pig and rabbit hearts

Fig. 6 Perivascular connective tissue was increased in the LV septum compared to
the LV anterior free wall in pig and rabbit hearts



with a total occlusion of only one distal left anterior
descending coronary artery branch [33]. 

� Blood flow

While no difference in blood flow between the LV septum
and the LV anterior free wall exists in dogs [52], blood
flow distribution within the LAD perfusion territory
under baseline conditions differs between the LV septum
and the LV anterior free wall in humans [12]. The
reduced blood flow in the LV septum compared to the LV
anterior free wall in the present study could have resulted
from an increased extravascular compression [51] and/
or LV fibrosis; the latter explanation, however, appears to
be of little importance for the present findings on infarc-
tion, since the pronounced difference in blood flow seen
under baseline conditions was lost during ischemia. In
agreement with previous results, myocardial tissue in the
LV anterior free wall undergoing infarction had higher
baseline blood flow than tissue which remained viable
[17]. However, this was not observed in the LV septum,
for reasons unknown. 

� Blood flow and ischemic preconditioning

In pig hearts, ischemic preconditioning increases the
number of infarcted tissue pieces (y-axis) with lower
blood flow values (x-axis) compared to non-precondi-
tioned hearts [21]. Similarly, the ischemic myocardial
blood flow (x-axis) below which irreversible tissue dam-
age develops (y-axis) is shifted leftwards in precondi-

tioned pig hearts [28]. These results imply that downreg-
ulation of energy expenditure (or less energy wastage)
occurs in preconditioned hearts and plays a role in 
its cardioprotective effects [27]. Therefore, at similar
ischemic blood flow – as seen in the present study – irre-
versible tissue damage in preconditioned myocardium is
less than in non-preconditioned myocardium. Whether
or not the blood flow threshold for the development of
irreversible tissue is similar for the LV septum and the LV
anterior free wall is unknown at present. 

� Myocardial morphology

The cardiomyocyte cross-sectional area and the extent of
myocardial connective tissue were greater in the LV sep-
tum than in the LV anterior free wall, and increased con-
nective tissue was also measured around the myocardial
blood vessels. These findings were not related to the ani-
mal species or the experimental setup, since they were
also observed in intact rabbit hearts. Therefore, the gen-
eral assumption of a homogenous distribution of cardio-
myocyte size and collagen network within the healthy LV
is challenged by the present study. In human hearts, dif-
ferences in the extent of fibrosis between the LV septum
and the LV anterior free wall have been found in hyper-
trophied [47], but not in healthy hearts [48]. However,
significant differences in myocardial fiber diameter
between the LV septum and the LV anterior free wall
have been reported [20], with fiber diameter being
greater in the LV anterior free wall than in the LV septum.
The increase in the diffusion distance  for oxygen
(approximately 8%), as estimated from the increased
capillary-to-myocyte distance and the increased cardio-
myocyte cross sectional area, in the presence of a com-
parable ischemic blood flow could potentially contribute
to the regional differences in infarct development in the
LV septum vs. anterior free wall, although its exact con-
tribution remains to be established.
In addition, differences in myocardial energy demand –
which were measured previously within small regions of
the left ventricle [13] – could explain the regional differ-
ences in infarct development. Since the myocardium
consumes most of the oxygen to generate contractile
function [30] and maintain wall stress independent of
shortening [11], regional myocardial function must be
measured to assess differences in myocardial energy
demand between the LV septum and the LV anterior free
wall. Indeed, wall thickening is greater in the LV septum
than in the LV anterior free wall in humans under base-
line conditions [9], but wall stress appears to be similar
[3]. More importantly, in pigs regional myocardial func-
tion (fractional area) during ischemia is decreased to
similar absolute values in the LV septum and the LV
anterior free wall [24], and this decrease occurs more
rapidly in the LV septum [25]. 
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Fig. 7 The capillary-to-myocyte distance was increased in the LV septum compared
to the LV anterior free wall in pig and rabbit hearts
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