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Abstract
Purpose  Substantial basic science evidence suggests that oxidative stress may play a role in aging-related health outcomes, 
including cardiovascular diseases (CVD) and cancer, and oxidative stress markers were linked with all-cause and cause-
specific mortality in epidemiologic studies. However, the associations of many individual dietary and lifestyle anti-/pro-
oxidant exposures with mortality are inconsistent. Oxidative balance scores (OBS) that incorporated multiple dietary and 
lifestyle factors were previously developed and reported to reflect the collective oxidative effects of multiple exposures.
Methods  We investigated associations of 11-component dietary and 4-component (physical activity, adiposity, alcohol, and 
smoking) lifestyle OBS (higher scores were considered more anti-oxidative) with all-cause and cause-specific mortality 
among women 55–69 years of age at baseline in the prospective Iowa Women’s Health Study (1986–2012). We assessed 
OBS-mortality associations using multivariable Cox proportional hazards regression.
Results  Of the 34,137 cancer-free women included in the analytic cohort, 18,058 died (4521 from cancer, and 6825 from 
CVD) during a mean/median 22.0/26.1 person-years of follow-up. Among participants in the highest relative to the lowest 
lifestyle OBS quintiles, the adjusted hazards ratios and their 95% confidence intervals for all-cause, all-cancer, and all-CVD 
mortality were 0.50 (0.48, 0.53), 0.47 (0.43, 0.52), and 0.54 (0.50, 0.58) (all Ptrend < 0.001), respectively. The associations 
of the dietary OBS with mortality were close to null.
Conclusion  Our findings, combined with results from previous studies, suggest that a predominance of antioxidant over 
pro-oxidant lifestyle exposures may be associated with lower all-cause, all-CVD, and all-cancer mortality risk.
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Introduction

Chronic diseases, including cancer and cardiovascular dis-
eases (CVD), are the leading causes of death worldwide 
[1]. Multiple dietary and lifestyle factors, such as smok-
ing and obesity, have been linked to the incidence of and 
mortality from several chronic diseases, especially cancer 
and CVD. Oxidative stress has also been implicated in 
the etiology of multiple chronic diseases [2–4]. Oxida-
tive stress was defined as an imbalance of pro-oxidants to 
antioxidants [5, 6]. A predominance of pro-oxidant expo-
sures leads to excess reactive oxygen and nitrogen species 
(RONS) production, leading to cellular and DNA dam-
age [5, 6]. Substantial basic science evidence suggested 
that oxidative stress may play a role in accelerating the 
aging of cells, and was associated with risk for chronic dis-
eases, including CVD and multiple types of cancer [2–4]. 
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Although oxidative stress has also been linked to all-cause 
and cause-specific mortality in epidemiologic studies [4, 
7–10] through investigations of oxidative stress markers 
and mortality, the results in the epidemiologic literature 
regarding the associations of many specific dietary and 
lifestyle anti-/pro-oxidant exposures with mortality are 
inconsistent [11]. On the other hand, there are some sug-
gestions that the anti-/pro-oxidative effects of individual 
dietary and lifestyle exposures on risk and mortality may 
be small, but collectively may be substantial [12]. To 
address this, oxidative balance scores (OBS) were devel-
oped and reported [12–15] to reflect the collective oxida-
tive effects of multiple dietary and lifestyle exposures. The 
rationale for creating a comprehensive score incorporating 
multiple dietary and lifestyle exposures to reflect oxidative 
balance was previously described [14, 15], and the associ-
ations of OBS with various outcomes reviewed [16]. OBS 
were reported to be associated with multiple health out-
comes, such as colorectal neoplasms [12–15] and cancers 
of the esophagus [17], lung [18], breast [19], and prostate 
[14]. However, reported investigations of OBS-mortality 
risk associations were limited to only two epidemiologic 
studies [20, 21]; one [21] included only dietary exposures 
in the score, and neither study reported separate dietary 
and lifestyle OBS.

Therefore, to clarify associations of the OBS with all-
cause and cause-specific mortality, we investigated sepa-
rate and joint associations of the dietary and lifestyle OBS 
with all-cause, all-cancer, and all-CVD mortality risk in 
the prospective Iowa Women’s Health Study (IWHS). We 
hypothesized that more anti-oxidant relative to pro-oxidant 
dietary and lifestyle exposures would be associated with 
lower all-cause and cause-specific mortality risk. To our 
knowledge, this is the largest prospective cohort study so 
far to investigate OBS-mortality associations.

Methods

Study population

Details of the IWHS were previously reported [22]. 
Briefly, the IWHS is a prospective cohort study initiated 
in 1986, with follow-up for the present analysis through 
2012. A total of 41,836 Iowa women aged 55–69 years 
completed mailed questionnaires to self-report informa-
tion on demographics, diet, lifestyle, anthropometrics, and 
medical and reproductive history at baseline. Follow-up 
questionnaires were mailed in 1987, 1989, 1992, 1997, 
and 2004. The study was approved by the Minnesota 
Institutional Review Board (IRB), the current analy-
sis was approved by the Emory University IRB, and all 

participants provided informed consent prior to inclusion 
in the study.

Collection of exposure and outcome information

A Willett 127-item food frequency questionnaire (FFQ) was 
used to measure dietary, supplement, and alcohol intakes 
over the previous 12 months; the validity and reliability in 
the study population were previously reported [23]. Total 
nutrient and energy intakes were calculated by adding 
energy and nutrients from all food and supplement sources 
using Willett’s dietary database [23]. Physical activity was 
assessed via two questions regarding participants’ usual 
frequencies of moderate and vigorous activity, and then 
categorized into three levels: high (vigorous activity twice 
a week or moderate activity > 4 times/week), medium (vig-
orous activity once a week plus moderate activity once a 
week, or moderate activity 2–4 times/week), and low [24]. 
Anthropometrics were self-measured; the reliability and 
validity of self-measurement in the study population were 
previously reported [23]. Body mass index (BMI) was cal-
culated as weight divided by height squared (kg/m2). Waist 
and hip circumferences were used to calculate a waist: hip 
ratio (WHR). Information on diet and physical activity were 
not comprehensively reassessed until 2004, at which time 
only 68.3% of participants remained alive. Therefore, for 
our primary analyses, we used only baseline (1986) exposure 
information, but included 2004 exposure information in one 
of two sensitivity analyses (described further below) that 
supported the validity of this choice.

Information on deaths was collected from the State 
Health Registry of Iowa and the National Death Index. 
Cause of death was assigned and coded by state vital regis-
tries according to the International Classification of Diseases 
(ICD). Cancer mortality was defined according to ICD-9 
codes 140–239 and ICD-10 codes C00–D48; CVD mortality 
was defined according to ICD-9 codes 390–459 and ICD-10 
codes I00–I99. Follow-up time was calculated as the time 
between the date of baseline questionnaire completion and 
the date of death or the end of the last follow-up (December 
31, 2012), whichever was first.

OBS components and calculations

Details of the creation of the questionnaire-based, multi-
component OBS were previously published [12, 13] and 
are summarized below. The OBS was previously validated 
via its association with circulating F2-isoprostanes con-
centrations—the most reliably measured, valid in vivo 
biomarker of systemic oxidative stress currently used in 
epidemiologic studies [25–28]. In previous studies, asso-
ciations of OBS with health outcomes were comparable 
regardless of the different weighting methods used for 
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OBS creation (equal-weight, literature review-derived, 
study data-based, and Bayesian method) [12, 13]. In the 
present study, we used the more straightforward equal-
weight OBS, which incorporates 11 dietary and 4 life-
style OBS components. The 15 OBS components were 
determined a priori based on their literature-supported 
physiological effects on oxidative processes as previously 
reported in detail [12, 13] (also see a referenced summary 
in Supplemental Table 1). The dietary OBS components 
included carotene (α and β), flavonoids, lutein/zeaxanthin, 
lycopene, selenium, omega-3 fatty acids, vitamin C, and 
vitamin E as antioxidants; and iron, omega-6 fatty acids, 
and saturated fats as pro-oxidants. The lifestyle OBS com-
ponents included physical activity as having indirect anti-
oxidant effects; and adiposity, alcohol intake, and smoking 
as having pro-oxidant effects.

All dietary OBS components were continuous variables 
derived from the FFQ. For all nutrients except selenium, 
we used total (i.e., from foods plus supplements) nutri-
ent values; we used only supplement values for selenium 
since selenium intake from foods depends on the soils in 
which selenium’s plant sources are grown. Prior to inclu-
sion in the score, macronutrients were energy-adjusted as 
a percentage of total energy contributed by the macronu-
trient, and micronutrients were energy-adjusted using the 
density method (i.e., mg of vitamin C/1000 kcal of total 
energy intake). Lifestyle OBS components were obtained 
from the lifestyle questionnaire. All were initially 3-level 
categorical variables as follows: adiposity (low: BMI < 30 
and WHR < 0.8; moderate: either BMI ≥ 30 or WHR ≥ 0.8; 
or high: BMI ≥ 30 and WHR ≥ 0.8), alcohol intake (< 1 
drinks/week, 1 – 7 drinks/week, or ≥ 7 drinks/week), 
smoking status (non-smoker, former smoker, or current 
smoker), and physical activity (low, medium, or high; 
described in the data collection sub-section above). We 
then assigned the lifestyle OBS categories initial values 
of 0, 1, or 2 for each category from the lowest to the high-
est level.

Next, we standardized all components’ values to a mean 
of zero and standard deviation of one by subtracting a par-
ticipant’s value from the study population mean, and divid-
ing it by the population standard deviation. The assumption 
for the equal-weight OBS is that all components are equally 
important and should contribute similar weights to the score, 
so we then multiplied these values by + 1 or  – 1 for anti-
oxidants or pro-oxidants, respectively. We then summed the 
resulting values for each of the dietary and lifestyle OBS 
to constitute an individual’s dietary and lifestyle OBS. A 
higher score would be considered more anti-oxidative. We 
also calculated a total OBS by summing all the components 
of the dietary and lifestyle OBS. For subsequent analyses, 
we categorized all three OBS according to quintiles of their 
distributions in the analytic population at baseline.

Statistical analyses

Exclusion criteria

Prior to the scores’ calculations and statistical analyses, we 
excluded participants who had a history of cancer (other 
than non-melanoma skin cancer) at baseline (n = 3830), 
left > 10% of the FFQ items blank (n = 2499), self-reported 
implausible energy intakes (< 600 or > 5000 kcal/day; 
n = 286), had an invalid contributed person-time (n = 2), 
or were missing data on any lifestyle OBS component 
(n = 1082), leaving an analytic cohort of 34,137.

Main analyses

We categorized participants’ dietary and lifestyle OBS 
according to quintiles of their distributions in the entire 
analytic population at baseline, and summarized selected 
participant characteristics by lifestyle and dietary OBS 
quintiles, using descriptive statistics. To investigate asso-
ciations of the dietary, lifestyle, and total OBS with all-
cause, all-cancer, and all-CVD mortality risk, we used 
multivariable Cox proportional hazards regression models 
to calculate adjusted hazards ratios (HR) and their corre-
sponding 95% confidence intervals (CI). We included the 
median values of lifestyle, dietary, and total OBS quintiles 
as continuous variables in models to test for trend. We 
chose the covariates in the models a priori based on bio-
logical plausibility and previous literature. We included 
only baseline age (years) and total energy intake (kcal/
day) as covariates in minimally adjusted models. Fully 
adjusted models for all three OBS included baseline age 
(years), total energy intake (kcal/day), education (< high 
school, high school, > high school and < college,  ≥ col-
lege), current use of hormone replacement therapy (HRT) 
(yes/no), marital status (yes/no), and comorbidity status 
(defined as having one or more chronic diseases [diabe-
tes, heart disease, and cirrhosis]) (yes/no). The lifestyle 
OBS models additionally included the dietary OBS, and 
the dietary OBS models additionally included physical 
activity, alcohol intake, smoking status, and our above-
described adiposity variable. We tested the proportional 
hazards assumptions using Schoenfeld residuals for each 
exposure and covariate.

We assessed correlation between the lifestyle and die-
tary OBS via a Spearman correlation coefficient. We also 
estimated the cumulative incidence of mortality due to all 
causes, CVD, and cancer using methods for competing 
risks analysis in all models [29], and reported it within 
quintiles of the dietary, lifestyle, and total OBS.
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Joint/combined (cross‑classification) analyses

To examine potential interaction between the lifestyle and 
dietary OBS in relation to all-cause, all-cancer, and all-CVD 
mortality risk, we conducted joint/combined analyses, con-
sidering the lowest joint quintile of the two scores as the 
reference category. We calculated Pinteraction using the Wald 
test by including a lifestyle times dietary OBS interaction 
term in the multivariable Cox proportional hazards regres-
sion model.

Stratified analyses

We conducted stratified analyses to assess whether the asso-
ciations differed by categories of selected participants’ base-
line characteristics. We stratified on age (≤ / > median age of 
61 years), current HRT use (yes/no), and comorbidity (yes/
no). We categorized all three OBS according to tertiles for 
the stratified analyses due to sample size constraints. We 
calculated Pinteraction by including an interaction term of the 
stratification factor times the OBS in the multivariable Cox 
proportional hazards regression models.

Sensitivity analyses

We also conducted several sensitivity analyses to assess the 
robustness of our a priori planned analyses to alternative 
considerations. Since our primary analyses were based on 
baseline data for the OBS calculations, and some partici-
pants could have changed their exposures during follow-up, 
we conducted two sensitivity analyses. First, we assessed 
OBS-mortality risk associations considering study end dates 
of 5, 10, 15, 20, and 25 years after baseline. Second, we 
assessed the associations after incorporating exposure data 
from the 2004 follow-up questionnaire two ways: among 
those who were not censored prior to 2004, we used (i) the 
average of their baseline (1986) and 2004 follow-up OBS, 
and (ii) their 2004 OBS only. Other sensitivity analyses 
included, first, censoring participants when they reached 
75 years of age (to assess a potential attenuating effect of 
chance due to aging). Second, we excluded participants 
who died within the first two years of follow-up (to rule 
out reverse causality within early follow-up affecting the 
estimated associations). Third, some evidence suggested a 
U-shaped alcohol-mortality association [30], so we repeated 
our primary analysis using the following alternative alco-
hol intake scoring: < 1 drinks/week was assigned value of 
2; alcohol intake 1–7 drinks/week was assigned value of 
0, and alcohol intake ≥ 7 drinks/week was assigned value 
of 2. Fourth, to assess whether the lifestyle OBS-mortality 
risk associations were driven by any particularly influential 
component, we removed individual components from the 
lifestyle OBS, with replacement, one at a time, and then 

examined the associations of the remaining 3-component 
lifestyle OBS with mortality risk separately, adjusted for the 
removed component as a covariate.

We conducted all analyses using SAS statistical software, 
version 9.4 (SAS Institute, Cary, NC). All P-values were 
two-sided. We considered P values ≤ 0.05 or 95% CIs that 
excluded 1.0 statistically significant.

Results

Of the 34,137 cancer-free women included in the analytic 
cohort, over a mean/median 22.0/26.1 person-years of 
follow-up, 18,058 died (4521 from cancer, and 6825 from 
CVD). The Spearman correlation between the dietary and 
lifestyle OBS was r = 0.10.

Participant characteristics

Selected baseline characteristics of the participants accord-
ing to dietary and lifestyle OBS quintiles are summarized 
in Table 1. Study participants were 61 years of age, on aver-
age, and > 99% were white. Participants in the upper rela-
tive to the lower quintiles of both the dietary and lifestyle 
scores were slightly more likely to take HRT, and had higher 
mean total vegetables and fruit and total calcium intakes, 
and lower mean red and processed meat intakes. Women in 
the higher dietary OBS quintiles, aside from dietary OBS 
components, also were slightly less likely to be a current 
smoker, and more likely to have a high physical activity 
level. Exclusive of lifestyle OBS components, those in the 
upper lifestyle OBS quintiles had, on average, higher total 
vitamin A, vitamin C, and vitamin E intakes.

OBS and mortality risk

Associations of the lifestyle, dietary, and total OBS with all-
cause and cause-specific mortality are presented in Table 2. 
For the lifestyle and total OBS, the estimated associations 
from the minimally and fully adjusted models differed 
minimally; for the dietary OBS, full adjustment attenuated 
all estimated associations. In the fully-adjusted analyses, 
OBS-mortality associations tended to statistically signifi-
cantly decrease with higher lifestyle and total OBS. Among 
women in the highest relative to the lowest lifestyle OBS 
quintiles, all-cause, all-cancer, and all-CVD mortality risks 
were statistically significantly 50%, 53%, and 46% lower, 
respectively; among those in the highest relative to the low-
est total OBS quintiles, all-cause, all-cancer, and all-CVD 
mortality risks were statistically significantly 34%, 39%, 
and 29% lower, respectively. For the dietary OBS, all fully 
adjusted associations with mortality risks were close to null.
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The cumulative incidences of all-cause and cause-specific 
mortality by OBS quintiles, summarized in Supplemental 
Figs. 1, 2, 3 and Supplemental Table 2, were consistent with 
the estimated HRs in Table 2. Throughout the study follow-
up period, participants in the highest relative to the lowest 
lifestyle and total OBS quintiles appeared to have a lower 
cumulative incidence of all mortality types; for the dietary 
OBS, there were no differences in the cumulative incidences 
of any of the three mortality types across dietary OBS quin-
tiles. The 25-year cumulative mortality incidence was lower 
among participants in the highest relative to the lowest life-
style OBS quintiles (all-cause mortality [57.8% vs. 36.8%], 
all-cancer mortality [21.2% vs. 10.8%], and all-CVD mortal-
ity risks [25.9% vs. 16.1%], respectively) and the total OBS 

(all-cause mortality [46.7% vs. 43.2%], all-cancer mortality 
[18.3% vs. 12.3%], and all-CVD mortality risk [23.6% vs. 
19.8%], respectively).

Joint/combined (cross‑classification) analyses

The joint/combined (cross-classification) associations of the 
dietary and lifestyle OBS with all-cause and cause-specific 
mortality risk are shown in Table 3. There were patterns 
of decreasing risk with an increasing lifestyle OBS among 
women in the lowest dietary OBS quintile for all mortality 
types. On the other hand, there were no definitive patterns 
of decreasing risk with an increasing dietary OBS among 
women in the lowest lifestyle OBS quintile. However, those 

Table 1   Selected baseline participant characteristicsa according to dietary and lifestyle oxidative balance score quintiles; the Iowa Women’s 
Health Study (n  = 34,137), 1986–2012

Abbreviations: IU international units, SD standard deviation
a Continuous variables presented as means (standard deviation); categorical variables presented as percentages
b Oxidative balance scores (OBS) composed of the dietary or lifestyle exposures listed in Supplemental Table 1; see the text for construction of 
the ‘equal-weight’ scores; a higher score represents a higher balance of antioxidant relative to pro-oxidant exposures
c Self-reported history of diabetes mellitus, heart disease, and/or cirrhosis
d Total = diet plus supplements
e Physical activity level derived from two questions regarding the frequency of moderate and vigorous physical activity, and categorized as high 
(vigorous activity twice a week or moderate activity > 4 times/week), medium (vigorous activity once a week plus moderate activity once a 
week, or moderate activity 2–4 times/week), and low
f Adiposity defined as high if body mass index (BMI; weight [kg]/height [m2]) ≥ 30 and waist:hip ratio (WHR) ≥ 0.8; medium if either BMI ≥ 30 
or WHR ≥ 0.8; and low if BMI < 30 and WHR < 0.8

Characteristics Dietary oxidative balance score quintilesb Lifestyle oxidative balance score quintilesb

1 (n = 6827) 3 (n = 6827) 5 (n = 6827) 1 (n = 6923) 3 (n = 7019) 5 (n = 7683)

Mean ± SD or % Mean ± SD or % Mean ± SD or % Mean ± SD or % Mean ± SD or % Mean ± SD or %

Age, years 61.0 ± 4.1 61.6 ± 4.2 61.7 ± 4.2 61.1 ± 4.1 61.7 ± 4.2 61.7 ± 4.2
High school graduate or higher, % 79.0 83.6 83.1 80.1 81.4 83.8
Currently use hormone therapy, % 9.7 11.7 13.3 10.1 11.1 12.3
Currently married, % 78.3 77.3 75.3 73.0 77.3 79.9
Have a comorbidityc % 13.2 14.2 17.0 15.8 15.8 11.2
Dietary intakes
Total energy, kcal/day 1911 ± 665 1837 ± 587 1743 ± 553 1825 ± 625 1794 ± 603 1800 ± 583
Total vegetables and fruit, serv-

ings/week
32.4 ± 15.2 44.2 ± 18.2 54.7 ± 28.2 40.7 ± 20.8 42.8 ± 20.8 47.2 ± 21.9

Red and processed meats, serv-
ings/week

10.8 ± 6.5 7.8 ± 4.3 5.2 ± 3.7 8.3 ± 5.3 8.1 ± 5.4 7.3 ± 4.9

Total calciumd mg/(103 kcal·day) 379 ± 264 400 ± 289 791 ± 410 585 ± 322 621 ± 325 683 ± 344
Total vitamin Ad IU/(103 kcal·day) 4594 ± 2422 7336 ± 2809 14,459 ± 8197 7373 ± 4823 7999 ± 5539 8967 ± 6063
Total vitamin Cd mg/(103 kcal·day) 88 ± 93 143 ± 122 352 ± 314 164 ± 190 169 ± 189 186 ± 206
Total vitamin Ed mg/(103 kcal·day) 22 ± 45 31 ± 60 119 ± 165 43 ± 90 46 ± 93 54 ± 106
Take multivitamin, % 26.3 32.2 45.8 30.2 31.5 36.3
Lifestyle characteristics
High physical activitye % 16.4 24.7 35.3 7.9 5.1 56.5
Current smoker, % 19.6 14.3 13.1 51.3 5.7 0.0
 > 7 alcoholic drinks/week, % 6.4 8.3 7.8 32.4 0.0 0.0
High adiposityf % 20.8 20.3 18.3 34.2 15.4 0.0
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Table 2   Associationsa of the oxidative balance scores with all-cause, all-cancer, and all-cardiovascular disease mortality risk in the Iowa Wom-
en’s Health Study (n  =  34,137), 1986–2012

Abbreviations: CI confidence interval, CVD cardiovascular disease, HR hazard ratio, OBS oxidative balance score
a HRs and 95% CIs from Cox proportional hazards models
b Oxidative balance scores (OBS) composed of the dietary or lifestyle exposures listed in Supplemental Table 1; see the text for construction of 
the ‘equal-weight’ scores; a higher score represents a higher balance of antioxidant relative to pro-oxidant exposures
c Minimally-adjusted models: adjusted for age (years; continuous) and total energy intake (kcal/day; continuous)
d Model for dietary OBS adjusted for age (years; continuous), total energy intake (kcal/day; continuous), education (< high school, high 
school, > high school and < college, ≥ college), current use of hormone replacement therapy (yes/no), marital status (yes/no), comorbidity (yes/
no), physical activity (low/medium/high; see text and Table 1 footnote ‘e’ for definitions), smoking status (current/former/non-smoker), alcohol 
consumption (drinks/week; continuous), and adiposity (low/medium/high; see text and Table 1 footnote ‘f’ for definitions)
e Model for lifestyle OBS adjusted for age (years; continuous), total energy intake (kcal/day; continuous), education (< high school, high 
school, > high school and < college, ≥ college), current use of hormone replacement therapy (yes/no), marital status (yes/no), comorbidity (yes/
no; see text for definition), and the equal-weight dietary OBS
f Model for total OBS adjusted for age (years; continuous), total energy intake (kcal/day; continuous), education (< high school, high 
school, > high school and < college, ≥ college), current use of hormone replacement therapy (yes/no), marital status (yes/no), and comorbidity 
(yes/no; see text for definition)

Mortality type/
OBS variable 
forms

Oxidative balance scoreb

Dietary Lifestyle Total

Minimally-
adjusted modelc

Fully-adjusted 
modeld

Minimally-adjusted 
modelc

Fully-adjusted 
modele

Minimally-adjusted 
modelc

Fully-adjusted 
modelf

HR 95% CI HR 95% CI HR 95% CI HR 95% CI HR 95% CI HR 95% CI

All-causes
Continuous 1.00 0.99, 1.00 1.00 1.00, 1.01 0.88 0.87, 0.89 0.88 0.88, 0.89 0.97 0.97, 0.97 0.97 0.97, 0.98
   Quintiles
1 1.00 Referent 1.00 Referent 1.00 Referent 1.00 Referent 1.00 Referent 1.00 Referent
2 0.89 0.85, 0.93 0.93 0.89, 0.98 0.76 0.73, 0.79 0.76 0.73, 0.80 0.80 0.76, 0.83 0.80 0.77, 0.83
3 0.88 0.84, 0.93 0.95 0.91, 1.00 0.62 0.59, 0.65 0.61 0.59, 0.64 0.71 0.67, 0.74 0.73 0.70, 0.77
4 0.89 0.85, 0.93 0.96 0.91, 1.01 0.58 0.56, 0.61 0.59 0.56, 0.61 0.67 0.64, 0.71 0.70 0.66, 0.73
5 0.90 0.86, 0.95 0.99 0.94, 1.04 0.49 0.46, 0.51 0.50 0.48, 0.53 0.65 0.62, 0.68 0.66 0.63, 0.69
Ptrend 0.002 0.81  < 0.001  < 0.001  < 0.001  < 0.001
Cancer
Continuous 0.99 0.98, 1.00 1.00 0.99, 1.01 0.87 0.86, 0.88 0.87 0.86, 0.88 0.97 0.96, 0.97 0.97 0.96, 0.97
 Quintiles

1 1.00 Referent 1.00 Referent 1.00 Referent 1.00 Referent 1.00 Referent 1.00 Referent
2 0.94 0.85, 1.03 0.98 0.89, 1.07 0.70 0.65, 0.77 0.71 0.65, 0.77 0.77 0.71, 0.85 0.77 0.71, 0.84
3 0.91 0.83, 0.99 0.96 0.88, 1.06 0.55 0.51, 0.60 0.55 0.51, 0.60 0.71 0.65, 0.77 0.72 0.66, 0.79
4 0.94 0.86, 1.03 1.00 0.91, 1.10 0.53 0.48, 0.58 0.53 0.49, 0.59 0.66 0.60, 0.72 0.67 0.61, 0.73
5 0.89 0.80, 0.98 0.96 0.87, 1.06 0.46 0.42, 0.50 0.47 0.43, 0.52 0.60 0.55, 0.66 0.61 0.55, 0.67
Ptrend 0.03 0.60  < 0.001  < 0.001  < 0.001  < 0.001
CVD
Continuous 1.00 0.99, 1.01 1.01 1.00, 1.01 0.89 0.88, 0.90 0.90 0.89, 0.91 0.98 0.97, 0.98 0.98 0.97, 0.98
 Quintiles

1 1.00 Referent 1.00 Referent 1.00 Referent 1.00 Referent 1.00 Referent 1.00 Referent
2 0.88 0.82, 0.95 0.92 0.85, 0.99 0.80 0.75, 0.86 0.80 0.75, 0.86 0.83 0.77, 0.89 0.84 0.78, 0.91
3 0.89 0.83, 0.96 0.96 0.89, 1.04 0.67 0.62, 0.72 0.66 0.62, 0.71 0.73 0.67, 0.78 0.76 0.70, 0.82
4 0.90 0.83, 0.97 0.97 0.89, 1.04 0.66 0.62, 0.72 0.67 0.62, 0.72 0.73 0.68, 0.79 0.77 0.70, 0.83
5 0.94 0.87, 1.02 1.02 0.94, 1.11 0.52 0.48, 0.56 0.54 0.50, 0.58 0.69 0.64, 0.75 0.71 0.66, 0.77
Ptrend 0.49 0.18  < 0.001  < 0.001  < 0.001  < 0.001
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in the highest relative to the lowest joint lifestyle/dietary 
OBS quintile were at the lowest all-cause mortality risk; 
risk was statistically significantly 56%, 54%, and 53% lower 
for all-cause, all-cancer, and all-CVD mortality, respectively 
(Pinteraction = 0.52, 0.17, and 0.29, respectively).

Stratified analyses

The multivariable-adjusted associations of the OBS with 
all-cause and cause-specific mortality risk according to 
selected participant characteristics are summarized in 
Table 4. The lifestyle OBS-CVD mortality risk association 
was more strongly inverse among those who were younger 
(< 61 years): for those in the highest relative to the lowest 
lifestyle OBS quintiles, the HRs (95% CIs) among those 
who were younger and older were 0.43 (0.37, 0.49) and 0.64 
(0.59, 0.71), respectively (Pinteraction < 0.001). These findings 
were reflected, to a lesser degree, in the total OBS-CVD 

mortality and the lifestyle- and total OBS-all-cause mor-
tality risk associations. The lifestyle OBS-cancer mortal-
ity risk association was more strongly inverse among those 
who did not take HRT and among those with a co-morbidity 
at baseline (both Pinteraction = 0.04); for those in the highest 
relative to the lowest lifestyle OBS quintile, the HRs—all 
statistically significant—among those who did/did not take 
HRT and those with/without a comorbidity were, respec-
tively, 0.45/0.64 and 0.37/0.49. Although the Pinteraction for 
differences in the total OBS-all-cause mortality risk associa-
tion according to co-morbidity status was statistically sig-
nificant, the magnitude of the difference appeared modest 
and driven by the lifestyle OBS-all-cancer mortality risk 
association. The estimated dietary OBS-mortality associa-
tions were close to null within all strata and none of the point 
estimates was statistically significant, although the Pinteraction 
for the dietary OBS and comorbidity in relation to all-cause 
mortality was 0.02.

Table 3   Multivariable-adjusted joint/combined associationsa of the dietary and lifestyle oxidative balance scoresb with all-cause, all-cancer, and 
all-cardiovascular disease mortality risk; the Iowa Women’s Health Study (n = 34,137), 1986–2012

Abbreviations: CI confidence interval, CVD cardiovascular disease, HR hazards ratio, OBS oxidative balance scores
a HRs and 95% CIs from Cox proportional hazards models; covariates included age (years; continuous), education (< / ≥ high school), current 
hormone replacement therapy use (yes/no), marital status (yes/no), comorbidity (includes sum of yes/no for diabetes, heart disease, or cirrhosis), 
and total energy intake (kcal/day; continuous)
b For construction of the “equal-weight” scores, see text and Supplemental Table 1; a higher score represent a higher balance of antioxidant over 
pro-oxidant exposures
c Pinteraction  = 0.52; from Wald test
d Pinteraction = 0.17; from Wald test
e Pinteraction  = 0.29; from Wald test

Mortality type/life-
style OBS quintiles

Dietary OBS quintiles

1 2 3 4 5

n HR 95% CI n HR 95% CI n HR 95% CI n HR 95% CI n HR 95% CI

All causesc

1 1604 1.00 Referent 1440 0.90 0.82, 0.98 1371 0.91 0.83, 1.00 1328 0.83 0.75, 0.91 1180 0.93 0.84, 1.03
2 1470 0.72 0.66, 0.79 1400 0.66 0.60, 0.73 1301 0.67 0.60,0.73 1289 0.72 0.65, 0.80 1283 0.73 0.65, 0.80
3 1485 0.55 0.50, 0.61 1502 0.55 0.50, 0.60 1459 0.56 0.51, 0.62 1353 0.58 0.53, 0.65 1220 0.59 0.53, 0.65
4 929 0.58 0.52, 0.65 1100 0.52 0.47, 0.58 1154 0.49 0.44, 0.55 1246 0.53 0.48, 0.59 1340 0.56 0.50, 0.62
5 1339 0.50 0.45, 0.55 1386 0.45 0.40, 0.50 1542 0.48 0.43, 0.53 1612 0.45 0.40, 0.50 1804 0.44 0.39, 0.49
Cancerd

1 1604 1.00 Referent 1440 0.93 0.79, 1.10 1440 0.96 0.81, 1.15 1328 0.94 0.79, 1.13 1180 0.90 0.73, 1.09
2 1470 0.73 0.61, 0.86 1400 0.66 0.55, 0.79 1400 0.65 0.54, 0.79 1289 0.70 0.58, 0.85 1283 0.64 0.52, 0.78
3 1485 0.44 0.36, 0.54 1502 0.55 0.46, 0.67 1502 0.52 0.42, 0.63 1353 0.58 0.47, 0.70 1220 0.53 0.42, 0.65
4 929 0.58 0.47, 0.72 1100 0.54 0.44, 0.67 1100 0.41 0.32, 0.51 1246 0.52 0.42, 0.64 1340 0.51 0.41, 0.64
5 1339 0.44 0.36, 0.54 1386 0.41 0.34, 0.51 1386 0.50 0.41, 0.60 1612 0.44 0.35, 0.53 1804 0.46 0.38, 0.57
CVDe

1 1604 1.00 Referent 1440 0.85 0.72, 0.99 1440 0.94 0.81, 1.11 1328 0.82 0.69, 0.96 1180 1.04 0.87, 1.24
2 1470 0.77 0.66, 0.90 1400 0.72 0.62, 0.85 1400 0.71 0.60, 0.84 1289 0.76 0.64, 0.89 1283 0.79 0.66, 0.94
3 1485 0.62 0.53, 0.73 1502 0.58 0.50, 0.69 1502 0.59 0.50, 0.70 1353 0.67 0.57, 0.80 1220 0.66 0.55, 0.79
4 929 0.66 0.55, 0.79 1100 0.61 0.51, 0.72 1100 0.60 0.51, 0.72 1246 0.62 0.52, 0.74 1340 0.63 0.53, 0.75
5 1339 0.57 0.48, 0.67 1386 0.49 0.41, 0.58 1386 0.51 0.43, 0.61 1612 0.46 0.39, 0.55 1804 0.47 0.39, 0.56
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Table 4   Adjusted associationsa of the oxidative balance scoresb with all-cause, all-cancer and all-CVD mortality risk, according to categories of 
selected participant characteristics; the Iowa Women’s Health Study (n  = 34,137), 1986–2012

Stratification 
variables, OBS 
quintiles

Causes of death

All-causes Cancer CVD

Dietaryc Lifestyled Totale Dietaryc Lifestyled Totale Dietaryc Lifestyled Totale

HR
(95% CI)

HR
(95% CI)

HR
(95% CI)

HR
(95% CI)

HR
(95% CI)

HR
(95% CI)

HR
(95% CI)

HR
(95% CI)

HR
(95% CI)

Age, years
  ≤ 61 (n = 17,764)
 1 1.00

(referent)
1.00
(referent)

1.00
(referent)

1.00
(referent)

1.00
(referent)

1.00
(referent)

1.00
(referent)

1.00
(referent)

1.00
(referent)

 2 0.97
(0.91, 1.05)

0.72
(0.68, 0.77)

0.76
(0.71, 0.82)

0.98
(0.86, 1.12)

0.68
(0.60, 0.76)

0.79
(0.70, 0.89)

0.91
(0.80, 1.04)

0.76
(0.68, 0.86)

0.82
(0.72, 0.92)

 3 0.99
(0.90, 1.07)

0.58
(0.54, 0.62)

0.70
(0.65, 0.75)

1.02
(0.89, 1.16)

0.52
(0.46, 0.59)

0.72
(0.64, 0.82)

0.99
(0.87, 1.13)

0.65
(0.57, 0.73)

0.70
(0.62, 0.80)

 4 0.98
(0.91, 1.06)

0.54
(0.50, 0.58)

0.67
(0.63, 0.72)

0.99
(0.86, 1.13)

0.51
(0.45, 0.59)

0.65
(0.57, 0.74)

0.95
(0.83, 1.09)

0.60
(0.53, 0.69)

0.74
(0.65, 0.84)

 5 1.03
(0.95, 1.11)

0.43
(0.40, 0.47)

0.62
(0.58,0.67)

0.99
(0.86, 1.14)

0.45
(0.40, 0.51)

0.60
(0.52, 0.69)

1.04
(0.91, 1.19)

0.43
(0.37, 0.49)

0.64
(0.56, 0.73)

Ptrend 0.41  < 0.001  < 0.001 0.94  < 0.001  < 0.001 0.4  < 0.001  < 0.001
 > 61 (n = 16,374)
 1 1.00

(referent)
1.00
(referent)

1.00
(referent)

1.00
(referent)

1.00
(referent)

1.00
(referent)

1.00
(referent)

1.00
(referent)

1.00
(referent)

 2 0.94
(0.88, 0.99)

0.83
(0.78, 0.88)

0.85
(0.80, 0.90)

0.98
(0.87, 1.02)

0.77
(0.68, 0.86)

0.76
(0.67, 0.87)

0.96
(0.88, 1.06)

0.87
(0.79, 0.96)

0.89
(0.81, 0.98)

 3 0.96
(0.90, 1.02)

0.68
(0.65, 0.73)

0.79
(0.74, 0.83)

0.93
(0.81, 1.06)

0.60
(0.53, 0.68)

0.73
(0.64, 0.83)

0.98
(0.89, 1.08)

0.73
(0.67, 0.80)

0.83
(0.76, 0.91)

 4 0.97
(0.92, 1.04)

0.67
(0.63, 0.71)

0.75
(0.71, 0.80)

1.03
(0.90, 1.17)

0.58
(0.51, 0.66)

0.70
(0.62, 0.80)

1.01
(0.92, 1.11)

0.76
(0.69, 0.84)

0.84
(0.77, 0.92)

 5 0.99
(0.93, 1.05)

0.58
(0.55, 0.62)

0.72
(0.68, 0.86)

0.94
(0.82, 1.08)

0.51
(0.45, 0.58)

0.63
(0.55, 0.72)

1.04
(0.95, 1.15)

0.64
(0.59, 0.71)

0.79
(0.72, 0.87)

Ptrend 0.63  < 0.001  < 0.001 0.56  < 0.001  < 0.001 0.17  < 0.001  < 0.001
Pinteraction

f 0.97  < 0.001 0.002 0.74 0.12 0.35 0.64  < 0.001  < 0.001
Current HRT use
No (n = 30,225)
 1 1.00

(referent)
1.00
(referent)

1.00
(referent)

1.00
(referent)

1.00
(referent)

1.00
(referent)

1.00
(referent)

1.00
(referent)

1.00
(referent)

 2 0.93
(0.89, 0.98)

0.76
(0.73, 0.80)

0.79
(0.75, 0.82)

0.99
(0.90, 1.09)

0.69
(0.63, 0.76)

0.76
(0.70, 0.84)

0.91
(0.84, 0.99)

0.82
(0.76, 0.89)

0.84
(0.77, 0.90)

 3 0.95
(0.90, 0.99)

0.61
(0.58, 0.64)

0.72
(0.69, 0.76)

0.98
(0.88, 1.08)

0.55
(0.50, 0.60)

0.72
(0.65, 0.79)

0.93
(0.86, 1.01)

0.67
(0.62, 0.72)

0.74
(0.69, 0.80)

 4 0.96
(0.91, 1.01)

0.58 (
0.56, 0.61)

0.69
(0.66, 0.73)

1.03
(0.93, 1.14)

0.53
(0.48, 0.58)

0.68
(0.61, 0.74)

0.95
(0.88, 1.03)

0.68
(0.63, 0.74)

0.76
(0.70, 0.82)

 5 1.00
(0.95, 1.05)

0.50
(0.48, 0.53)

0.66
(0.63, 0.69)

0.98
(0.88, 1.09)

0.45
(0.41, 0.50)

0.61
(0.55, 0.67)

1.00
(0.92, 1.09)

0.55
(0.51, 0.60)

0.71
(0.65, 0.77)

Ptrend 0.49  < 0.001  < 0.001 0.88  < 0.001  < 0.001 0.40  < 0.001  < 0.001
Yes (n = 3913)
 1 1.00

(referent)
1.00
(referent)

1.00
(referent)

1.00
(referent)

1.00
(referent)

1.00
(referent)

1.00
(referent)

1.00
(referent)

1.00
(referent)

 2 0.92
(0.79, 1.08)

0.74
(0.64, 0.85)

0.93
(0.80, 1.09)

0.87
(0.65, 1.15)

0.90
(0.69, 1.18)

0.86
(0.65, 1.13)

1.00
(0.75, 1.32)

0.63
(0.49, 0.81)

0.96
(0.73, 1.26)

 3 1.02
(0.87, 1.18)

0.65
(0.57, 0.76)

0.84
(0.73, 0.98)

0.86
(065, 1.14)

0.58
(0.44, 0.78)

0.74
(0.57, 0.97)

1.26
(0.96, 1.65)

0.60
(0.47, 0.76)

0.98
(0.76, 1.27)

 4 0.99
(0.84, 1.16)

0.60
(0.52, 0.70)

0.72
(0.62, 0.84)

0.82
(0.61, 1.10)

0.60
(0.45, 0.80)

0.63
(0.48, 0.83)

1.14
(0.86, 1.51)

0.55
(0.43, 0.71)

0.84
(0.64, 1.10)
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Abbreviations CI confidence interval, CVD cardiovascular disease, HR hazard ratio; HRT hormone replacement therapy, OBS oxidative balance 
score
a HRs and 95% CIs from Cox proportional hazards models
b Oxidative balance scores (OBS) composed of the dietary or lifestyle exposures listed in Supplemental Table 1; see the text for construction of 
the ‘equal-weight’ scores; a higher score represents a higher balance of antioxidant relative to pro-oxidant exposures
c Model for dietary OBS adjusted for age (years; continuous), total energy intake (kcal/day; continuous), education (< high school, high 
school, > high school and < college, ≥ college), current use of hormone replacement therapy (yes/no), marital status (yes/no), comorbidity (yes/
no), physical activity (low/medium/high; see text and Table 1 footnote ‘e’ for definitions), smoking status (current/former/non-smoker), alcohol 
consumption (drinks/week; continuous), and adiposity (low/medium/high; see text and Table 1 footnote ‘f’ for definitions)
d Model for lifestyle OBS adjusted for age (years; continuous), total energy intake (kcal/day; continuous), education (< high school, high 
school, > high school and < college, ≥ college), current use of hormone replacement therapy (yes/no), marital status (yes/no), comorbidity (yes/
no; see text for definition), and the equal-weight dietary OBS
e Model for total OBS adjusted for age (years; continuous), total energy intake (kcal/day; continuous), education (< high school, high 
school, > high school and < college, ≥ college), current use of hormone replacement therapy (yes/no), marital status (yes/no), and comorbidity 
(yes/no; see text for definition)
f Pinteraction from stratified risk factor*score interaction term in Cox proportional hazards model

Table 4   (continued)

Stratification 
variables, OBS 
quintiles

Causes of death

All-causes Cancer CVD

Dietaryc Lifestyled Totale Dietaryc Lifestyled Totale Dietaryc Lifestyled Totale

HR
(95% CI)

HR
(95% CI)

HR
(95% CI)

HR
(95% CI)

HR
(95% CI)

HR
(95% CI)

HR
(95% CI)

HR
(95% CI)

HR
(95% CI)

 5 0.96
(0.82, 1.12)

0.52
(0.45, 0.60)

0.68
(0.58, 0.79)

0.83
(0.63, 1.11)

0.64
(0.49, 0.83)

0.60
(0.46, 0.80)

1.25
(0.95, 1.64)

0.43
(0.33, 0.54)

0.80
(0.62, 1.04)

Ptrend 0.82  < 0.001  < 0.001 0.26  < 0.001  < 0.001 0.08  < 0.001  < 0.001
Pinteraction

f 0.50 0.22 0.80 0.18 0.04 0.55 0.27 0.24 0.51
Comorbidity
No (n = 29,091)
 1 1.00

(referent)
1.00
(referent)

1.00
(referent)

1.00
(referent)

1.00
(referent)

1.00
(referent)

1.00
(referent)

1.00
(referent)

1.00
(referent)

 2 0.93
(0.88, 0.89)

0.76
(0.72, 0.79)

0.78
(0.74, 0.82)

0.95
(0.86, 1.04)

0.73
(0.67, 0.89)

0.76
(0.69, 0.83)

0.92
(0.85, 1.01)

0.78
(0.72, 0.85)

0.83
(0.76, 0.90)

 3 0.94
(0.89, 0.99)

0.60
(0.57, 0.63)

0.70
(0.66, 0.73)

0.95
(0.86, 1.06)

0.56
(0.51, 0.62)

0.70
(0.63, 0.77)

0.95
(0.87, 1.03)

0.66
(0.61, 0.72)

0.72
(0.66, 0.78)

 4 0.94
(0.89, 0.99)

0.57
(0.54, 0.61)

0.66
(0.63, 0.69)

0.96
(0.86, 1.06)

0.55
(0.49, 0.61)

0.65
(0.59, 0.72)

0.95
(0.87, 1.04)

0.64
(0.59, 0.70)

0.72
(0.66, 0.79)

 5 0.97
(0.92, 1.03)

0.50
(0.48, 0.53)

0.64
(0.61, 0.67)

0.93
(0.84, 1.04)

0.49
(0.45, 0.54)

0.59
(0.53, 0.66)

1.01
(0.92, 1.11)

0.54
(0.50, 0.59)

0.70
(0.64, 0.76)

Ptrend 0.70  < 0.001  < 0.001 0.28  < 0.001  < 0.001 0.43  < 0.001  < 0.001
Yes (n = 5046)
 1 1.00

(referent)
1.00
(referent)

1.00
(referent)

1.00
(referent)

1.00
(referent)

1.00
(referent)

1.00
(referent)

1.00
(referent)

1.00
(referent)

 2 0.95
(0.85, 1.05)

0.78
(0.71, 0.86)

0.86
(0.78, 0.95)

1.22
(0.94, 1.57)

0.61
(0.49, 0.76)

0.88
(0.70, 1.11)

0.91
(0.78, 1.07)

0.86
(0.75, 0.99)

0.87
(0.75, 1.02)

 3 1.02
(0.92, 1.14)

0.66
(0.60, 0.73)

0.87
(0.79, 0.97)

1.05
(0.80, 1.37)

0.50
(0.40, 0.62)

0.88
(0.69, 1.12)

0.99
(0.85, 1.17)

0.67
(0.58, 0.78)

0.89
(0.77, 1.04)

 4 1.06
(0.96, 1.18)

0.63
(0.57, 0.70)

0.84
(0.76, 0.93)

1.34
(1.04, 1.73)

0.47
(0.37, 0.60)

0.79
(0.62, 1.01)

1.00
(0.86, 1.17)

0.75
(0.64, 0.87)

0.90
(0.78, 1.05)

 5 1.06
(0.95, 1.18)

0.51
(0.46, 0.57)

0.74
(0.67, 0.83)

1.17
(0.89, 1.52)

0.37
(0.29, 0.48)

0.69
(0.54, 0.88)

1.05
(0.89, 1.23)

0.53
(0.45, 0.63)

0.75
(0.64, 0.88)

Ptrend 0.07  < 0.001  < 0.001 0.28  < 0.001 0.002 0.25  < 0.001 0.001
Pinteraction

f 0.02 0.73 0.005 0.11 0.04 0.30 0.41 0.34 0.27
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Sensitivity analyses

In the sensitivity analyses, the estimated OBS-mortality 
risk associations after 5, 10, 15, 20, and 25 years of follow-
up (Supplemental Table 3) were similar to those from the 
primary analyses. In addition, when we incorporated 2004 
exposure data from those who completed the 2004 follow-up 
questionnaire, the OBS-mortality risk associations estimated 
using the average of the baseline and 2004 exposures were 
similar to those from our primary analyses; however, using 
2004 exposure only attenuated the lifestyle- and total OBS-
mortality risk associations modestly (Supplemental Table 4). 
In other sensitivity analyses, the estimated associations of 
the OBS with all-cause and cause-specific mortality risk 
were modestly stronger after censoring participants when 
they reached the age of 75 years (Supplemental Table 5). 
Exclusion of participants who died within the first two years 
after baseline (1986) (Supplemental Table 6) had minimal 
effects on our results. Using alternative alcohol intake scor-
ing (Supplemental Table 7) tended to yield slightly stronger 
inverse associations of the lifestyle and total OBS with 
all-cause and all-CVD mortality risk. Finally, removal of 
any one component from the lifestyle OBS (Supplemental 
Table 8) tended to result in a slightly weaker inverse lifestyle 
OBS-mortality risk association. Removal of smoking status 
from the lifestyle OBS tended to attenuate the association 
the most: e.g., among those in the highest relative to the low-
est lifestyle OBS quintiles, the HRs (which were all statisti-
cally significant) before/after removing smoking status were 
0.50/0.76, 0.47/0.76, and 0.54/0.71, for all-cause, all-cancer, 
and all-CVD mortality, respectively.

Discussion

Our findings suggest that a predominance of antioxidant 
over pro-oxidant lifestyle exposures may be associated with 
lower all-cause, all-cancer, and all-CVD mortality risks. The 
associations of the dietary OBS with mortality in this study 
population of older, white, Iowa women were null, and the 
total OBS-mortality associations appeared largely driven by 
the lifestyle exposures; however, our joint/combined analysis 
findings suggested that those who jointly had high dietary 
and lifestyle OBS may have been at particularly low all-
cause mortality risk.

A substantial literature supports the biological plau-
sibility of multiple dietary and lifestyle exposures con-
tributing to oxidative stress. Increasing evidence supports 
that higher intakes of certain nutrients, including carot-
enoids (e.g., lycopene, β-carotene, and lutein) [31, 32], 
vitamin C [33], vitamin E [34], selenium [35], omega-3 
fatty acids [36, 37], and flavonoids [38–41], and regular 
physical activity [42], may protect against oxidative stress. 

Pro-oxidative factors, including iron [43], omega-6 fatty 
acids [37, 44, 45], and saturated fats [46, 47] intakes, obe-
sity [48], smoking [49, 50], and alcohol intake [51, 52], 
increase RONS production and accelerate cellular damage 
caused by oxidative stress. The rationale for inclusion of 
each of the components of the dietary and lifestyle OBS 
was reported previously [12, 13] and is summarized in 
Supplemental Table 1.

Dietary and lifestyle exposures that were mechanisti-
cally linked or associated with oxidative stress were also 
associated with risk for several chronic diseases and mortal-
ity. Antioxidant-related micronutrients, including vitamin 
C, vitamin E, the carotenoids (e.g., β-carotene, lycopene 
and lutein), selenium, and the flavonoids, were suggested 
to protect against chronic diseases and mortality by reduc-
ing oxidative damage [18]. A substantial previous literature 
also supported associations of lifestyle factors (e.g., physi-
cal activity, smoking, alcohol intake, and adiposity) with 
all-cause and cause-specific mortality risk [53–57]. In epi-
demiologic studies, multiple oxidative stress markers were 
also strongly linked to mortality risk, especially all-cause 
and all-CVD mortality risk. Urinary oxidative stress mark-
ers, such as 8-isoprostane and oxidized guanine/guanosine, 
were reported to be associated with all-cause [7, 8, 10] and 
CVD mortality [8, 10]. A nested case–control study found 
the oxidative stress biomarker plasma F2-isoprostanes to be 
associated with all-cause mortality risk [9].

As reviewed elsewhere [16], associations of OBS, com-
prising multiple anti- and pro-oxidative exposures, with vari-
ous outcomes have been reported [16], but only two such 
studies [20, 21] focused on mortality. A prospective cohort 
study [21] of male smokers (n = 2814) reported statistically 
significant associations of a dietary OBS (comprising vita-
min C, β-carotene, and iron; scored in the reverse direction 
from ours, such that a higher OBS was more pro-oxidant) 
with all-cause and all-cancer mortality risk. Men in the high-
est (most pro-oxidant) relative to the lowest (most antioxi-
dant) dietary OBS group had higher relative risks (RR) for 
all-cause (RR = 1.44; 95% CI 1.13–1.82) and total cancer 
mortality (RR = 1.62; 95% CI 1.07–2.45). A population-
based cohort of male and female, black and white US adults 
[20] (n = 21,301) reported associations of an OBS similar 
to ours with mortality risk. Among participants in the high-
est relative to the lowest OBS quartile, risk was statistically 
significantly 30%, 50%, and 23% lower for all-cause, all-
cancer, and non-cancer mortality, respectively; the authors 
did not report findings by sex. These findings are consistent 
with those for our total OBS. Although the previous study 
did not report separate dietary or lifestyle OBS, it did report 
that removing smoking from the score attenuated the results, 
which might suggest that lifestyle exposures may have con-
tributed more to the overall OBS-mortality associations than 
did the dietary exposures.
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Other studies reported investigations of other dietary and 
lifestyle scores that were similar to our OBS with mortality. 
Of the lifestyle scores, despite the heterogeneity in score 
components and construction, most had some common 
elements with our lifestyle OBS, such as physical activity, 
alcohol consumption, smoking, and adiposity; however, all 
included some dietary component. Overall, previous studies 
on lifestyle scores support our findings of inverse associa-
tions of a lifestyle or total OBS with all-cause and cause-spe-
cific mortality risk [53–56, 58–61]. Of the three studies [54, 
59, 61] that reported sex-specific results, two [59, 61] sup-
ported slightly stronger inverse associations of the lifestyle 
scores with all-cause mortality risk among women, while 
another [54] reported stronger associations of the lifestyle 
score with all-cause and all-CVD mortality risk among men.

Other studies also investigated associations of other die-
tary scores that were similar to our dietary OBS (e.g., the 
dietary inflammation score [DIS] and the dietary inflam-
matory index [DII]) with mortality risk [62–65]. The DIS 
and DII were developed based on associations of their com-
ponent food groups/nutrients with circulating inflammation 
biomarker concentrations [66, 67]. Inconsistent with our 
results, most studies [62–65] reported statistically signifi-
cant associations of the dietary scores with all-cause and 
cause-specific mortality. A meta-analysis of 12 prospec-
tive studies [63] found 23% higher all-cause mortality risk 
among those in the highest relative to lowest DII (a higher 
score is more pro-inflammatory) category. Another meta-
analysis of 14 studies (including 11 prospective studies) [62] 
found that individuals in the highest relative to the lowest 
DII category had 36% higher risk of CVD incidence and 
mortality (RR = 1.36; 95% CI 1.19–1.57). The consistency 
of the findings across these studies might be due less to the 
differences between the scores and our dietary OBS than 
to the relative lack of heterogeneity of diets among IWHS 
participants. We note that in other study populations, dietary 
scores, such as the Mediterranean diet score [58, 68–71] and 
the evolutionary concordance diet score [68], were inversely 
associated with mortality risk, but were not in the IWHS 
[72]. An analysis to compare dietary heterogeneity within 
the IWHS with that within the REasons for Geographic and 
Racial Differences in Stroke cohort of black and white men 
and women from the 48 contiguous US states [73], revealed 
that the diets across the IWHS participants were relatively 
homogeneous, thus possibly explaining the null associations 
of the various diet pattern scores with mortality risk in the 
IWHS.

We are the first to report associations of dietary and life-
style OBS with mortality risk separately, as well as in a joint/
combined (cross-classification) analysis to assess potential 
interaction between dietary and lifestyle OBS in relation to 
mortality risk. Our results suggested that dietary factors that 
may contribute to oxidative balance, collectively, were not 

associated with mortality risk in our study population. How-
ever, our joint/combined analyses of the dietary and life-
style OBS suggested that those in the highest joint dietary/
lifestyle OBS quintile may have been at the lowest all-cause 
mortality risk. Our results also suggest that the total OBS, 
which includes (i) multiple dietary factors modestly associ-
ated with risk and (ii) a few lifestyle factors strongly asso-
ciated with risk, may represent the average of the separate 
dietary and lifestyle OBS, rather than reflecting synergistic 
effects of lifestyle and diet that is suggested from the joint/
combined analysis.

We also found that the associations of the lifestyle and 
total OBS with all-cause and all-CVD mortality risk tended 
to be stronger among those who were younger. The reason(s) 
is unclear. Participants who were older may have been less 
genetically susceptible to the effects of environmental expo-
sures; specific antioxidant enzyme, DNA repair enzyme, and 
other longevity-relevant genes could dominate over envi-
ronmental effects in lifespan determination in some people 
[74]. This could also explain why our inverse OBS-mortality 
associations became modestly stronger after censoring par-
ticipants when they reached 75 years of age. Further, our 
estimated associations of the lifestyle and total OBS with all-
cause and all-CVD mortality risk became modestly weaker 
with longer follow-up; this may also have reflected higher 
genetic-related resistance to oxidative stress or damage, but 
could also have been due to increasing exposure misclassifi-
cation during follow-up. Our findings also suggest that OBS-
mortality risk associations were modestly attenuated when 
we used exposure data only from 2004 from participants on 
whom they were available. This suggests that earlier life-
style exposures may be more important than later ones in 
relation to mortality risk in an older population. However, 
given the multiple comparisons involved in the stratified and 
other sensitivity analyses, we cannot rule out that some of 
these results may have been due to chance. Overall, it would 
appear that our secondary and sensitivity analyses support 
our main findings, which if anything could have been under 
estimated.

Major strengths of this study include the prospective 
study design, large sample size and long follow-up, and com-
prehensive collection and assessment of multiple potential 
confounding/effect modifying risk factors. We also con-
ducted a joint/combined (cross-classification) analysis to 
assess potential interaction between the dietary and lifestyle 
OBS in relation to mortality risk. Finally, to our knowledge, 
our study is the largest prospective cohort study to report 
OBS-mortality risk associations.

Our study also had several limitations. First, for our 
primary analyses, all OBS components were derived 
from information collected at baseline (1986). Some par-
ticipants’ diet and lifestyle exposures could have changed 
somewhat during follow-up. However, it is expected that in 
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a prospective cohort study, changes occur before a partici-
pant has their outcome, thus resulting in non-differential 
error that would be expected to attenuate associations. 
Consistent with expectations, in our sensitivity analyses, 
we found that the estimated OBS-mortality risk associa-
tions were similar (i) at follow-up intervals of 5, 10, 15, 
20, and 25 years, and (ii) when the 2004 follow-up expo-
sure data were incorporated two ways. Taken together, it 
would appear that changes in diet or lifestyle during fol-
low-up likely would have affected our estimates only mini-
mally. Second, food frequency questionnaires have known 
limitations (e.g., limited food choices and recall error); 
however, in a prospective study, these types of error are 
also considered non-differential. Third, physical activity 
assessment in the IWHS was based on only two questions; 
however, physical activity alone was previously reported 
to be statistically significantly inversely associated with 
mortality risk [24] and other outcomes in the IWHS [75, 
76]. Finally, all participants in our study were older white 
Iowa women, which might limit the generalizability of 
our findings.

In conclusion, the results from this prospective study, 
combined with those from previous studies, suggest that 
a predominance of antioxidant over pro-oxidant lifestyle 
exposures may be associated with lower all-cause, all-CVD, 
and all-cancer mortality risk. Although the associations of 
our dietary OBS with mortality in our study population of 
older, white, Iowa women were null, our findings suggested 
that those who jointly had high dietary and lifestyle OBS 
may have been at particularly low risk for all-cause mortal-
ity, a finding that needs to be investigated in other study 
populations. Other needed future research includes (i) the 
development of OBS comprising components weighted by 
their strengths of association with a panel of valid, reliably 
measured biomarkers of oxidative stress in a population with 
strong diversity of exposures, and (ii) more investigations 
of associations of OBS with mortality and various chronic 
disease outcomes in other populations.
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