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Abstract
Objectives  Overconsumption of non-nutritive sweeteners is associated with obesity, whereas the underlying mechanisms 
remain controversial. This study aimed to investigate the effects of long-term consumption of nutritive or non-nutritive 
sweeteners with or without high fat diet on sweet taste receptor expression in nutrient-sensing tissues and energy regulation 
dependent on sweet-sensing.
Methods  50 Male Sprague–Dawley rats (140–160 g) were assigned to 10 groups (n = 5/group). All received fructose at 2.5% 
or 10%, sucralose at 0.01% or 0.015% or water with a normal chow diet or high fat diet for 12 weeks. Food and drink intake 
were monitored daily. Oral glucose tolerance test and intraperitoneal glucose tolerance test were performed at week 10 and 
11 respectively. Serum was obtained for measurement of biochemical parameters. Tongue, duodenum, jejunum, ileum, colon 
and hypothalamus were rapidly removed to assess gene expression.
Results  Long-term consumption of sweeteners impaired glucose tolerance, increased calorie intake and body weight. A 
significant upregulation of sweet taste receptor expression was observed in all the four intestinal segments in groups fed 
0.01% sucralose or 0.015% sucralose, most strikingly in the ileum, accompanied by elevated serum glucagon-like peptide-1 
levels and up-regulated expression of sodium-dependent glucose cotransporter 1 and glucose transporter 2. A significant 
down-regulation in the tongue and hypothalamus was observed in groups fed 10% fructose or 0.015% sucralose, with 
alterations in hypothalamic appetite signals. The presence of high fat diet differentially modulates sweet taste perception in 
nutrient-sensing tissues.
Conclusions  Long-term consumption of whether nutritive sweeteners or non-nutritive sweeteners combined with high fat 
diet contribute to dysregulation of sweet taste receptor expression in oral, intestinal and central nervous tissues.
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Abbreviations
AGRP	� Agouti-related peptide
AUC​	� Area under the curve
GLP-1	� Glucagon-like peptide-1
GLUT2	� Glucose transporter 2
HFD	� High-fat diet
IPGTT​	� Intraperitoneal glucose tolerance test
NCD	� Normal control diet
NNS	� Non-nutritive sweetener
NPY	� Neuropeptide Y

OGTT​	� Oral glucose tolerance test
SGLT-1	� Sodium-dependent glucose cotransporter 1
STR	� Sweet taste receptor
T1R2	� Taste receptor type 1 member 2
T1R3	� Taste receptor type 1 member 3

Introduction

In the last few decades obesity has become a major public 
health problem that places patients at a greater risk of 
obesity-related diseases and significantly decreases the 
quality of life [1]. Excessive sugar sweetened beverages 
consumption, high-fructose corn syrup in particular, is 
increasingly considered as a major contributor to the obesity 
epidemic worldwide [2]. Therefore, non-nutritive sweeteners 
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(NNSs) emerged as sugar substitutes to assist in weight 
control because they provide sweet taste with negligible 
energy [3]. However, there is a growing body of evidence 
suggesting that the consumption of NNSs may be closely 
associated with a greater risk of the metabolic syndrome 
and obesity epidemic, whereas the underlying mechanisms 
remain elusive [4].

Sweet taste performs a critical function in nutrient 
sensing as well as the control of food intake [5] and is 
initially sensed in gustatory tissues such as the anterior and 
posterior tongue and palate via sweet G protein-coupled 
taste receptors, the heterodimeric receptor of taste receptor 
type 1 member 2 (T1R2) and taste receptor type 1 member 
3 (T1R3) [6]. Of note, sweet taste receptors (STRs) have 
also been found in chemosensory cells located in extra-oral 
tissues, most of which play an essential role in regulating 
glucose homeostasis and maintaining energy balance [7], 
such as gastrointestinal tract [8–10], hypothalamus [11], 
pancreas [12], and adipose tissue [13]. Hypothalamus is a 
nodal brain structure where information on systemic energy 
levels as well as metabolic status is detected via hormones 
or nutrients and integrated for homeostatic regulation, 
including the stimulation or inhibition of feeding behaviors 
and the control of energy expenditure [14]. Recent studies 
have indicated that STRs may play a role in nutrient 
sensing, especially glucose sensing in the hypothalamic 
feeding center via activating the arcuate nucleus neurons 
[15]. Similar to the response in hypothalamus, the 
presence of STRs in the gastrointestinal tract could also 
be functionally involved in the glucose responsiveness and 
multiple regulatory effects independently of carbohydrate 
metabolism, such as the modulation of hormone secretion 
and glucose absorption [16].

Accumulating evidence indicates that not only nutritive 
sweeteners, such as sucrose and fructose, but also NNSs 
could selectively bind to different domains of T1R2/T1R3 
[17], raising the possibilities that sweeteners may disturb 
sweet taste perception in multiple tissues via long-term 
activation of STRs and further lead to potential health risks 
[18]. However, little is known about the long-term effects 
of sweeteners on the expression levels of STRs in different 
tissues. Besides, while most of the published findings on 
sweeteners have been short-term or single-dose [19, 20], 
it is worthwhile to investigate the long-term effects of 
sweeteners at various concentrations. Further, considering 
that the modern diets most often comprise of a mixture of 
various nutrient components, what also interests us is that 
how the joint use of different sweeteners and a high fat diet 
(HFD) contribute to the dysregulation of STRs [21]. Thus, 
the aim of the present work was to investigate how long-term 
consumption of nutritive sweeteners or NNSs in the presence 
or absence of HFD alter mRNA expression of STRs and 
affect hormone secretion, glucose transport and ingestive 

behavior. We chose fructose and sucralose as our target 
sweeteners, in view of their increasing popularity worldwide 
and the continuing controversy over their associations with 
obesity and type 2 diabetes [22–24].

Methods

Animals and diets

A total of 50 Male Sprague–Dawley rats (140–160  g) 
were purchased (SJA Laboratory Animal, Hunan, China) 
and housed in individual cages with constant temperature 
(25  ℃ ± 2  ℃), relative humidity (60% ± 5%), a 12  h 
light–dark cycle and free access to water and food. After 
one-week quarantine and acclimation period, rats were 
randomized into 10 groups (n = 5 per group), which were 
fed a normal control diet (NCD) or HFD (45% of energy 
as fat; Xietong Shengwu, Jiangsu, China) and received 
water or different sweeteners dissolved in water at the 
following concentration: fructose at 2.5% or 10% [25]; 
sucralose at 0.01% or 0.015% [26], and weighed daily (For 
more information about the composition of different diets, 
please see Supplementary Tables 1, 2, 3). Pre-weighed 
portions of food and premeasured volume of either water 
or the sweet taste solutions were offered to the rats. Food 
intake and drink consumption were monitored daily from 
week 1 to week 10. At the end of the 12 weeks experiment, 
the animals were fasted for 12 h and sacrificed by cervical 
dislocation after anesthetized with intraperitoneal injection 
of sodium pentobarbital. Blood samples were collected for 
serum biochemical analysis. Tongue, duodenum, jejunum, 
ileum, colon and hypothalamus were immediately frozen 
after dissection in liquid nitrogen and stored at − 80 °C. 
Animal use in this study was approved by the Institutional 
Animal Care and Use Committee, Wuhan University 
Center for Animal Experiment, Wuhan, China (AUP No. 
WP20210533).

Oral glucose tolerance test (OGTT) 
and intraperitoneal glucose tolerance test (IPGTT)

After feeding for 10 weeks, an oral glucose tolerance test 
was performed in all groups. After fasting for 14 h, all rats 
received 50% glucose solution via oral gavage (2 g/kg BW). 
Blood samples were adopted by rat tail snipping method 
and blood glucose levels were measured at 0 min (before 
gavage), 15 min, 30 min, 60 min, 90 min and 120 min via a 
glucometer and glucose test strips [27] (Roche, Shanghai, 
China).

For IPGTT, rats were fasted for 14 h after 11 weeks of 
diet administration and injected with a bolus of 50% glucose 
(2 g/kg BW) [28–30]. Blood glucose levels were measured 
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at 0 min (before injection), 15 min, 30 min, 60 min, 90 min 
and 120 min by a glucometer.

Biochemical parameters

Serum glucose concentrations were analyzed using standard 
kits (Nanjing Jiancheng Bioengineering Institute, Nanjing, 
China) and serum insulin, glucagon-like peptide-1 (GLP-1) 
and leptin were determined using commercial ELISA kits 
(Ruixin Biotechnology, Quanzhou, China) following the 
manufacturers’ instructions.

Quantitative real‑time PCR

Total RNA was extracted from tongue, duodenum, jejunum, 
ileum, colon and hypothalamus of individual rats using 
Biomarker Cell/Tissue Total RNA Isolation Kit (Biomarker 
Technologies, Beijing, China). cDNA was synthesized 
using BiomarkerScript II 1st Strand cDNA Synthesis Kit 
(Biomarker Technologies, Beijing, China). Real-time PCR 
was performed using the Biomarker 2X SYBR Green Fast 
qPCR Mix (Biomarker Technologies, Beijing, China) and 
Bio-Rad CFX maestro system. All manipulations were 
carried out according to the manufacturer’ s instructions. 
(All primer sequences for gene expression determination are 
shown in Supplementary Table 4). The β-actin gene was 
used as the internal control.

Statistical analysis

Shapiro–Wilk normal distribution test was used for assessing 
the compliance of data with the normal distribution. All 
data comply with normal distribution and are presented 
as mean ± standard deviation. Statistical analysis between 
multiple groups was performed using one-way ANOVA 
followed by Tukey’ s post-hoc test; statistical analysis 
between two groups was performed using Student’s t 
test. All the data analysis in this study were performed in 
GraphPad Prism 8.0 (GraphPad Software, USA); p < 0.05 
was considered to be statistically significant.

Results

Body weight and changes in food intake, drink 
intake and calorie intake

Rats fed 2.5% fructose or 10% fructose plus NCD consumed 
significantly less food than the control group (NCD + water). 
On the contrary, an evident increase in food consumption 
was observed in groups fed 0.015% sucralose. Food intake 
was significantly reduced in all groups by the presence 
of HFD (Fig. 1a and b). The addition of sweetener in the 

water significantly increased drink consumption, which was 
evidently reduced by the presence of HFD in all groups. 
Notably, rats fed 10% fructose exhibited the highest drink 
consumption whether in the presence of HFD or not (Fig. 1c 
and d). For total calorie intake, rats fed 0.015% sucralose 
unexpectedly showed the highest calorie intake among 
groups fed NCD, even higher than those fed 10% fructose. 
On the contrary, rats fed 2.5% fructose maintained a normal 
level of calorie intake. The presence of HFD significantly 
increased calorie intake in groups fed 2.5% fructose or 0.01% 
sucralose (Fig. 2a and b). Among groups fed NCD, rats fed 
with 10% fructose or 0.015% sucralose gained significantly 
more weight than those fed water, while the addition of HFD 
further increased body weight in all groups (Fig. 2c).

Long‑term supplementation of sweeteners and HFD 
impaired glucose tolerance

We performed OGTT and IPGTT to test whether challenges 
of long-time dietary intervention were accompanied by 
changes in glucose homeostasis. The IPGTT bypasses 
the oral cavity as well as intestine and assesses peripheral 
glucose tolerance which depends on pancreas, muscle, liver, 
adipose tissue [31]. Among groups fed NCD, AUC​OGTT​ 
was significantly increased in rats fed 2.5% fructose or 10% 
fructose (Fig. 3a and b), while rats fed 0.015% sucralose had 
the highest AUC​IPGTT​, followed by those fed 0.01% sucralose 
(Fig. 3c and d). The presence of HFD increased both AUC​
OGTT​ (Fig. 3a and b) and AUC​IPGTT​ (Fig. 3c and d) in all 
groups, while the statistical significance was reached in rats 
fed 10% fructose, 0.015% sucralose or water in OGTT and 
rats fed water in IPGTT compared with the corresponding 
group fed NCD.

Biochemical parameters

Rats fed with 2.5% fructose, 10% fructose, 0.01% sucralose 
or 0.015% sucralose plus NCD demonstrated significantly 
increased fasting blood glucose levels, whereas only those 
fed with 2.5% fructose, 10% fructose or 0.015% sucralose 
developed hyperinsulinemia. The presence of HFD evidently 
raised fasting blood glucose in rats fed 10% fructose or 
water and insulin levels in groups fed 10% fructose, 0.01% 
sucralose, 0.015% sucralose or water (Fig. 4a and b). Fasting 
serum GLP-1 levels were significantly increased in all 
groups, while the presence of HFD further elevated serum 
GLP-1 levels in those fed 2.5% fructose, 10% fructose, 
0.015% sucralose or water (Fig. 4c). Among groups fed 
NCD, rats fed 10% fructose, 0.01% sucralose or 0.015% 
sucralose developed hyperleptinemia. Rats fed water plus 
HFD also showed significantly increased serum leptin levels, 
while the presence of HFD further significantly increased 
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serum leptin levels in those fed 2.5% fructose, 0.01% 
sucralose, 0.015% sucralose (Fig. 4d).

STR expression along the alimentary canal

In the tongue, among groups fed NCD, rats fed 10% fructose 
or 0.015% sucralose showed significantly down-regulated 
T1R2 and T1R3 expression, while the presence of HFD 
evidently up-regulated T1R2 and T1R3 expression in those 
fed 0.01% sucralose, 0.015% sucralose or water (Fig. 5, a 
and b). In the duodenum, T1R2 was evidently induced by 
all sweeteners in groups fed NCD, while 0.015% sucralose 
stimulated the expression of T1R3 to a higher extent than 
the rest of the sweeteners, followed by 0.01% sucralose and 
10% fructose (Fig. 5c and d).

An increase in the expression of T1R2 and T1R3 in 
jejunum (Fig. 6a and b) and ileum (Fig. 6c and d) was also 

observed among groups fed NCD. By contrast, colonic 
expression of T1R2 and T1R3 was significantly down-
regulated in rats fed 2.5% fructose plus NCD (Fig. 6e and 
f). In the presence of HFD, mRNA expression of T1R2 and 
T1R3 was significantly down-regulated in groups fed 2.5% 
fructose or 0.01% sucralose, but up-regulated in groups 
fed 0.015% sucralose or water in the jejunum (Fig. 6a and 
b). By contrast, in the ileum, the presence of HFD further 
significantly increased the expression of T1R2 and T1R3 
in most of the groups with the exception of those fed 10% 
fructose (Fig. 6c and d). For the colon, the presence of 
HFD evidently up-regulated T1R2 expression in groups 
fed 2.5% fructose, 10% fructose or water (Fig. 6e and f).

Fig. 1   Changes in food intake and drink intake. a Food intake from 
week 1 to week 10; b AUC for food intake; c Drink intake from week 
1 to week 10; d AUC for drink intake. Data are presented as mean ± 
SD, n = 5 per group. Results are considered significant at p < 0.05. 

*p < 0.05, **p < 0.01, ***p < 0.001 compared with the control group 
(NCD + water); #p < 0.05, ##p < 0.01, ###p < 0.001 compared with 
the corresponding group fed NCD
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Changes in expression of glucose transporters 
in the duodenum, jejunum and ileum

Upon activation by the presence of sweeteners in the 
intestinal lumen, STRs could facilitate glucose transport 
capacity via sodium-dependent glucose cotransporter 
1 (SGLT-1) and glucose transporter 2 (GLUT2), both of 
which are critical transporters for glucose absorption [32]. 
In the duodenum, SGLT-1 expression was significantly 
up-regulated in rats fed 2.5% fructose or 10% fructose 
among groups fed NCD. The presence of HFD up-regulated 
SGLT-1 expression in rats fed 0.015% sucralose or water but 
exhibited an opposite effect in groups fed 2.5% fructose, 10% 
fructose or 0.01% sucralose (Fig. 7a). SGLT-1 expression 
in the jejunum (Fig. 7c) followed a similar pattern. In the 
ileum, rats fed 2.5% fructose or 0.015% sucralose showed 
significantly up-regulated SGLT-1 expression, which was 
further evidently induced by the presence of HFD in groups 
fed 0.01% sucralose or water (Fig. 7e).

The stimulating effect on jejunal and ileal GLUT2 
expression by the long-term consumption of sweeteners 
was more evident than that on duodenal GLUT2 expression 
(Fig.  7b), while rats fed 2.5% fructose, 10% fructose, 
0.01% sucralose or 0.015% sucralose showed significantly 
up-regulated GLUT2 expression both in the jejunum 
(Fig. 7d) and ileum among groups fed NCD. Of note, the 

presence of HFD also remarkably up-regulated ileal GLUT2 
expression in groups fed 2.5% fructose, 0.01% sucralose or 
0.015% sucralose (Fig. 7f).

Changes in expression of STR and appetite signals 
in the hypothalamus

Among groups fed NCD, rats fed 10% fructose or 0.015% 
sucralose showed significantly down-regulated T1R2 and 
T1R3 expression in the hypothalamus, whereas only 2.5% 
fructose significantly up-regulated hypothalamic STR 
expression compared to the control group (NCD + water). 
Of note, the presence of HFD down-regulated both T1R2 
and T1R3 expression in all groups, while the statistical 
significance was reached in groups fed 0.01% sucralose, 
0.015% sucralose or water (Fig.  8a and b). Agouti-
related peptide (AGRP) and neuropeptide Y (NPY) were 
significantly down-regulated in groups fed 10% fructose, 
0.01% sucralose or 0.015% sucralose, and this effect was 
further exacerbated by the presence of HFD (Fig. 8c and 
d). On the contrary, proopiomelanocortin expression was 
significantly up-regulated in rats fed 2.5% fructose, 10% 
fructose or 0.015% sucralose, while HFD further increased 
proopiomelanocortin expression in groups fed 0.01% 
sucralose, 0.015% sucralose or water (Fig. 8e).

Fig. 2   Changes in calorie intake and body weight. a Calorie intake 
from week 1 to week 10; b AUC for calorie intake; c Body weight. 
Data are presented as mean ± SD, n = 5 per group. Results are 

considered significant at p < 0.05. *p < 0.05, **p < 0.01, ***p < 0.001 
compared with the control group (NCD + water); #p < 0.05, ##p < 
0.01, ###p < 0.001 compared with the corresponding group fed NCD
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Discussion

Our investigation started with exploring the effect of 
long-term consumption of sweeteners, in the presence 
or absence of HFD, on glucose homeostasis and obesity-
related parameters. We found that persistent consumption of 
sweeteners, particularly 10% fructose and 0.015% sucralose, 
resulted in increased body weight, AUC​OGTT​, AUC​IPGTT​ and 
higher blood glucose levels, which were further exacerbated 
in the presence of HFD. It is well recognized that the 
gastrointestinal tract is a major determinant of postprandial 
glycemic control, responsible for glucose transport and the 
release of diverse peptide hormones and neurotransmitters 
[33]. Our results demonstrated that rats fed NCD in 
combination with either fructose or sucralose showed an 
overall increased mRNA expression of T1R2 and T1R3 in 
the duodenum, jejunum and mainly in the ileum. However, 

colonic expression of T1R2 and T1R3 was significantly 
up-regulated only in rats fed 0.01% sucralose or 0.015% 
sucralose among groups fed NCD. While a potential role 
of high fat diet in modulating intestinal STR expression 
has been indicated [25], in our study, the combination of 
HFD and sweetener had the most striking effect on the 
ileal STR expression. It is important to note that rats fed 
0.01% sucralose or 0.015% sucralose plus HFD showed 
significantly up-regulated mRNA expression of T1R2 
and T1R3 in all the four intestine segments. Evidence in 
rodents [34, 35], human cells and tissues [36, 37] strongly 
supports the functional role of STR, mainly expressed in 
gastrointestinal enteroendocrine cells, as an upstream sensor 
regulating GLP-1 secretion and the expression of glucose 
transporters, SGLT-1 and GLUT2 in the intestine. For 
example, GLP-1 secretion from the human L cell line NCI-
H716 was promoted by sugars and sucralose but blocked 

Fig. 3   Long-term supplementation of sweeteners and HFD impaired 
glucose tolerance. a Blood glucose levels at different time points 
during OGTT; b AUC in OGTT; c Blood glucose levels at different 
time points during IPGTT; d AUC in IPGTT. Data are presented as 

mean ± SD, n = 5 per group. Results are considered significant at p 
< 0.05. *p < 0.05, **p < 0.01, ***p < 0.001 compared with the control 
group (NCD + water); #p < 0.05, ##p < 0.01, ###p < 0.001 compared 
with the corresponding group fed NCD
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by the sweet receptor antagonist lactisole or siRNA for 
α-gustducin [38]. Besides, in knockout mice lacking T1R3 
or α-gustducin, mRNA expression and protein abundance 
of SGLT-1 were not increased in response to dietary sugar 
and NNS supplementation, as occurred in wild-type mice 
[39]. Our study showed that intestinal STR dysregulation 
was accompanied by elevated fasting serum GLP-1 levels 

and STR-dependent gains in mRNA expression of SGLT-1 
and GLUT2 mainly in the ileum. We moreover noted that 
GLUT2 was stimulated to a higher extent than SGLT-1 by 
long-term consumption of fructose or sucralose whether in 
the presence or absence of HFD, suggesting an enhanced 
intestinal absorptive capacity especially when lumenal 
glucose concentration is high after a meal, which further 

Fig. 4   Biochemical parameters. a Serum blood glucose levels; b 
Serum insulin levels; c Serum GLP-1 levels; d Serum leptin levels. 
Data are presented as mean ± SD, n = 5 per group. Results are 

considered significant at p < 0.05. *p < 0.05, **p < 0.01, ***p < 0.001 
compared with the control group (NCD + water); #p < 0.05, ##p < 
0.01, ###p < 0.001 compared with the corresponding group fed NCD

Fig. 5   STR expression in the tongue and duodenum. a–b T1R2 and 
T1R3 expression in the tongue; c–d T1R2 and T1R3 expression in 
the duodenum. Data are presented as mean ± SD, n = 5 per group. 
Results are considered significant at p < 0.05. *p < 0.05, **p < 0.01, 

***p < 0.001 compared with the control group (NCD + water); #p 
< 0.05, ##p < 0.01, ###p < 0.001 compared with the corresponding 
group fed NCD
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results in an increase in postprandial excursions [40], as 
shown in OGTT.

Evidence has been provided that different metabolic 
states could influence lingual and hypothalamic sweet 

responses through modifying the expression of STRs, 
which further contributes to changes in feeding motivation 
and food intake [41, 42]. In our study, among groups fed 
NCD, rats fed 0.015% sucralose surprisingly ingested the 

Fig. 6   STR expression in the jejunum, ileum and colon. a–b T1R2 
and T1R3 expression in the jejunum; c–d T1R2 and T1R3 expression 
in the ileum; e–f T1R2 and T1R3 expression in the colon. Data are 
presented as mean ± SD, n = 5 per group. Results are considered 

significant at p < 0.05. *p < 0.05, **p < 0.01, ***p < 0.001 compared 
with the control group (NCD + water); #p < 0.05, ##p < 0.01, ###p < 
0.001 compared with the corresponding group fed NCD

Fig. 7   Changes in expression of glucose transporters in the 
duodenum, jejunum and ileum. a–b SGLT-1 and GLUT2 expression 
in the duodenum; c–d SGLT-1 and GLUT2 expression in the 
jejunum; e–f SGLT-1 and GLUT2 expression in the ileum. Data are 

presented as mean ± SD, n = 5 per group. Results are considered 
significant at p < 0.05. *p < 0.05, **p < 0.01, ***p < 0.001 compared 
with the control group (NCD + water); #p < 0.05, ##p < 0.01, ###p < 
0.001 compared with the corresponding group fed NCD
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most calories, even higher than those fed 10% fructose, 
while rats fed 2.5% fructose or 0.01% sucralose consumed 
equivalent energy to the control group (NCD + water), 
indicating that those fed 2.5% fructose compensated for the 
ingested liquid calories by reducing the ingestion of NCD. 
The presence of HFD increased energy intake in most of 
the groups, and rats fed 10% fructose consumed the most 
calories, followed by those fed 2.5% fructose or 0.015% 
sucralose. It has been previously revealed that impaired 
sweet taste sensitivity would promote obesity because a 
down-regulation in STRs could result in a different threshold 
for glucose and other sweet tastants both in the tongue and 
hypothalamus and increase food intake to compensate for 
the reduced sensitivity [41]. In line with these findings, we 
found that groups fed 10% fructose or 0.015% sucralose plus 
NCD showed significantly down-regulated STR expression 
both in the tongue and hypothalamus. Besides, our data 
indicated a potential role of HFD in modulating sweet taste 
perception in different nutrient-sensing tissues, since the 
presence of HFD exhibited opposite effects on lingual and 
hypothalamic STR expression in rats fed 0.01% sucralose, 
0.015% sucralose or water.

Ingestive behavior is regulated by two major populations 
of neurons in the arcuate nucleus of hypothalamus: NPY 
and AgRP-coexpression neurons stimulate food intake; 
proopiomelanocortin-expression neurons decrease food 
intake [43]. In our study, in addition to significantly down-
regulated STR expression, long term supplementation of 
10% fructose or 0.015% sucralose resulted in an evident 
increase in proopiomelanocortin expression but a decrease 

in AGRP/NPY expression whether in the presence of 
NCD or HFD, which is consistent with hypothalamic 
neuropeptide expression in animals exhibiting hyperphagia 
induced by palatable food [44, 45]. While the leptin-
mediated inhibition of NPY and AgRP may partially 
explain the reduction of these orexigenic neuropeptides 
[45], our study also indicated a role for STR since 
activation of hypothalamic STR in the arcuate nucleus 
contributes to the increased firing of glucose-excitatory 
neurons, including proopiomelanocortin-expression 
neurons [15, 46], and decreased STR expression could 
therefore result in a high activation threshold of glucose-
excitatory neurons and consequently weaken of the 
satiation effects of glucose. However, further studies will 
be needed to fully elucidate the relationship between the 
dysregulation of STR and alteration in ingestive behavior.

In conclusion, NNSs, typically considered to be 
metabolically inert, are actually not functionally inert and 
could result in disturbance in sweet taste perception in not 
only oral but also intestinal and central nervous tissues and 
further exert negative influence on global glycemic control, 
fuel utilization and energy homeostasis in a STR-dependent 
manner. It has to be pointed out that the difference between 
T1R2 and T1R3 expression may be due to the fact that T1R3 
is also associated with umami sensing and could operate in 
a homomeric form [7]. We also investigate a new possibility 
that the combination of HFD may also influence sweet taste 
sensation and exacerbate the effects of different sweeteners. 
Alteration in protein levels and tissue-specific ablation 
of STRs will be further required to elucidate the specific 

Fig. 8   Changes in expression of STR and appetite signals in the 
hypothalamus. a–b T1R2 and T1R3 expression in the hypothalamus; 
c–e AGRP, NPY and POMC expression in the hypothalamus. Data 
are presented as mean ± SD, n = 5 per group. Results are considered 

significant at p < 0.05. *p < 0.05, **p < 0.01, ***p < 0.001 compared 
with the control group (NCD + water); #p < 0.05, ##p < 0.01, ###p < 
0.001 compared with the corresponding group fed NCD
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downstream signaling, by which STRs perform multiple 
functions and play a role in the development of obesity.
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