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Abstract
Purpose  Postmenopausal osteoporosis (PMO) is usually managed by conventional drug treatment. However, prolonged use of 
these drugs cause side effects. Gut microbiota may be a potential target for treatment of PMO. This work was a three-month 
intervention trial aiming to evaluate the added effect of probiotics as adjunctive treatment for PMO.
Methods  Forty patients with PMO were randomized into probiotic (n = 20; received Bifidobacterium animalis subsp. lactis 
Probio-M8 [Probio-M8], calcium, calcitriol) and placebo (n = 20; received placebo material, calcium, calcitriol) groups. The 
bone mineral density of patients was measured at month 0 (0 M; baseline) and month 3 (3 M; after three-month interven-
tion). Blood and fecal samples were collected 0 M and 3 M. Only 15 and 12 patients from Probio-M8 and placebo groups, 
respectively, provided complete fecal samples for gut microbiota analysis.
Results  No significant change was observed in the bone mineral density of patients at 3 M. Co-administering Probio-M8 
improved the bone metabolism, reflected by an increased vitamin D3 level and decreased PTH and procalcitonin levels in 
serum at 3 M. Fecal metagenomic analysis revealed modest changes in the gut microbiome in both groups at 3 M. Interest-
ingly, Probio-M8 co-administration affected the gut microbial interactive correlation network, particularly the short-chain 
fatty acid-producing bacteria. Probio-M8 co-administration significantly increased genes encoding some carbohydrate 
metabolism pathways (including ABC transporters, the phosphotransferase system, and fructose and mannose metabolism) 
and a choline-phosphate cytidylyltransferase.
Conclusions  Co-administering Probio-M8 with conventional drugs/supplements was more efficacious than conventional 
drugs/supplements alone in managing PMO. Our study shed insights into the beneficial mechanism of probiotic adjunctive 
treatment.
Registration number of clinical trial  Chinese Clinical Trial Registry (identifier number: ChiCTR1800019268).
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Introduction

Osteoporosis is a common aging-related diseases, which 
is characterized by bone loss and bone tissue structural 
degradation [1]; it affects over 200 million individuals 
worldwide, causing 8.9 million fractures annually [2]. 
Moreover, over 30% of postmenopausal women aged over 
50 years suffer from osteoporosis [3]. Many factors influ-
ence the occurrence and development of postmenopausal 
osteoporosis (PMO), e.g., genetic predisposition, lifestyle, 
and diet; however, menopause and aging-associated estro-
gen deficiency play the most determining role [4]. Bone 
tissues are continuously remodeled by concerted actions of 
bone resorption and formation, and the dynamics of bone 
metabolism are regulated together by estrogen, parathyroid 
hormone (PTH), and vitamin D [5]. Estrogen deficiency, 
PTH suppression, and reduction in the final renal activa-
tion of vitamin D in postmenopausal women may lead to 
calcitriol deficiency in the circulation and at target tis-
sues, consequently affecting intestinal absorption of cal-
cium (Ca) and phosphate. This also causes dysregulation 
in mineralization homeostasis and bone absorption [6]. 
Considering the etiology of PMO, vitamin D analogs (e.g., 
calcitriol), Ca complex, and anti-bone resorption drugs 
(e.g., alendronate and estrogen) are used in clinical treat-
ment of PMO. An early, large controlled clinical study 
showed that 3-year treatment with calcitriol resulted in a 
threefold reduction in the rate of new vertebral fractures 
in postmenopausal women compared with those receiving 
only 1 g of elemental Ca per day over the same period [7]. 
Nowadays, calcitriol has been introduced to the European 
market, particularly for PMO and renal bone disease [8]. 
However, the treatment of PMO is a long-term process, 
and prolonged intake of drugs for PMO treatment may 
cause side effects, e.g., constipation and hypercalcemia 
[9]. Therefore, it would be of interest to explore alterna-
tive complementary treatments that ease side effects of 
currently available regimens.

The gut microbiome is the microbial communities 
inhabiting in the gastrointestinal tract, comprising up to 
10 trillion microorganisms. The gut microbiome and its 
metabolites are closely related to human health, including 
bone metabolism [3, 10, 11]. The reduced bone mineral 
density (BMD) in senile osteoporosis is most probably 
linked with gut dysbiosis. For example, more Escherichia/
Shigella and Veillonella have been found in individuals 
with osteopenia than osteoporosis, while more Actinomy-
ces, Eggerthella, Clostridium Cluster XlVa, and Lacto-
bacillus have been detected in individuals with osteopo-
rosis than those with normal BMD [12]. Thus, the gut 
microbiota may be a potential target for treating PMO. 
Probiotics are live microorganisms that exert beneficial 

effects on the host when adequate amounts are adminis-
tered [13], and probiotic administration has been shown 
to confer favorable effects on bone metabolism [14]. Thus, 
Montazeri-Najafabady et al. (2019) compared the benefi-
cial effects of five probiotic strains on bone health and 
demonstrated strain-specific probiotic effects in rats suffer-
ing from ovariectomy-induced bone loss. Among the five 
investigated strains, Lactobacillus (L.) acidophilus and 
L. casei showed the highest efficacy in improving BMD, 
bone marrow concentration, bone area, and biochemical 
parameters, including Ca and alkaline phosphatase (ALP) 
[15]. The intake of Ca, vitamin D, and complex probiotics 
(Bifidobacterium longum, L. acidophilus, L. rhamnosus) 
significantly decreased the levels of bone-specific ALP 
and collagen type 1 cross-linked C-telopeptide [16]. Bacil-
lus subtilis C-3102 intake decreased the serum urinary 
type I collagen cross-linked N-telopeptide, accompanied 
by changes in colonic abundances of Bifidobacterium and 
Fusobacterium [17]. On the other hand, there have been 
conflicting results as to whether probiotics could improve 
bone metabolism. For example, ingesting a probiotic mix 
of three Lactobacillus paracasei strains or a L. reuteri-
based product had little effects on bone formation, bone 
resorption, and inflammatory markers [18, 19]. The incon-
sistent clinical efficacy could be related to probiotic strain-
specific effects and/or inter-individual variations [15, 20]. 
Moreover, the role of probiotic-driven gut microbiome-/
metabolome-modulation effects in improving bone metab-
olism has not been elucidated in current literature.

Bifidobacterium animalis subsp. lactis Probio-M8 (Pro-
bio-M8) is a novel probiotic isolated from the breast milk 
of a healthy woman [21]. Probio-M8 could alleviate neuro-
degenerative diseases [22] and asthma [23] via increasing 
the abundance of health-promoting gut microbes. Thus, this 
work served as a pilot study, aiming to investigate the added 
beneficial effect and mechanism of co-administering Probio-
M8 in adjunct to conventional treatment (Ca and calcitriol) 
in improving the bone metabolism of patients with PMO.

Methods

Trial design and subject recruitment

As this work was a pilot study to evaluate the effect of Bifi-
dobacterium animalis subsp. lactis Probio-M8 in manage-
ment of PMO, power calculation was not employed. How-
ever, the number of patients in present study was referenced 
to similar reports, in which 20–50 postmenopausal women 
participated [16, 24].

Fifty-three patients firstly diagnosed with PMO were 
recruited at the Affiliated Hospital of Inner Mongolia Med-
ical University for this three-month trial during 2018.09 
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to 2019.06. The inclusion criteria were: (1) −  2.5 > T 
value > − 1.0, measured by dual-energy X-ray absorpti-
ometry (DXA), and high fracture risk assessed by the frac-
ture risk assessment tool, FRAX® (threshold of 7%); or T 
value > − 2.5 measured by DXA; (2) 50 to 80 years old post-
menopausal female; (3) agreed to participate in this study.

Thirteen volunteers were excluded based on clinical pres-
entation and willingness to participate: (1) secondary osteo-
porosis (i.e., patients with comorbid illnesses, e.g., endo-
crine and metabolic diseases, connective tissue diseases, 
renal bone malnutrition caused by multiple chronic kidney 
diseases, gastrointestinal and nutritional diseases, blood 
system diseases, neuromuscular system diseases, long-term 
braking or space travel, organ transplantation, drugs and poi-
sons; n = 3); (2) active stage of peptic ulcer or with gastroin-
testinal malignant tumor (n = 1); (3) past intestinal diseases 
(e.g., irritable bowel syndrome, inflammatory bowel disease, 
habitual diarrhea; n = 2); (4) infectious diseases requiring 
antibiotic treatment (n = 1); (5) history of allergy to lactic 
acid bacteria and their products (n = 1); (6) declined to par-
ticipate (n = 5).

After the screening, a final cohort of forty individuals 
were enrolled and randomized into Probio-M8 (receiving 
[Bifidobacterium animalis subsp. lactis Probio-M8, Pro-
bio-M8, mix with maltodextrin, 1.5 × 1010 CFU/day] and 
conventional drugs; n = 20) and placebo (receiving placebo 
[maltodextrin, 2 g] and conventional drugs; n = 20) groups, 
respectively (Fig. 1, Table S1). The conventional treatment 
used in this study was Ca tablet (D-Cal®, 600 mg/day) and 
calcitriol (FEADWAY​®, 0.25 μg/day). Although Ca and 
calcitriol are not considered as first-line treatment option in 
some countries, they are commonly prescribed to patients 
with postmenopausal or senile osteoporosis in China due to 

fewer side effects compared with other first-line drugs and a 
lower cost. The Probio-M8 and placebo materials were pre-
pared as powder of identical appearance and taste, packed in 
individually sealed plastic sachets, and stored at 4℃ (JinHua 
YinHe Biological Technology Co., Ltd., Zhejiang, China; 
prepared under ISO9001 and HALAL standards). During the 
trial, patients were asked not to take fermented dairy prod-
ucts, and none of them took any antibiotics during the study.

BMD measurement, serum and fecal sample 
collection

This trial lasted three months. The BMD of three anatomi-
cal compartments of patients, i.e., lumbar spine (L1-L4), 
left femoral neck, and left hip joint, was measured by DXA 
(DEXA; MEDIX90, Medlink, France) at month 0 (0 M; 
baseline) and month 3 (3 M; after intervention). Obtained 
data were converted into T values. The smallest T value was 
used as the BMD score for a diagnosis. At 0 M, BMD was 
measured for all patients. However, at 3 M, three and four 
patients from the Probio-M8 and placebo groups, respec-
tively, failed to participate in BMD measurement.

Blood samples were collected at 0 M and 3 M during 
clinic visit. All blood samples were immediately centri-
fuged for 5 min (3000 × g, at 4℃) to collect the sera. Serum 
bone metabolites and inflammatory factors, including PTH, 
vitamin D3 (VD3), Ca, phosphorus (P), ALP, osteocalcin 
(OC), total procollagen 1 N-Terminal propeptide (tP1NP), 
and β-C-terminal cross-linked telopeptides of type I collagen 
(β-CTX), and procalcitonin (PCT), were detected by an auto-
mated analyzer (DXA5000, Beckman Coulter, Inc, USA).

Fecal samples were provided by the subjects at 0 M and 
3 M for gut microbiome sequencing. Collected fecal samples 

Fig. 1   Flow diagram of subject 
selection Patients entered (n=53)

Excluded (n=13)

Other reasons (n=8)

Randomized (n=40)

Probio-M8 (n=20) Placebo (n=20)

Fecal sample (n=15) Fecal sample (n=12)

Clinical Analysis

Microbiota Analysis

Declined to participate (n=5)
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were stored in a -80℃ freezer before sequencing. Only 15 
and 12 patients from Probio-M8 and placebo groups, respec-
tively, provided complete fecal samples for gut microbiota 
analysis.

Extraction of DNA and metagenomic sequencing

Metagenomic DNA was extracted from patients’ stool sam-
ples using the QIAamp Fast DNA Stool Mini Kit (Qiagen 
GmbH, Hilden, Germany) according to the manufacturer's 
instruction. The quality/integrity/purity/concentration of 
extracted metagenomic DNA were assessed by 1% aga-
rose gel electrophoresis, a Nanodrop spectrophotometer, 
and the Qubit® dsDNA Assay Kit with a Qubit® 2.0 fluo-
rometer (Life Technologies, CA, USA). Qualified samples 
(DNA concentration > 20 ng/μL; optical density (260 nm to 
280 nm) ratio between 1.8 and 2.0) were used for sequenc-
ing. Sequencing libraries were generated by NEBNext® 
Ultra™ DNA Library Prep Kit for Illumina (New England 
Biolabs, Inc., USA). Samples were indexed by PCR with 
random sequences of 16 bases, under the cycling conditions: 
95 °C for 3 min; 12 cycles of 98 °C for 20 s, 58 °C for 
30 s, and 72 °C for 30 s with a final extension at 72 °C for 
5 min. The DNA library preparations were sequenced on 
an Illumina NovaSeq platform to generate paired-end reads 
(Tianjin Novogene Technology Co., Ltd., Tianjin, China).

Quality control of reads

Fifty-four samples were sequenced (n = 15 and 12, in Probio-
M8 and placebo groups, collected at 0 M and 3 M, respec-
tively), generating 0.40 Tbp of high-quality paired-end 
reads (7.33 ± 1.39 Gbp raw metagenomic reads per sam-
ple). KneadData (http://​hutte​nhower.​sph.​harva​rd.​edu/​knead​
data; v0.7.5) was used to filter low-quality reads (length of 
reads < 60 nt) by Trimmomatic (a flexible trimmer for Illu-
mina datasets [25]) and removing human contaminating 
reads by Bowtie2 (v2.3.5.1) [26]. Finally, 0.39 Tbp of clean 
data (7.23 ± 1.37 Gbp clean metagenomic reads per sample, 
Table S2) remained for downstream analysis.

Metagenomic assembly, contig binning, genome 
dereplication

In metagenomics, binning is the process of grouping and 
assigning reads/contigs to individual genomes. Thus, to 
generate the taxonomic profile of samples, species-level 
genome bins (SGBs) were assembled from the metagen-
omic dataset after quality control. First, MEGAHIT was 
used to assemble reads of each sample into contigs (an 
average N50 length of 7.73 Kbp, Table  S2). Second, 
contigs > 2000 bp were selected for binning to obtain 
metagenome-assembled genomes (MAGs) by MetaBAT2 

using the default options [27]. Third, reads were mapped 
back to the corresponding contigs using BWA-MEM2 
[28, 29], and Samtools and the jgi_summarize_bam_con-
tig_depths function in MetaBAT2 were used to calculate 
the contig depth [30]. Then, VAMB software was used 
to obtain MAGs, which was classed by CheckM based 
on completeness and contamination (partial-quality: com-
pleteness ≥ 50%, contamination ≤ 5%; medium-quality: 
completeness ≥ 70%, contamination ≤ 10%; high-quality: 
completeness ≥ 80%, contamination ≤ 5%)[23, 31]. Only 
high-quality MAGs were further analyzed. Finally, dRep 
(v3.0.1) was used to cluster and obtain SGBs with the 
parameters -pa 0.95 and -sa 0.95[32]. This study yielded 
a total of 259 high-quality genomes.

Taxonomic annotation, abundance, functional 
prediction of SGBs

Kraken2 tool and NCBI nonredundant Nucleotide Sequence 
Database were used to annotate the MAGs with default set-
tings [33]. Prodigal was used to predict putative genes in 
the contigs [34], followed by annotation by UniProt Knowl-
edgebase using the blastp function of DIAMON. CoverM 
(https://​github.​com/​wwood/​CoverM) calculated the abun-
dance of each SGB (parameters: "–min-read-percent-iden-
tity 0.95 –min-covered-fraction 0.4"). Gene abundance was 
expressed in reads per kilobase million (RPKM) to calcu-
late SGB diversity by two R packages (vegan and optparse). 
Proteins in SGBs were predicted by Prodigal and function-
ally annotated by the Kyoto Encyclopedia of Genes and 
Genomes (KEGG) Orthologies (KOs) database. The best hit 
of each gene was selected for calculating the gene abundance 
profile for each sample.

Statistical analyses

All statistical analyses were performed using the R soft-
ware (v.4.0.3). Data were expressed as mean ± SD. The 
Shannon index and principal coordinates analysis (PCoA) 
were used to assess post-intervention changes in the fecal 
microbiota diversity and structure using two R packages, 
vegan and ggpubr. Wilcoxon test and t-test were used to 
evaluate differences in the fecal microbiome inter-group and 
intra-group. Correlation and strength of correlation between 
bacteria were assessed with the Spearman’s rank correla-
tion coefficient, calculated by R packages (psych, gplots, 
and dplyr). Here, significantly associated taxa (defined as 
r > 0.5 or r < − 0.5, and P < 0.05) were presented as correla-
tion networks constructed by Cytoscape (v3.5.1). Pathway 
enrichment was analyzed by STAMP (v.2.1.3). All graphics 
were generated under R and Adobe Illustrator environment.

http://huttenhower.sph.harvard.edu/kneaddata
http://huttenhower.sph.harvard.edu/kneaddata
https://github.com/wwood/CoverM
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Results

Co‑administrating Probio‑M8 improved bone 
metabolism and osteoblast activity

At 0 M, there was no significant difference in all moni-
tored parameters between Probio-M8 and placebo groups 
(Table 1). At 3 M, significant differences were shown in 
serum concentrations of PCT, PTH, VD3, and Ca between 
two groups (Table 1). The level of PCT, an indicator of sys-
temic inflammation [35], decreased significantly in Probio-
M8 group compared with placebo group at 3 M (Probio-M8 
group: 0.03 ± 0.01 ng/mL, placebo group: 0.04 ± 0.01 ng/
mL; P < 0.01). Both PTH and VD3 are indicators of bone 
metabolism and Ca homeostasis [36]. The levels of PTH 
(Probio-M8 group: 36.49 ± 18.24  pg/L, placebo group: 
45.05 ± 19.39 pg/L; P = 0.039) and Ca (Probio-M8 group: 
2.27 ± 0.12 mmol/L, placebo group: 2.38 ± 0.12 mmol/L; 
P = 0.013) were significantly lower in Probio-M8 group 
compared with placebo group, and an opposite trend was 
seen in VD3 level (Probio-M8 group: 26.22 ± 7.90 ng/L, 
placebo group: 20.52 ± 7.07 ng/L; P = 0.032).

Longitudinal comparison revealed significant decreases 
in ALP levels in both groups at 3 M (Probio-M8 group: 
78.45 ± 18.34 U/L at baseline decreased to 66.00 ± 10.25 

U/L at 3 M, P < 0.01; and placebo group: 75.75 ± 12.17 U/L 
at baseline decreased to 67.65 ± 17.90 U/L at 3 M, P = 0.22; 
Table 1). Significant reduction in OC was observed only in 
Probio-M8 group (Probio-M8 group: 20.25 ± 5.80 ng/mL at 
baseline decreased to 16.82 ± 6.57 ng/mL at 3 M, P = 0.012; 
placebo group: 19.25 ± 5.65 at baseline to 18.38 ± 5.81, 
P = 0.29; Table 1). No significant difference was observed 
in the P, tP1NP and β-CTX levels between groups or time 
points (Table 1).

These results together suggested that co-administering 
Probio-M8 with Ca and calcitriol offers better beneficial 
effects to bone metabolism and protection against bone loss 
than just taking Ca and calcitriol.

Co‑administering Probio‑M8 did not modify 
subjects’ gut microbiota diversity drastically

No significant intra-group or inter-group differences were 
observed in the alpha diversity of subjects’ gut microbiota 
(reflected by the Shannon–Wiener diversity index; Fig. 2a). 
Similarly, the PCoA (Bray–Curtis distance) score plot did 
not show any group- or time-based clustering patterns 
(Fig. 2b). Such results indicated that probiotic intake did 
not cause drastic changes in subjects’ gut microbiota diver-
sity and structure.

Table 1   Demographic data and changes in clinical parameters

Subjects were randomized into Probio-M8 and Placebo groups (n = 20 per group for all parameters except for bone mineral density at month 3, 
where n = 17 and 16 for Probio-M8 and Placebo groups, respectively). Probio-M8 group received calcium, calcitriol and Bifidobacterium anima-
lis subsp. lactis Probio-M8 (Probio-M8-maltodextrin mix); placebo group received calcium, cacitriol and maltodextrin
Data are expressed as means ± SEM. Significant differences between sample pairs are indicated; # significant intra-group difference between 
time points (#P < 0.05; ##P < 0.01; paired t test); * significant inter-group difference at a specific time point (*P < 0.05; Wilcoxon test)

Parameters Probio-M8 group Placebo group

Month 0 Month 3 Month 0 Month 3

Age (year) 62.77 ± 6.00 61.63 ± 7.86
Body mass index (kg/m2) 23.13 ± 2.19 23.37 ± 2.53
Menopause time (year) 9.65 ± 5.59 9.30 ± 5.70
L1-L4 (g/cm2) 0.99 ± 0.17 0.99 ± 00.18 0.97 ± 0.14 0.99 ± 00.19
Left femoral neck (g/cm2) 0.79 ± 0.12 0.79 ± 00.11 0.78 ± 0.12 0.78 ± 00.11
Left hip joint (g/cm2) 0.85 ± 0.14 0.88 ± 00.13 0.85 ± 0.15 0.87 ± 00.13
Alkaline phosphatase (U/L) 78.45 ± 18.34 66.00 ± 10.25## 75.75 ± 12.17 67.65 ± 17.90#

Calcium (mmol/L) 2.27 ± 0.12 2.27 ± 0.12* 2.27 ± 0.10 2.38 ± 0.12#

Phosphorus (mmol/L) 1.12 ± 0.18 1.15 ± 0.12 1.24 ± 0.17 1.23 ± 0.18
Parathyroid hormone (pg/L) 44.16 ± 22.08 36.49 ± 18.24*# 43.44 ± 14.34 45.05 ± 19.39
Osteocalcin (ng/ml) 20.25 ± 5.80 16.82 ± 6.57# 19.25 ± 5.65 18.38 ± 5.81
Vitamin D3 (ng/L) 21.44 ± 7.79 26.22 ± 7.90*# 22.21 ± 8.36 20.52 ± 7.07
Total procollagen 1 N-terminal propeptide (ng/ml) 52.62 ± 16.83 47.14 ± 17.17 49.75 ± 15.26 52.53 ± 16.20
β-C-terminal cross-linked telopeptides of type I collagen 

(ng/ml)
0.53 ± 0.29 0.46 ± 0.23 0.56 ± 0.15 0.55 ± 0.21

Procalcitonin (ng/ml) 0.04 ± 0.01 0.03 ± 0.01*# 0.04 ± 0.01 0.04 ± 0.01
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However, finer taxonomic analysis revealed four interven-
tion responsive SGBs that showed no significant difference 
in abundance between Probio-M8 and placebo groups ini-
tially but only became differentially abundant after the inter-
vention (Fig. 2c; Table S3). Significantly more Eubacterium 
ventriosum (SGB101) was found in Probio-M8 group than 
in placebo group (P < 0.05), and Coprococcus sp. (SGB40), 
Alistipes putredinis (SGB10), and Lachnospiraceae sp. 
(SGB203) showed an opposite trend (P < 0.05 in all cases, 
Wilcoxon test).

Co‑administering Probio‑M8 enhanced the gut 
microbiota interactions in patients with POM

Genus-level interactive gut microbial networks were con-
struced (Fig.  3). The correlation strength was defined 
as: very strong, |r|≥ 0.8; strong, 0.6 ≤|r|< 0.8; moderate, 
0.5 ≤|r|< 0.6). At baseline, a total of 31 detected correla-
tions (eight strongly positive, 16 moderately positive, seven 

moderately negative). Although the microbial intercon-
nectedness of both groups increased at 3 M compared with 
0 M, it was obviously stronger in Probio-M8 group com-
pared with placebo group at 3 M, characterized by a higher 
number of significant correlation (76 detected correlations; 
one very strong positive, 31 strongly positive, 15 moder-
ately positive, 12 strongly negative, 17 moderately nega-
tive; including some well-recognized butyrate-producers, 
e.g., Ruminococcus, Butyricicoccus, and Eubacterium). In 
contrast, the correlation network of placebo group was less 
interconnected, with only 39 detected correlations (three 
very strongly positive, 18 strongly positive, four moder-
ately positive, one very strong negative, 12 strongly nega-
tive, one moderately negative). Importantly, Bifidobacterium 
correlated positively with Eubacterium, Blautia and Rumi-
nococcus, and the correlations strengthened further at 3 M 
only in Probio-M8 group but not placebo group. Our results 
suggested that Probio-M8 co-administration enhanced the 
strength of interconnectedness of patients’ gut microbiota.
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genome bins (SGBs) between groups. a Shannon diversity index of 
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lion, RPKM) of differentially abundant SGBs. All the shown SGBs 
were not significantly different between groups at baseline, but only 
become significantly differential after the intervention (* P < 0.05)



971European Journal of Nutrition (2023) 62:965–976	

1 3

Co‑administering Probio‑M8 modulated bone 
metabolism‑related function encoded in the gut 
microbiome

The pathways and function encoded in subjects’ gut micro-
biota were annotated by KEGG database (Fig. 4, Table S4). 
A total of 6095 KOs were annotated across all samples. 
Twenty-two responsive KOs were identified, which were 

not significantly different between groups at baseline, but 
only became significantly differential abundant at 3 M. Four 
responsive KOs were significantly more abundant in placebo 
group than Probio-M8 group (K00338, K03617, K18377, 
K03346, involved in Energy metabolism and Protein fami-
lies: genetic information processing), while the remaining 
18 KOs were significantly more abundant in Probio-M8 
group than placebo group (mainly related to Carbohydrate 
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metabolism [K00847, K02770, K02781, K03332; these four 
KOs encoded different pathways of Fructose and mannose 
metabolism], Cell motility [K02389, K02397], Metabo-
lism of other amino acids [K00968], Membrane transport 
[K02806, K18891], Protein families: genetic informa-
tion processing [K19339], Poorly characterized pathways 
[K02426, K06877, K06921, K07075, K07128, K09976], 
and Unclassified pathways [K01447, K19336]). Finally, 
pathways of Phosphonate and phosphonate metabolism sig-
nificantly increased after intervention with Probio-M8.

Discussion

Osteoporosis is a metabolic bone disease, which relates with 
the dynamic balance between bone resorption mediated by 
osteoclasts and bone formation mediated by osteoblasts, and 
it is commonly managed by administrating conventional 
drugs or dietary supplements like Ca and calcitriol. There 
is a strong link between the gut microbiota and osteoporo-
sis [5]. Provided the ability of probiotics in restoring the 
host gut microbiota from disease-associated dysbiotic states, 
this work investigated the added benefit of co-administering 
Probio-M8 with Ca and calcitriol in bone metabolism of 
patients with PMO. We found that co-administering Probio-
M8 with Ca and calcitriol for three months could improve 
patients’ bone metabolism.

Our results showed that co-administrating Probio-M8 
significantly improved Ca and P metabolism, meanwhile 
improving the anti-inflammatory index in patients with 
osteoporosis. The two most important regulators for blood 
Ca are PTH and VD3. A high PTH concentration increases 
Ca release from bone, causing bone resorption [16]. Several 
previous studies showed that oral intake of Ca and multi-
species probiotics could decrease the blood PTH level, 
mitigating bone resorption [16, 37, 38], which is consistent 
with our results. We also found the serum Ca concentration 
significantly increased only in placebo but not Probio-M8 
group at 3 M, which might be resulted from the decrease in 
PTH, implicating an enhanced retention of bone minerals 
and reduction in bone resorption. Vitamin D plays a crucial 
role in the overall health by sustaining bone Ca homeosta-
sis, maintaining BMD, and preventing from bone resorp-
tion [39]. A range of below 30 ng/mL of serum 25-hydroxy 
vitamin D is regarded as vitamin D deficiency [40]. Co-
administering Probio-M8 improved subjects’ overall serum 
VD3 level. A higher serum vitamin D level is indicative 
of improvement in Ca absorption [41]. Thus, the increase 
in VD3 and decrease in Ca in serum of subjects in Probio-
M8 group might be indicative of an increased bone forma-
tion activity. Additionally, the ratio of subjects in Probio-
M8 group to placebo group that achieved a normal serum 
VD3 level (> 30 ng/mL) was 8:1 after the trial, implicating 

the effectiveness of probiotic administration in increasing 
serum VD3 and preventing bone loss. The serum PCT level 
is a biomarker of systemic inflammation and autoimmune 
diseases [35], which was significantly lowered after Probio-
M8 consumption, suggesting that Probio-M8 could alleviate 
systemic inflammation in patients with osteoporosis. Apart 
from being an inflammatory biomarker, it is the precursor of 
calcitonin, mainly produced by the parafollicular C cells in 
the thyroid. Some studies consistently found that applying 
calcitonin at supraphysiologic doses promptly inhibited oste-
oclast function [42, 43]. In contrast, the biological function 
of PCT is still not entirely clear. Some studies found a posi-
tive correlation between PCT and the severity of osteoporo-
sis, while other studies found an inverse association between 
PCT and OC [44, 45]. Thus, the exact role and mechanism 
of drop in serum PCT subsequent to probiotic intake need 
further elucidation.

Co-administering Probio-M8 significantly decreased the 
ALP and OC levels, which are biomarkers of bone forma-
tion [46], and ALP has also been proposed as a marker of 
bone turnover [16]. Few studies have reported the impact 
of probiotic intake on these two biomarkers in human. Brit-
ton et al. (2014) showed in a menopausal ovariectomized 
mouse model that L. reuteri intake could decrease the level 
of bone-specific ALP, indicating a diminished bone turnover 
and bone loss [47], which is in line with the current study. 
Our study observed a significant decrease in the serum OC 
level in Probio-M8 group but not placebo group at 3 M, con-
trasting to the observation of an increased serum OC level 
in ovariectomized rats after 16-week intervention with B. 
longum [48]. During bone formation, OC can be released 
directly into blood after osteoblastic synthesis; however, it 
can also enter the circulation from osteoclastic bone matrix 
degradation during bone resorption [49]. On the other hand, 
a meta-analysis found that serum OC might not be a good 
indicator for bone formation but rather an indicator of bone 
turnover due to its heterogeneity in the circulation influ-
enced by glucose metabolism [50]. Therefore, the decrease 
in serum OC in Probio-M8 group seemed to reflect a lower 
bone turnover status at 3 M compared with baseline.

The human gut microbiota has been described as “a key 
mediator of osteoporosis and osteogenesis” [5], and the gut 
microbiome of women with osteoporosis and osteopenia 
are altered[51]. As the gut microbiota is likely playing an 
active role in the pathogenesis of PMO, it may also serve as 
a therapeutic target for managing PMO. Probiotics can mod-
ulate the gut microbiota and improve clinical symptoms in a 
variety of medical conditions, e.g., coronary artery disease 
[52], asthma [53] and gastrointestinal disease [54]. Moreo-
ver, some previous clinical studies reported that applying 
probiotics could improve bone health, but only few stud-
ies have focused on analyzing probiotic-driven gut micro-
biota responses in association with symptom improvement. 
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Thus, here we focused on analyzing changes in subjects’ 
gut microbiota after probiotic intake. No significant change 
was observed in both the alpha diversity (represented by the 
Shannon index) and structure of subjects’ gut microbiota 
after the three-month intervention regardless of Probio-
M8 co-administration. In contrast, Takimoto et al. (2018) 
observed significant increases in both gut microbiota rich-
ness and diversity after 24-week intervention with Bacil-
lus subtilis C-3102 in healthy postmenopausal Japanese 
women [17]. The inconsistency could be a result of different 
intervention duration and probiotic strains between studies. 
Although it is generally thought that a high diversity is indic-
ative of a “healthy microbiota”, such view point has been 
questioned [55]. Our observations suggested that ingesting 
Probio-M8 was only accompanied by moderate changes in 
the host gut microbiota diversity and structure. Interestingly, 
the interconnectedness between the interactive gut microbial 
correlation network of Probio-M8 and placebo groups was 
different at 3 M. Interactive network-based analysis facili-
tates the decipherment of complex microbial interaction 
patterns, reflecting relationships among microbes and their 
ecological interconnectedness [56]. Provided the close link 
between gut microbiota and host health, gut microbial inter-
active network analysis reflects improvement in health state 
and/or symptom alleviation in relationship with the dynamic 
changes in the gut microbiota [57]. It has been shown that 
probiotic intake could enriched indigenous bacterial corre-
lation, inhibiting potential gut pathogens; and strengthened 
networking of differentially abundant-disease associated 
gut microbes in pancreatic cancer patients could reflect 
poor prognostic factors [58, 59]. Such approach has also 
been used to identify link between diet-induced changes in 
human gut microbiota and metabolic health [60]. We found 
an enhanced gut microbiota interactive correlation network 
in Probio-M8 group compared with placebo group at 3 M. 
Particularly, the generally considered beneficial genus, Bifi-
dobacterium, showed positive correlation with some major 
short-chain fatty acids-producing taxa, e.g., Eubacterium, 
Blautia, and Ruminococcus; and Ruminococcus has been 
reported to be inversely associated with the presence of 
osteoporosis [61]. Therefore, it is reasonable to speculate 
that Probio-M8 intake enhanced the interconnection among 
specific beneficial bacteria in the gut ecological niche, 
promoting the health of patients with PMO. However, it is 
important to note that interactive gut microbiota analysis 
as such does not provide solid proof of causal relationship, 
which needs to be further verified.

Gut microbiota modulation will naturally affect the 
functional potential of the gut metagenome; thus, changes 
in the metagenomic functional features after probiotic 
intervention were analyzed. In Probio-M8 group, sig-
nificant increases were observed in genes coding ABC 
transporters, the phosphotransferase system, and fructose 

and mannose metabolism pathways. ABC transporters 
are frequently co-located and co-regulated with glyco-
side hydrolase-encoding genes. The phosphotransferase 
system is a common mechanism of high affinity carbohy-
drate uptake in microbial species [62]. Increases in these 
genes are suggestive of enhanced carbohydrate uptake and 
utilization [63]. It was previously shown that feeding fruc-
tose to rats could induce insulin resistance and accelerated 
osteoporosis [64], suggesting that fructose intake might 
worsen the pathogenesis of osteoporosis. The observation 
of an increased abundance in genes coding pathways of 
fructose and mannose metabolism after Probio-M8 intake 
suggested that probiotic co-administration could acceler-
ate fructose utilization in patients’ gut, reducing PMO 
symptoms.

In addition, the gene abundance of a choline-phosphate 
cytidylyltransferase (K00968) increased after Probio-M8 
treatment. Choline-phosphate cytidylyltransferases are 
major rate-determining enzymes in phosphatidylcholine 
biosynthesis in mammalian cells. The serum levels of 
phosphatidylcholines have been shown to associate with 
BMD in Chinese subjects; however, the correlation direc-
tion is dependent on their chemical structure and fatty 
acid combination. For example, two phosphatidylcholines 
(16:0/18:3 and O-18:0/22:6, respectively) were associated 
with BMD in opposite direction [65]. Similarly, Farina 
et al. (2012) found differential association between blood 
phosphatidylcholine concentrations and hip BMD/hip frac-
ture in older adults [66]. More serum phosphatidylcho-
lines were found in osteoporotic patients than osteopenic 
patients [67]. The increase in choline-phosphate cytidy-
lyltransferase-encoding genes associated with Probio-M8 
intake seems to be beneficial to the current cohort of sub-
jects, but further confirmation would be required.

In conclusion, this study demonstrated that probiotics 
could act together with conventional drugs (Ca and calci-
triol) to improve bone metabolism in patients with PMO. 
This work has provided insights into potential mechanisms 
of probiotic intake in clinical improvement in patients with 
PMO. However, a larger sample size would be desirable in 
future studies to further validate our results.
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