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Abstract
Purpose  This study aimed to evaluate the relationship between plant protein, animal protein and biological aging through 
different dimensions of biological aging indices. Then explore the effects of substitution of plant protein, animal protein, 
and their food sources on biological aging.
Methods  The data came from 79,294 participants in the UK Biobank who completed at least two 24-h dietary assessments. 
Higher Klemera-Doubal Method Biological Age (HKDM-BA), higher PhenoAge (HPA), higher allostatic load (HAL), and 
longer telomere length (LTL) were estimated to assess biological aging. Logistic regression was used to estimate protein-
biological aging associations. Substitution model was performed to assess the effect of dietary protein substitutions.
Results  Plant protein intake was inversely associated with HKDM-BA, HPA, HAL, and positively associated with LTL 
(odds ratios after fully adjusting and comparing the highest to the lowest quartile: 0.83 (0.79–0.88) for HKDM-BA, 0.86 
(0.72–0.94) for HPA, 0.90 (0.85–0.95) for HAL, 1.06 (1.01–1.12) for LTL), while animal protein was not correlated with 
the four indices. Substituting 5% of energy intake from animal protein with plant protein, replacing red meat or poultry 
with whole grains, and replacing red or processed meat with nuts, were negatively associated with HKDM-BA, HPA, HAL 
and positively associated with LTL. However, an inverse association was found when legumes were substituted for yogurt. 
Gamma glutamyltransferase, alanine aminotransferase, and aspartate aminotransferase mediated the relationship between 
plant protein and HKDM-BA, HPA, HAL, and LTL (mediation proportion 11.5–24.5%; 1.9–6.7%; 2.8–4.5%, respectively).
Conclusion  Higher plant protein intake is inversely associated with biological aging. Although there is no association with 
animal protein, food with animal proteins displayed a varied correlation.
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Introduction

Aging is a complex process that gradually undermines the 
integrity of cells, tissues, and organs [1]. Over the years, 
people have been searching for measures to delay aging, 
with aging affected by genetic, environmental, and lifestyle 
factors [2–4]. Among these, diet has been shown to play a 
crucial role in influencing aging [5]. One key component of 

a wholesome diet is protein, which can be categorized into 
plant and animal sources.

Previous studies have suggested that different protein 
sources have different impacts on mortality, for example, 
increased intake of plant protein is associated with a reduc-
tion in the risk of chronic disease and all-cause mortality, 
whereas increased intake of animal protein has the opposite 
or no association [6–8]. A study performed in the elderly 
also found that increasing plant protein intake reduced the 
health deficit accumulation index [9]. On this basis, some 
studies have further found that substituting animal protein 
with plant protein can reduce the risk of aging-related dis-
ease and all-cause mortality [6, 10, 11]. However, there is 
limited research on the relationship between plant protein, 
animal protein, and their major food sources and biological 
aging in large populations. At the same time, the possible 
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biological mechanisms by which they affect biological aging 
remain unclear.

A single biomarker of aging may not systematically 
reflect true organismal aging [12]. Biological age is a more 
ideal indicator as it utilizes a variety of biomarkers that 
accurately reflect the functioning of multiple organ systems 
and the health status of an individual to describe biological 
aging [13]. Earlier studies have proposed and validated mul-
tiple approaches to calculating biological age, such as the 
Klemera-Doubal Method Biological Age (KDM-BA) and 
the PhenoAge (PA) algorithm [14, 15], which can quantify 
biological age and predict mortality through commonly 
assessed clinical parameters [16, 17]. Allostatic load (AL) 
is also a key indicator of biological aging [18], reflecting 
the accumulated burden of chronic stress [19], and is associ-
ated with subsequent functional decline and death [20, 21]. 
Repetitive DNA sequences known as telomeres, situated at 
the termini of eukaryotic chromosomes, undergo attrition 
with each division of a somatic cell [22]. Telomere length 
(TL) has emerged as a potential biomarker of biological age, 
as shorter telomeres are associated with a higher biological 
age [23].

Considering the current research gaps mentioned above, 
we first studied the relationship between plant protein, ani-
mal protein, their twelve food sources and four biological 
aging indices separately in this study. Then, we conducted 
substitution analyses of various protein sources to deter-
mine if better improvements in biological aging could be 
achieved. Additionally, we explored whether some biochem-
ical indexes could explain the association between plant or 
animal protein and biological aging.

Methods

Study population

The UK Biobank (UKB) is a large-scale population-based 
cohort study of over 500,000 participants aged 40–69 years 
at recruitment between 2006 and 2010 [24]. The study 
used data from the UKB and involved non-pregnant adults 
who took part in the survey. Exclusion criteria included 
participants with any of the following conditions: missing 
dietary energy data (n = 291,454) and unrealistic dietary 
energy intake (< 800 or > 4200 kcal/day for men and < 500 
or > 3500  kcal/day for women) (n = 2,529), pregnant 
(n = 71), data that were not available or had missing values 
for covariates (n = 34,580), plant protein and animal protein 
(n = 0), lack of physiological data for calculating the four 
biological aging indices (n = 45,220), did not complete two 
or more dietary assessments (n = 49,263). After excluding 
the above participants, 79,294 individuals were ultimately 
considered in this study (Supplementary Fig. 1).

Dietary assessment

The Oxford WebQ was developed for large population 
studies and validated against an interviewer-administered 
24-h recall questionnaire [25, 26]. Dietary information was 
collected at baseline and followed up four times between 
April 2009 and June 2012 (cycle 1: February 2011 to 
April 2011; cycle 2: June 2011 to September 2011; cycle 
3: October 2011 to December 2011; cycle 4: April 2012 
to June 2012) using Oxford WebQ [27]. Total energy and 
nutrient intake data were automatically estimated by mul-
tiplying the number of portions consumed by the set quan-
tity of each food portion size and its nutrient composition 
according to the UK Nutrient Databank food composi-
tion tables (2012–2013 and 2013–2014) [27]. We used the 
average of the five measurements of the plant protein vari-
able (ID:26,006, g/d), animal protein variable (ID:26,007, 
g/d), total energy variable (ID:26,002, kj/d) from the UK 
Biobank (UKB) database to express their average dietary 
intakes. We converted energy (kj/d) into energy (kcal/d) 
and calculated the final percentage of plant and animal 
protein intake to total energy consumption [6].

The Oxford WebQ also collects information on foods 
and beverages consumed over the previous day. Partici-
pants were presented with a list of up to 206 foods and 32 
beverages commonly consumed in the UK and selected the 
number of portions consumed from each food [28]. Par-
ticipants with at least two assessments were retained for 
analysis to better reflect usual intakes [29], and their mean 
dietary intake was calculated. The food items comprising 
each of the twelve dietary protein sources were described 
in Supplementary Table 1. A serving size was defined as 
50 g/day for red meat, processed meat, poultry, egg and 
egg dishes, oily fish, non-oily fish, and legumes; 30 g/day 
for cheese and whole grains; 200 g/day for milk; 70 g/day 
for yogurt; and 10 g/day for nuts [30].

Main outcomes

We used the best-validated algorithms to construct KDM-
BA, PA, and AL based on ten blood chemistry parameters 
that could be implemented with data available in the UK 
Biobank (Supplementary Table 2) [31–33]. The R pack-
age ‘BioAge’ provided access to the corresponding algo-
rithms and R code at https://​github.​com/​dayoo​nkwon/​
BioAge. Briefly, the KDM-BA was derived from a series 
of regressions of individual biomarkers on chronological 
age in a reference population, which allowed us to quan-
titatively assess the decline in system integrity [34]. PA 
was computed using an algorithm derived from multivari-
ate analysis of mortality hazards to estimate the risk of 

https://github.com/dayoonkwon/BioAge
https://github.com/dayoonkwon/BioAge


European Journal of Nutrition	

death [15]. AL was a composite measure of biomarkers 
associated with the neuroendocrine, neurophysiologi-
cal, and inflammatory systems, and it was determined by 
evaluating the percentage of biomarkers that indicated an 
increased risk for an individual [35]. In our study, the risk 
level was established by assessing individuals in the high-
est quartile of a biomarker’s distribution for nine out of 
the ten biomarkers, except for albumin, for which risk was 
defined as residing in the lowest quartile [36]. The final 
AL, ranging from 0 to 1, was considered as the ratio of 
biomarkers classified as “at risk” within the ten selected 
biomarkers [37].

At baseline (recruitment), DNA was extracted from the 
peripheral blood leukocytes of all UKB participants. Mul-
tiple quantitative polymerase chain reaction (qPCR) was 
used to measure leucocyte TL with T/S ratio, comparing 
the amount of the telomere amplification product (T) to that 
of a single-copy gene (S) [38, 39]. In this study, the TL 
measurement results were first approximated to normal dis-
tribution by loge-transformed, and then further analyzed by 
Z-standardized value.

Overall, we set KDM-BA, PA, AL, and TL as binary vari-
ables for analysis according to the following standards [40]. 
Participants with KDM-BA and PA beyond their chronologi-
cal age are thought to have experienced accelerated biologi-
cal aging [14, 41], which we defined as higher KDM-BA 
(HKDM-BA) and higher PA (HPA), respectively. Individu-
als with higher levels of AL were at greater risk of physi-
ological stress. Based on the median AL, participants with 
AL levels above the median were classified as dysregulated 
in our study [42], which we defined as higher AL (HAL). 
Given the correlation between TL shortening and biological 
aging, individuals with TL above the median in our study 
were classified as abiotic senescence [43], which we defined 
as longer TL (LTL) (Supplementary Fig. 2).

Covariates

Referring to existing studies, the variables that influenced 
the association between plant and animal protein and bio-
logical aging were considered covariates to control for 
potential confounders. These variables included age (years), 
sex (male/female), ethnicity (White/Mixed/Asian or Asian 
British/Black or Black British/Chinese/Other ethnic group), 
Townsend deprivation index (TDI), education level (< high 
school/high school/ > high school), smoking status (never/
previous/current), drinking status (never/previous/current), 
physical activity (International Physical Activity Question-
naire activity group: low/moderate/high), body mass index 
(BMI) (kg/m2), overall health rating (excellent/good/fair/
poor), diabetes mellitus type 2 (T2DM) (yes/no), cancer 
(yes/no), intakes of total energy (quartiles), fruits (quartiles), 
vegetables (quartiles), saturated fatty acid, monounsaturated 

fatty acid, polyunsaturated fatty acid, and trans-fatty acids 
(all expressed as a percentage of energy and categorized into 
quartiles), intake of dietary cholesterol, diet quality score, 
and multiple vitamin supplement use (yes or no). T2DM 
was identified through self-reported medical history and 
use of anti-diabetic medication, hospital inpatient records 
(ICD-9 codes 250.00, 250.10, 250.20, and 250.90 and ICD-
10 code E11), and abnormal glucose levels (random glu-
cose ≥ 199.8 mg/dL or glycated hemoglobin ≥ 6.5%) [44]. 
Cancer was identified using ICD-10 code C00–C99 [45].

Statistical analysis

General characteristics across quartiles of plant and animal 
protein intake (energy%) were expressed as the mean value 
(standard deviation) for continuous variables and number 
(%) for categorical variables. We used general linear regres-
sion models for continuous variables and the Chi-square test 
for categorical variables to test differences across quartiles.

Logistic regression analyses were conducted to test the 
association between plant protein, animal protein, and twelve 
dietary protein sources with HKDM-BA, HPA, HAL, and 
LTL, with the lowest quartile of plant protein, animal pro-
tein, and twelve dietary protein sources as the reference. 
Generalized linear regression analyses were used when 
treating biological aging indices as continuous variables. 
Model 1 was adjusted for demographic and lifestyle factors, 
including sex, age, ethnicity, TDI, education level, smoking 
status, drinking status, physical activity, and BMI; Model 2 
was further adjusted for overall health rating, T2DM, cancer, 
intake of total energy; In Model 3 we additionally adjusted 
for the intake of fruits, vegetables, saturated fatty acid, 
monounsaturated fatty acid, polyunsaturated fatty acid and 
trans-fatty acids, dietary cholesterol, diet quality, multiple 
vitamin supplement use. In addition to all the above vari-
ables, the animal protein was also adjusted for plant protein 
in Model 3 and vice versa. When analyzing the relationship 
between plant and animal protein food sources and biologi-
cal aging indices, Model 1 and Model 2 remain unchanged. 
Model 3 adjusts eleven protein food sources other than this 
food but not plant or animal protein (energy%) variable, with 
the remaining covariates unchanged. Logistic regression was 
used to examine the linear trends, with the median intake of 
plant and animal protein per quartile as a continuous vari-
able. Besides, the non-linear relationship was analyzed by 
restricted cubic splines (RCS).

Then, we constructed a substitution model mentioned 
in the previous study [6] to estimate the relationship 
between replacing animal protein with plant protein and 
HKDM-BA, HPA, HAL, and LTL. To fit the substitu-
tion model, we simultaneously included the percentage 
of energy derived from animal protein and plant protein 
along with the covariates mentioned in Model 3 above. 
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We used the original plant protein intake (energy%) and 
animal protein intake (energy%) data divided by 5 to 
estimate the association of replacing 5% of energy. We 
also investigated the association between substituting 1 
serving of plant protein source foods (whole grains, nuts, 
legumes) for 1 serving of animal protein source foods (red 
meat, processed meat, poultry, egg and egg dishes, oily 
fish, non-oily fish, cheese, milk, yogurt). For all substi-
tution models, the odds ratios (ORs) of plant protein or 
plant protein food from the model can be interpreted as 
the estimated effect of replacing the same proportion of 
animal protein with a certain proportion of plant protein.

Model-based causal mediation analysis was conducted 
using the mediation package (http://​cran.r-​proje​ct.​org/​
web/​packa​ges/​media​tion/) and adjusted using covariates 
in Model 3. The mediating variables we used, including 
gamma glutamyltransferase (GGT), alanine aminotrans-
ferase (ALT), and aspartate aminotransferase (AST) were 
obtained from blood assays in the UKB database.

We did some sensitivity analyses. First, we excluded 
participants with extreme energy supply ratios (> 99% 
and/or < 1%) of plant or animal protein to minimize the 
possibility of bias and confirm the stability of our results. 
Then, subgroup analyses were conducted based on vari-
ables we are interested in: age (≤ 60 and > 60 years), sex, 
physical activity (low, moderate, high), body mass index 
(BMI) (≤ 25 and > 25 kg/m2), diagnosed diabetes mel-
litus type 2 (T2DM) (yes and no), diagnosed cancer (yes 
and no).

All analyses were performed in SPSS 26.0 and R 4.2.1. 
A P value of < 0.05 (two-sided) was considered statisti-
cally significant. The Bonferroni correction was used to 
explain the multiple testing.

Results

Participants’ characteristics

The characteristics of participants across quartiles of 
plant protein and animal protein are shown in Table 1. 
The total mean age of the participants was 56.0 (SD = 7.8) 
years and 46.6% were male. Participants with higher plant 
protein intake were more likely to have lower BMI, higher 
education level, physical activity level, better overall 
health level, and use vitamin supplements; be less likely 
to be current smokers and current drinkers. They also 
consumed more vegetables, fruits, and polyunsaturated 
fatty acids; less cholesterol, saturated fatty acids, mono-
unsaturated fatty acids, and trans fatty acids. The trends 
observed for these characteristics were roughly reversed 
among participants with a higher intake of animal protein.

Associations of plant and animal protein 
with biological aging

The associations between plant protein with four biologi-
cal aging indices are shown in Table 2. After the adjust-
ment of Model 1, we found that a higher intake of plant 
protein was inversely related to HKDM-BA, HPA, and HAL 
and positively related to LTL. After further adjustment for 
more covariates (Model 2), these associations were main-
tained. In the fully adjusted model (Model 3), compared 
to the lowest quartile of plant protein, the highest quartile 
was still inversely associated with HKDM-BA (OR: 0.83, 
95%CI 0.79–0.88), HPA (OR: 0.86, 95%CI 0.79–0.94), 
HAL (OR: 0.90, 95%CI 0.85–0.95) and positively associated 
with LTL (OR: 1.06, 95%CI 1.01–1.12). Additionally, the 
RCS model did not indicate any non-linear dose–response 
relationships between plant protein and HKDM-BA (P for 
overall < 0.0001, P for nonlinear = 0.8497), HPA (P for over-
all < 0.0001, P for nonlinear = 0.6747), HAL (P for over-
all < 0.0001, P for nonlinear = 0.5629), LTL (P for over-
all < 0.0001, P for nonlinear = 0.6561) (Fig. 1).

In terms of animal protein, after adjusting for all covari-
ates in Model 3, we found no consistent association between 
animal protein and four indices (Table 3). An inverted “U” 
curve was observed between animal protein and HKDM-
BA (P for overall < 0.0001, P for nonlinear = 0.0032) and 
HAL (P for overall < 0.0001, P for nonlinear = 0.0037), but 
no nonlinear relationship was found with HPA (P for over-
all < 0.0001, P for nonlinear = 0.1963) and LTL (P for over-
all < 0.0001, P for nonlinear = 0.4465) (Fig. 1).

When KDM-BA, PA, AL, and TL were treated as con-
tinuous variables, the above results did not change. Higher 
plant protein was still negatively associated with biological 
aging (Supplementary Table 3), and while we found that 
higher animal protein was positively associated with higher 
PA (beta: 0.15, 95%CI 0.07–0.22 when Q4 vs Q1 in Model 
3), there was no consistent association with the other three 
biological aging indices (Supplementary Table 4).

Associations of dietary plant and animal protein 
food sources intake with biological aging

Associations between the intake of twelve plant and animal 
protein dietary sources and four biological aging indices are 
shown in Supplementary Tables 5, 6, 7, 8, 9, 10, 11, 12, 13, 
14, 15, 16. In the fully adjusted model, compared with the 
lowest tertile, the highest tertile of whole grains intake was 
negatively associated with HKDM-BA (OR: 0.90, 95%CI 
0.86–0.93), HPA (OR: 0.85, 95%CI 0.79–0.90), HAL (OR: 
0.89, 95%CI 0.86–0.93), and higher odds of LTL (OR: 1.05, 
95%CI 1.01–1.09) (Supplementary Table 5). Participants in 
the highest tertile of nuts intake had a negative association 
with biological aging than those in the lowest tertile (OR: 
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0.84, 95%CI 0.79–0.90, OR: 0.94, 95%CI 0.90–0.98, OR: 
1.07, 95%CI 1.03–1.11 for HPA, HAL, and LTL, respec-
tively) (Supplementary Table 6). Yogurt intake was inversely 
related to HKDM-BA (OR: 0.90, 95%CI 0.86–0.94), HPA 
(OR: 0.89, 95%CI 0.83–0.95) and HAL (OR: 0.90, 95%CI 
0.86–0.94) (Supplementary Table 15). Red meat and pro-
cessed meat intake were associated with HKDM-BA (OR: 
1.15, 95%CI 1.09–1.22; OR: 1.12, 95%CI 1.07–1.17, 
respectively), HPA (OR: 1.15, 95%CI 1.05–1.26; OR: 1.10, 
95%CI 1.03–1.18, respectively) and HAL (OR: 1.08, 95%CI 
1.02–1.14; OR: 1.05, 95%CI 1.01–1.10, respectively) (Sup-
plementary Table 8,9). The intake of egg and egg dishes was 
not correlated with any of the four indices (Supplementary 
Table 11). The intake of other food categories did not show 
a relatively stable relationship with the four biological aging 
indices (Supplementary Table 7,10,12, 13, 14,16).

Associations between substituting different protein 
sources and biological aging

Substituting 5% energy from plant protein for 5% of energy 
from animal protein was associated with 19–28% lower odds 
of HKDM-BA (OR: 0.72, 95%CI 0.67–0.78), HPA (OR: 
0.81, 95%CI 0.72–0.90), HAL (OR: 0.80, 95%CI 0.74–0.85) 
and 12% higher odds of LTL (OR: 1.12, 95%CI 1.07–1.17) 
(Table 4).

Specifically, when exploring the impact of plant protein 
food as a substitute for animal protein food on biological 
aging, we found that substituting whole grains for red meat 
or poultry, and substituting nuts for red or processed meat 
were negatively related to biological aging as defined by 
four biological aging indices (Table 4). It is worth mention-
ing that not all plant protein foods were inversely associated 

Table 2   Odds ratios (95% 
confidence interval) for 
biological aging indices by 
quartiles of plant protein 
(energy%) among 79,294 
participants a

BMI body mass index, Ref reference, TDI Townsend deprivation index, T2DM Type 2 diabetes mellitus
a Data were listed as odds ratios (95% confidence interval) calculated using binomial logistic regression
b Tests for trends based on the variables containing the median values for each group
c Bold values denote statistical significance (significance criterion 0.05/3 = 0.017 for each quartile) after the 
Bonferroni correction
d Model 1: Adjusted for sex, age, ethnicity, TDI, education level, smoking status, drinking status, physical 
activity, BMI
e Model 2: Adjusted for sex, age, ethnicity, TDI, education level, smoking status, drinking status, physical 
activity, BMI, overall health rating, T2DM, cancer, intake of total energy
f Model 3: Adjusted for sex, age, ethnicity, TDI, education level, smoking status, drinking status, physical 
activity, BMI, overall health rating, T2DM, cancer, intakes of total energy, dietary animal protein, fruits, 
vegetables, saturated fatty acid, monounsaturated fatty acid, polyunsaturated fatty acid and trans-fatty 
acids, intake of dietary cholesterol, diet quality, multiple vitamin supplement use

Quartiles of plant protein (energy%) P for trendb

Q1 Q2 Q3 Q4

Higher Klemera-Doubal Method Biological Age
Case/N 6,771/19,823 6,360/19,824 6,072/19,823 5,569/19,824
Model 1d Ref 0.94 (0.90–0.98)c 0.91 (0.87–0.95) 0.83 (0.80–0.87)  < 0.001
Model 2e Ref 0.94 (0.90–0.98) 0.91 (0.87–0.95) 0.83 (0.79–0.86)  < 0.001
Model 3f Ref 0.94 (0.90–0.98) 0.91 (0.87–0.96) 0.83 (0.79–0.88)  < 0.001
Higher PhenoAge
Case/N 2,396/19,823 2,021/19,824 1,936/19,823 1,642/19,824
Model 1 Ref 0.90 (0.84–0.96) 0.90 (0.84–0.97) 0.85 (0.79–0.91)  < 0.001
Model 2 Ref 0.89 (0.83–0.95) 0.88 (0.82–0.94) 0.79 (0.73–0.85)  < 0.001
Model 3 Ref 0.91 (0.85–0.98) 0.93 (0.86–1.00) 0.86 (0.79–0.94) 0.003
Higher Allostatic Load
Case/N 8,599/19,823 8,053/19,824 7,631/19,823 6,867/19,824
Model 1 Ref 0.92 (0.88–0.96) 0.87 (0.83–0.91) 0.81 (0.78–0.85)  < 0.001
Model 2 Ref 0.92 (0.88–0.96) 0.87 (0.83–0.91) 0.79 (0.76–0.83)  < 0.001
Model 3 Ref 0.96 (0.92–1.00) 0.93 (0.89–0.98) 0.90 (0.85–0.95)  < 0.001
Longer Telomere Length
Case/N 9,815/19,823 9,731/19,824 9,807/19,823 10,294/19,824
Model 1 Ref 0.99 (0.95–1.03) 1.01 (0.97–1.05) 1.06 (1.02–1.11) 0.002
Model 2 Ref 0.99 (0.95–1.03) 1.01 (0.97–1.05) 1.07 (1.02–1.11) 0.001
Model 3 Ref 0.99 (0.95–1.03) 1.01 (0.96–1.05) 1.06 (1.01–1.12) 0.009
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with biological aging when they substituted animal protein 
foods. The ORs (95%CI) of HKDM-BA, HPA, HAL and 
LTL for replacing 1 serving/day yogurt with legumes were 
1.04 (1.01–1.07), 1.10 (1.06–1.15), 1.07 (1.04–1.09), 0.97 
(0.95–0.99), respectively (Table 4).

The inconsistently stable results of substituting whole 
grains, nuts, or legumes for the remaining animal protein 
source foods are shown in Supplementary Table 17. Sub-
stituting 1 serving/day whole grains for 1 serving/day 
processed meat or non-oily fish; replacing 1 serving/day 
of poultry or non-oily fish with 1 serving/day of nuts was 
inversely associated with biological aging (indicated by 
three of the four biological aging indices). Also, substitut-
ing 1 serving/day of whole grains for yogurt; substituting 1 
serving/day legumes for cheese was positively associated 
with biological aging (indicated by three of the four biologi-
cal aging indices) (Supplementary Table 17).

Mediation analysis

Through mediation analysis, we found that serum, GGT, 
ALT, and AST mediated the indirect effect of plant protein 
on the HKDM-BA, HPA, HAL, and LTL (all P < 0.001). 
Specifically, GGT, ALT, and AST were estimated to explain 
19.1, 4.4 and 2.8% of the association between plant protein 
and HKDM-BA, respectively; 24.5, 6.7 and 4.4% of the 
association between plant protein and HPA, respectively; 
21.2, 6.0 and 4.5% of the association between plant protein 

and HAL, respectively; 11.5, 1.9 and 4.1% of the association 
between plant protein and LTL, respectively (Fig. 2).

Sensitivity analysis

We reran the logistic regression analyses for the 76,544 par-
ticipants remaining after excluding those with extreme values 
for the percentage of energy from plant and animal protein. 
The above-mentioned association between plant and animal 
protein and four biological aging indices remains consistent 
(Supplementary Tables 18,19). Notably, stratified analyses 
showed no association between plant protein and any of the 
four biological aging indices in participants with T2DM (all P 
for trend > 0.05) (Supplementary Table S20). The remaining 
results are generally consistent with the conclusions obtained 
from the main analysis (Supplementary Tables S20, S21).

Discussion

Using the large-scale data, we found that a higher plant pro-
tein intake was negatively associated with biological aging, 
while animal protein intake did not show a consistent asso-
ciation with biological aging. Replacing animal protein with 
plant protein is inversely associated with biological aging, 
but this does not necessarily apply to all of their major food 
sources, and we present some suitable food alternatives. 
The association between plant protein and biological aging 
is partially mediated through serum GGT, ALT, and AST.

1.00

1.25

1.50

4 8 12
Plant protein (%E)

O
R

 (9
5%

C
I)

Longer  Telomere Length

0.50

0.75

1.00

1.25

1.50

4 8 12
Plant protein (%E)

O
R

 (9
5%

C
I)

Higher PhenoAge

0.7

0.8

0.9

1.0

0 10 20 30
Animal protein (%E)

O
R

 (9
5%

C
I)

Higher Allostatic Load

0.7

0.8

0.9

1.0

0 10 20 30
Animal protein (%E)

O
R

 (9
5%

C
I)

Higher Klemera-Doubal Method Biological Age

0.6

0.8

1.0

1.2

1.4

0 10 20 30
Animal protein (%E)

O
R

 (9
5%

C
I)

Higher PhenoAge

0.8

0.9

1.0

1.1

1.2

1.3

0 10 20 30
Animal protein (%E)

O
R

 (9
5%

C
I)

Longer Telomere Length

Bl
oo

d 
gl

uc
os

e(
m

g/
dL

)

0.4

0.6

0.8

1.0

1.2

1.4

4 8 12
Plant protein (%E)

O
R

 (9
5%

C
I)

Higher Klemera-Doubal Method Biological Age

0.50

0.75

1.00

1.25

1.50

4 8 12
Plant protein (%E)

O
R

 (9
5%

C
I)

Higher Allostatic Load

P for overall <0.0001
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P for overall <0.0001
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P for overall <0.0001
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Fig. 1   The RCS curve of the association between plant and animal 
protein and biological aging indices. After adjusting for sex, age, eth-
nicity, Townsend deprivation index, education level, smoking status, 
drinking status, physical activity, body mass index, overall health rat-
ing, type 2 diabetes mellitus, cancer, intakes of total energy, fruits, 

vegetables, saturated fatty acid, monounsaturated fatty acid, polyun-
saturated fatty acid and trans-fatty acids, intake of dietary cholesterol, 
diet quality, multiple vitamin supplement use. The mutual adjustment 
was conducted for plant protein and animal protein analysis
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Increasing the intake of plant protein has the opposite 
relationship with biological aging. Previous studies sup-
port our results, as they found that plant protein intake was 
inversely associated with diabetic nephropathy, cardiovascu-
lar and all-cause mortality [46, 47]. Aging is often accom-
panied by an increased risk of mortality, but mortality does 
not reflect age-related changes in physiological integrity. A 
recent study among female nurses found that a higher intake 
of plant protein in middle age was associated with higher 
odds of healthy aging [48]. Our results further demonstrate 
that plant protein was inversely associated with biological 
aging in a larger population by using four specific biological 
aging indices in multiple dimensions.

We did not find that animal proteins showed a consist-
ent relationship with biological aging. Previous studies have 
also found a variety of roles for animal protein. For example, 

increasing the intake of animal protein may positively or 
not associated with all-cause mortality [49, 50], whereas a 
cross-sectional study conducted on elderly Japanese women 
suggested that increased animal protein consumption will 
reduce frailty prevalence [51]. The reason for this complex 
result may be related to the wide range of dietary sources of 
animal protein. In our daily lives, we often provide dietary 
recommendations based on the increase or decrease in the 
intake of the primary dietary sources of nutrients. Therefore, 
it is important to explore the influence of dietary sources of 
protein on biological aging.

Whole grains and nuts rich in plant protein had a 
stronger inverse association with biological aging, while 
legumes had inconsistent relationships with the four indi-
ces. Previous studies have suggested that higher whole 
grains and nuts intake can increase life expectancy [52], 

Table 3   Odds ratios (95% 
confidence interval) for 
biological aging indices by 
quartiles of animal protein 
(energy%) among 79,294 
participantsa

BMI body mass index, Ref reference, TDI Townsend deprivation index, T2DM Type 2 diabetes mellitus
a Data were listed as odds ratios (95% confidence interval) calculated using binomial logistic regression
b Tests for trends based on the variables containing the median values for each group
c Bold values denote statistical significance (significance criterion 0.05/3 = 0.017 for each quartile) after the 
Bonferroni correction
d Model 1: Adjusted for sex, age, ethnicity, TDI, education level, smoking status, drinking status, physical 
activity, BMI
e Model 2: Adjusted for sex, age, ethnicity, TDI, education level, smoking status, drinking status, physical 
activity, BMI, overall health rating, T2DM, cancer, intake of total energy
f Model 3: Adjusted for sex, age, ethnicity, TDI, education level, smoking status, drinking status, physical 
activity, BMI, overall health rating, T2DM, cancer, intakes of total energy, dietary plant protein, fruits, veg-
etables, saturated fatty acid, monounsaturated fatty acid, polyunsaturated fatty acid and trans-fatty acids, 
intake of dietary cholesterol, diet quality, multiple vitamin supplement use

Quartiles of animal protein (energy%) P for trendb

Q1 Q2 Q3 Q4

Higher Klemera-Doubal method Biological Age
Case/N 5,461/19,823 5,991/19,824 6,433/19,823 6,887/19,824
Model 1d Ref 1.06 (1.01–1.11)c 1.10 (1.05–1.15) 1.07 (1.02–1.12) 0.003
Model 2e Ref 1.06 (1.01–1.11) 1.11 (1.06–1.16) 1.08 (1.03–1.13)  < 0.001
Model 3f Ref 1.03 (0.99–1.08) 1.07 (1.02–1.12) 1.03 (0.98–1.09) 0.196
Higher PhenoAge
Case/N 1,829/19,823 2,029/19,824 2,077/19,823 2,060/19,824
Model 1 Ref 1.03 (0.96–1.10) 1.07 (1.00–1.15) 1.07 (0.99–1.14) 0.050
Model 2 Ref 1.03 (0.96–1.10) 1.07 (0.99–1.15) 1.05 (0.97–1.13) 0.142
Model 3 Ref 1.00 (0.93–1.08) 1.04 (0.96–1.12) 1.02 (0.94–1.11) 0.509
Higher Allostatic Load
Case/N 7,001/19,823 7,861/19,824 8,038/19,823 8,250/19,824
Model 1 Ref 1.08 (1.03–1.12) 1.11 (1.06–1.16) 1.12 (1.07–1.17)  < 0.001
Model 2 Ref 1.08 (1.03–1.13) 1.11 (1.06–1.16) 1.12 (1.07–1.18)  < 0.001
Model 3 Ref 1.04 (0.99–1.09) 1.06 (1.01–1.11) 1.05 (1.00–1.11) 0.054
Longer Telomere Length
Case/N 10,041/19,823 9,775/19,824 9,900/19,823 9,931/19,824
Model 1 Ref 1.00 (0.96–1.04) 1.01 (0.97–1.05) 0.97 (0.93–1.01) 0.181
Model 2 Ref 1.00 (0.96–1.04) 1.01 (0.97–1.05) 0.97 (0.93–1.01) 0.155
Model 3 Ref 1.01 (0.97–1.06) 1.03 (0.99–1.08) 1.00 (0.95–1.05) 0.997
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reduce the risk of frailty, and improve metabolic health 
by regulating blood glucose and lipids [53]. Legumes do 
have many health benefits, such as anti-inflammatory, 
antioxidant, and improving mitochondria function [54], 
but they are also positively correlated with the occurrence 
of hyperuricemia because they may be higher in purines 
[55]. Since biological aging is a complex process that is 
influenced by a combination of factors, we believe that 
it is not yet possible to determine whether legumes are 
related to biological aging. From the perspective of the 
overall intake of legumes, the current effect on biological 
aging is complex and not as obvious as that brought by 
whole grains, so we subsequently did substitution analysis, 
not simply from the intake of legumes, but from how to 
replace dietary protein sources to seek more conducive to 
improving biological aging measures.

Dietary sources of animal protein do have various effects 
on biological aging. We found that red and processed meat 
had a more pronounced positive association with biological 

aging. This may be related to the fact that red and processed 
meat tend to contain more sodium and nitrites/nitrates [56], 
increasing intake of these substances is associated with an 
increased risk of cancer [57], T2DM, and cardiovascular dis-
ease [58]. These effects are likely to be related to the combi-
nation of high animal protein content plus nitrites/nitrates. 
The intake of cheese and yogurt was also negatively asso-
ciated with biological aging, and the association between 
yogurt and biological aging was stronger. Increasing dairy 
intake can improve cognitive function in older adults [59]. 
Yogurt contains bacterial cultures with proteolytic activity, 
making it a great source of high-biological-value essential 
amino acids [60], which has been shown to have a positive 
effect on improving both bone health in aging and immune 
aging [61]. This strong healthy effect partly explains our 
findings that replacing yogurt with plant-based protein 
sources may not have negative relationships with biologi-
cal aging. Taken together, these results indicate that after 
conducting nutritional substitution analysis, it is necessary 

Table 4   Associations of substitution of different protein and food sources with participants in the UKB

BMI body mass index, CI confidence interval, OR odds ratio, TDI Townsend deprivation index, T2DM Type 2 diabetes mellitus
a The substitution analyses included adjustment for sex, age, ethnicity, TDI, education level, smoking status, drinking status, physical activity, 
BMI, overall health rating, T2DM, cancer, intakes of total energy, fruits, vegetables, saturated fatty acid, monounsaturated fatty acid, polyunsatu-
rated fatty acid and trans-fatty acids, intake of dietary cholesterol, diet quality, multiple vitamin supplement use. In the substitution analysis of 
different protein food sources, the intake of other dietary protein sources was also adjusted

Equivalent amount of substi-
tuted proteina

Substituted protein Biological aging indices OR (95% CI)

Plant protein 5% of energy from animal protein Higher Klemera-Doubal method Biological Age 0.72 (0.67–0.78)
Higher PhenoAge 0.81 (0.72–0.90)
Higher Allostatic Load 0.80 (0.74–0.85)
Longer Telomere Length 1.12 (1.07–1.17)

1 serving/day whole grains 1 serving/day red meat Higher Klemera-Doubal method Biological Age 0.92 (0.90–0.94)
Higher PhenoAge 0.92 (0.90–0.95)
Higher Allostatic Load 0.95 (0.93–0.96)
Longer Telomere Length 1.03 (1.01–1.04)

1 serving/day poultry Higher Klemera-Doubal method Biological Age 0.94 (0.92–0.96)
Higher PhenoAge 0.95 (0.92–0.98)
Higher Allostatic Load 0.97 (0.95–0.99)
Longer Telomere Length 1.02 (1.01–1.04)

1 serving/day nuts 1 serving/day red meat Higher Klemera-Doubal method Biological Age 0.92 (0.90–0.95)
Higher PhenoAge 0.92 (0.88–0.95)
Higher Allostatic Load 0.96 (0.93–0.98)
Longer Telomere Length 1.03 (1.01–1.05)

1 serving/day processed meat Higher Klemera-Doubal method Biological Age 0.90 (0.88–0.93)
Higher PhenoAge 0.90 (0.86–0.93)
Higher Allostatic Load 0.95 (0.93–0.98)
Longer Telomere Length 1.03 (1.01–1.05)

1 serving/day legumes 1 serving/day yogurt Higher Klemera-Doubal method Biological Age 1.04 (1.01–1.07)
Higher PhenoAge 1.10 (1.06–1.15)
Higher Allostatic Load 1.07 (1.04–1.09)
Longer Telomere Length 0.97 (0.95–0.99)
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to conduct further substitution analysis on primary dietary 
sources, thereby providing some specific reference sugges-
tions for adjusting dietary structure to reduce biological 
aging risk.

We further explored the potential mechanisms of the 
association between plant protein and biological aging. 
GGT, ALT, and AST are enzymes used to detect liver dis-
ease, and their levels in serum increase with age [62]. A 
cohort study reported that plant protein appears to improve 
metabolic liver diseases related to these three enzymes [63]. 
These studies provide further support for our finding that 
plant protein may negatively regulate GGT, ALT, and AST, 
thereby improving biological aging.

In the stratified analysis, we discovered that the asso-
ciation between plant protein and four biological aging 
indices disappeared in the T2DM participants. According 
to the mediating factors we discovered, as well as the lev-
els of GGT, ALT, and AST in T2DM patients are prone to 
abnormalities due to liver disease complications [64–66] 
We suppose that compared with non-diabetic individuals, 
T2DM patients are in a state of metabolic disorder [67]. 
Therefore, plant protein often needs to adjust a greater 

degree of GGT, ALT, and AST levels to improve biologi-
cal aging. This may cause the association between plant 
protein and biological aging to weaken to the point of 
disappearance.

Our study has several strengths. First, the study had a 
large study sample of > 70,000 individuals, with detailed 
information on various demographics, lifestyles, health 
status, and diet, which augmented the statistical power and 
provided a more dependable result. Second, we used four 
indices to systematically reflect aging from different aspects, 
which adds confidence to the relationship we found. Third, 
to facilitate recommendations in practical applications, 
we specified the main dietary sources of plant and animal 
protein and evaluated the effects of food substitution from 
different dietary protein sources. Moreover, we performed 
mediation analyses to explore potential mechanisms of plant 
protein’s influence on biological aging indices, which could 
help develop mechanism-based dietary intervention strate-
gies to prevent and mitigate aging in the future. Finally, the 
results of the stratified analysis remind us of the applicability 
of increasing plant protein intake in T2DM patients.
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Fig. 2   Mediating effects of biochemical indexes on the relationship 
between plant protein and biological aging indices. a Mediation anal-
ysis for the indirect effect of gamma glutamyltransferase b Mediation 
analysis for the indirect effect of alanine aminotransferase c Media-
tion analysis for the indirect effect of aspartate aminotransferase. *** 

means P < 0.001. ALT Alanine aminotransferase, AST Aspartate ami-
notransferase, HAL Higher allostatic load, HKDM-BA Higher Klem-
era-Doubal Method Biological Age, HPA Higher PhenoAge, LTL 
Longer telomere length
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Still, some limitations should be mentioned. First, our 
analysis was performed using cross-sectional data, so we 
are unable to deduce the causal relationship between die-
tary protein and biological aging indices. Second, the 24-h 
dietary recall interview, as a self-reported assessment, may 
introduce biases in recalling and reporting when assess-
ing dietary intake, which in turn does not fully reflect an 
individual’s daily intake. Nevertheless, we used the aver-
age of at least two 24-h dietary recalls as a measure of 
dietary intake, which may have partially reduced some of 
the bias. Third, our population consisted predominantly of 
individuals of a white race, which will limit generalizabil-
ity. Fourth, our study focuses on results associated with 
all four biological aging indices, but some foods associ-
ated with one or two of the four indices may also have a 
potential association with biological aging and should be 
given some attention in future research.

Conclusion

In a word, our study found that higher plant protein intake 
was negatively associated with biological aging. Although 
animal proteins showed no correlation, food sources of 
animal protein displayed different correlations. Our 
study provides some alternative measures of protein food 
sources that can help people cope with biological aging. 
Future research should investigate the causal mechanisms 
through longitudinal study designs.
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