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Abstract
Purpose Epidemiological studies support a protective role of habitual coffee and caffeine consumption against the risk of 
non-alcoholic fatty liver disease (NAFLD). We aimed to investigate the causal relationship between coffee intake and the 
risk of NAFLD.
Methods We performed a two-sample Mendelian randomization (MR) analysis using SNPs associated with habitual coffee 
intake in a published genome-wide association study (GWAS) as genetic instruments and summary-level data from a pub-
lished GWAS of NAFLD (1122 cases and 399,900 healthy controls) in the UK Biobank. The causal relationship was esti-
mated with the inverse weighted method using a 4-SNP and 6-SNP instrument based on the single largest non-UK Biobank 
GWAS (n = 91,462) and meta-analysis (n = 121,524) of GWAS data on habitual coffee intake, respectively. To maximize 
power, we also used up to 77 SNPs associated with coffee intake at a liberal significance level (p ≤ 1e-4) as instruments.
Results We observed a non-significant trend towards a causal protective effect of coffee intake on NAFLD based upon either 
the 4-SNP (OR: 0.76; 95% CI 0.51, 1.14, p = 0.19) or 6-SNP genetic instruments (OR: 0.77; 95% CI 0.48, 1.25, p = 0.29). 
The result also remains non-significant when using the more liberal 77-SNP instrument.
Conclusion Our findings do not support a causal relationship between coffee intake and NAFLD risk. However, despite the 
largest-to-date sample size, the power of this study may be limited by the non-specificity and moderate effect size of the 
genetic alleles on coffee intake.

Keywords Coffee · Nonalcoholic fatty liver disease (NAFLD) · Causal effect · Mendelian randomization · Genome-wide 
association study (GWAS)

Introduction

Nonalcoholic fatty liver disease (NAFLD) is defined as 
the development of an abnormal accumulation of fat in the 
liver without significant alcohol intake, which may further 
progress to a wide spectrum of liver damage ranging from 
steatosis, non-alcoholic steatohepatitis (NASH), fibrosis and 
cirrhosis. The treatment option for NAFLD is still limited 
and currently, no pharmacotherapy is approved by the FDA 
to date. Physical activity and dietary interventions are still 
considered to be effective strategies to reduce liver fat at the 
initial, reversible stage of NAFLD such as hepatic steatosis 
and NASH [1–3].

Coffee is the most popular and widely consumed beverage 
in the world. It has been estimated that approximately 3.5 
billion cups of coffee are consumed around the world each 
day [4–6]. Multiple epidemiological studies have demon-
strated the protective association of coffee intake with the 
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development of NAFLD, and the potential beneficial effects 
of coffee have also been examined with animal models 
[7–10]. However, there is thus far no sufficient evidence in 
human studies to clarify the causal association between cof-
fee intake and the risk of NAFLD. One strategy to address 
this question is to perform a randomized controlled trial 
(RCT) to examine whether coffee intake can directly reduce 
the development of NAFLD. However, this would require 
a large sample size over a long period of time (given the 
chronic development of NAFLD) to generate any results. 
Over the past several years, Mendelian randomization (MR) 
has increasingly been used to effectively estimate the causal 
relationship between a modifiable environmental exposure 
of interest and a medically relevant trait or disease [11]. The 
MR analysis was designed based on the Mendelian inherit-
ance rule where the parental genetic alleles (i.e., risk allele 
or non-risk allele) are randomly distributed to the offspring 
during the process of meiosis, which is considered to be 
analogous to RCT. This strategy was deemed to be conveni-
ent, low cost and less likely to be confounded by covari-
ables [12]. The MR analysis uses genetic variants as the risk 
instrumental variables (IVs) of exposure (i.e., coffee intake), 
to examine whether this genetically-instrumented exposure 
is causally associated with a clinical outcome (i.e., NAFLD).

Genome-wide association studies (GWAS) have identi-
fied multiple loci that are strongly associated with coffee 
consumption [13, 14]. The identification of these genetic 
variants (e.g., SNPs) provides an opportunity to apply the 
MR analysis to test the causal relationship between cof-
fee intake and NAFLD risk. Once confirmed, this strategy 
would provide strong evidence to rationalize the use of cof-
fee intake to prevent the development of NAFLD. In this 
study, we apply a two-sample MR framework using SNPs 
associated with coffee consumption in published GWAS [13] 
to test the causal relationships between coffee intake and 
NAFLD risk as estimated using summary-level data from 
our recent GWAS in the UK Biobank [15].

Materials and methods

GWAS summary data for habitual coffee 
consumption

The most recent genome-wide meta-analysis for self-
reported consumption of coffee included a significant pro-
portion of UK Biobank samples (UK Biobank samples/
total samples = 335,909/375,833 = 89.4%) [14], which may 
largely overlap with the cohort for the NAFLD GWAS (1122 
cases and 399,900 healthy controls from UK Biobank, see 
more details on NAFLD GWAS in the following section). 
To minimize the bias induced by the participant overlap in 
two-sample MR [16], we obtained the summary statistics 

of the genetic associations with habitual coffee consump-
tion from the largest UK Biobank-independent genome-
wide meta-analysis [13]. The summary data of individuals 
of European descent (discovery stage: n = 91,462, validation 
stage: n = 30,062) were used for the MR analysis. Details on 
the study design, data analysis, and ethical approval were 
described in the original publication [13]. The original study 
performed a trans-ethnic meta-analysis for coffee consump-
tion including individuals of European ancestry and Afri-
can Americans. As we focused on the causal relationship 
between coffee intake and NAFLD among individuals of 
European ancestry, we performed a meta-analysis combining 
the summary-level data of the European individuals in the 
discovery (n = 91,462) and validation (n = 30,062) stages. 
The combined effects were analyzed through the “metafor” 
R package [17] assuming a fixed-effect model. Due to lim-
ited data availability, the meta-analyses were performed on 
the top ten significant (p < 1e-5) SNPs associated with coffee 
intake identified from the discovery stage. The results of the 
meta-analysis are shown in supplemental Table 1.

GWAS summary data for NAFLD

The summary-level association data for NAFLD were 
obtained from our previous GWAS study on NAFLD using 
the UK Biobank [15]. Individuals with ICD code [ICD-9 
571.8 “Other chronic nonalcoholic liver disease” and ICD-
10 K76.0 “Fatty (change of) liver, not elsewhere classified”] 
but without hepatitis B or C infection or other liver diseases 
were characterized as NAFLD cases. In total, there were 
1122 cases and 399,900 healthy controls analyzed for the 
genome-wide associations with NAFLD. Basic demographic 
and clinical information for cases and controls is summa-
rized in Table 1. We performed the association analysis 
using SAIGE [18] adjusting for sex, birth year, and the first 
four genetic PCs as covariates.

Table 1  Characteristics of the UKBB cohort for NAFLD GWAS

UKBB UK Biobank, BMI body mass index, T2D type 2 diabetes, 
HDL high-density lipoprotein, LDL low-density lipoprotein, TG tri-
glyceride, TC total cholesterol

Control NAFLD

Age (years, mean ± SD) 68.81 ± 8.02 69.92 ± 7.53
Sex (% of male) 46 49
BMI (kg/m2, mean ± SD) 27.38 ± 4.74 31.95 ± 5.75
T2D (%) 4 29
HDL (mg/dL, mean ± SD) 56.20 ± 14.75 48.73 ± 13.59
LDL (mg/dL, mean ± SD) 138.21 ± 33.61 133.63 ± 36.97
TG (mg/dL, mean ± SD) 155.37 ± 90.43 211.36 ± 112.55
TC (mg/dL, mean ± SD) 221.17 ± 44.17 212.73 ± 49.57
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Construction of the genetic predictors for coffee 
intake

We constructed two genetic instruments for coffee intake 
based on the association statistics obtained from the dis-
covery stage and the meta-analysis. Specifically, the first 
one included four independent (LD R2 < 0.01 based on 
the phase 3 data of the 1 kg European individuals) and 
genome-wide significant (p < 5e-08) SNPs identified in the 
discovery stage (n = 91,462) (Table 2). The second one 
consisted of six independent (LD R2 < 0.01) and genome-
wide significant (p < 5e-08) SNPs identified through the 
meta-analysis (Table 3).

To assess the possibility of an insufficiently powered 
IV, we considered a third IV based on SNP–coffee associa-
tions at a liberal significance level (ranging from p = 5e-8 
to p = 1e-4 in the discovery GWAS), which consisted of 
up to 77 SNPs.

We evaluated the strengths of the two genetic instru-
ments using the F statistics = 

(

n−k−1

k

)(

R
2

1−R2

)

 , where n is 
the sample size, k is the number of genetic variants, and 
R2 is the variance in coffee intake explained by the genetic 
instrument. The strengths of the first (4 SNPs) and the 
second (6 SNPs) genetic instruments used for MR analysis 
were 124 and 119, respectively. Both F statistics were 
larger than the empirical strength threshold of 10 [19].

MR analysis

The inverse variance weighted (IVW) [20] method was used 
to estimate the causal effect of coffee intake on NAFLD 
risk. Since the IVW method requires that all instrumental 
variables meet the MR assumptions, we used two orthog-
onal methods (weighted median estimator [21] and MR-
Egger [22]) to perform additional sensitivity analyses. The 
weighted median estimator provides consistent causal esti-
mation as long as more than half of the instrumental vari-
ables are valid. The MR-Egger estimate is unbiased provided 
that the genetic instrument is not dependent on the pleio-
tropic effects. The intercept of the MR-Egger estimate is 
an indicator of the existence of the pleiotropic effects. We 
considered the absence of pleiotropic effects if the intercept 
was not significantly different from 0 (p > 0.05). Moreover, 
we used the MR-PRESSO global test [23] to evaluate the 
pleiotropy and identify outlier variants. The causal relation-
ship is considered to be significant if (1) the p value of IVW 
method is less than 0.05, (2) the directions of estimates by 
the IVW, weighted median, and MR-Egger methods are 
the same and (3) both the MR-Egger intercept test and 
the MR-PRESSO global test are not significant (p > 0.05). 
The IVW, weighted median, and MR-Egger methods were 
performed using the “Mendelian Randomization” package 
[24], and MR-PRESSO global test was performed using the 

Table 2  Characteristics of the first genetic instrument (4 SNPs)

EA effect allele, OA other allele, EAF effect allele frequency, SE standard error
* Summary-level data were obtained from the discovery stage of the meta-analysis for coffee intake

SNP Gene Chr Pos (GRCh37) EA/OA EAF SNP-exposure (coffee intake)* SNP-outcome (NAFLD)

Beta SE p Beta SE p

rs4410790 AHR 7 17,284,577 C/T 0.63 0.14 0.01 1.48E-57 – 0.036 0.044 0.42
rs2472297 CYP1A2 15 75,027,880 T/C 0.24 0.15 0.01 6.45E-47 – 0.032 0.048 0.50
rs17685 POR 7 75,616,105 A/G 0.29 0.07 0.01 9.06E-14 – 0.042 0.047 0.38
rs7800944 MLXIPL 7 73,035,857 C/T 0.28 0.05 0.01 7.82E-09 – 0.018 0.047 0.70

Table 3  Characteristics of the second genetic instrument (6 SNPs)

*Summary-level data were obtained from the meta-analysis of the individuals of European descent in both discovery and validation stages

SNP Gene Chr Pos (GRCh37) EA/OA EAF SNP-exposure (coffee intake)* SNP-outcome (NAFLD)

Beta SE p Beta SE p

rs2472297 CYP1A2 15 75,027,880 T/C 0.24 0.13 0.007 1.74E-75 − 0.032 0.048 5.02E-01
rs6968554 AHR 7 17,287,106 G/A 0.61 0.1 0.007 2.09E-45 − 0.035 0.044 4.25E-01
rs17685 POR 7 75,616,105 A/G 0.29 0.06 0.007 2.15E-17 − 0.042 0.047 3.76E-01
rs1481012 ABCG2 4 89,039,082 A/G 0.89 0.054 0.009 1.57E-09 − 0.007 0.067 9.07E-01
rs7800944 MLXIPL 7 73,035,857 C/T 0.28 0.052 0.009 6.11E-09 − 0.018 0.047 7.04E-01
rs6265 BDNF 11 27,679,916 C/T 0.81 0.04 0.007 1.54E-08 − 0.073 0.054 1.82E-01
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“MRPRESSO” package [23]. All of the data were analyzed 
and visualized using R v.3.5.0 (https ://www.r-proje ct.org/).

Results

No statistically significant causal effect of coffee con-
sumption on NAFLD risk was observed in analysis using 
either the 4-SNP score (OR: 0.76; 95% CI 0.51, 1.14, 
p = 0.19, Table 4, Fig. 1a), or 6-SNP score (OR: 0.77; 
95% CI 0.48, 1.25, p = 0.29, Table 4, Fig. 1b).

Results from sensitivity analysis indicated that the 
causal estimates were unlikely to be biased by the pleio-
tropic effects (MR-Egger intercept test p = 0.69 and 0.54 
for 4-SNP and 6-SNP score, respectively, MR-PRESSO 
global test p = 0.97 and 0.84 for 4-SNP and 6-SNP score, 
respectively). To assess the possibility of an insufficiently 
powered IV, we considered a third IV based on SNP–cof-
fee associations at a liberal significance level (ranging 
from p = 5e-8 to p = 1e-4). Again, no statistically signifi-
cant causal relationship was observed (Table 5).

Discussion

We performed the first two-sample MR analysis of coffee 
intake and the risk of NAFLD based on the summary-
level data of large GWASs of coffee intake (exposure) and 
NAFLD (outcome). We observed no evidence in support 
of a causal relationship between coffee intake and NAFLD 
risk.

Table 4  Causal effect of coffee intake on NAFLD risk

*IVW inverse‐variance weighted, MR Mendelian randomization, OR odds ratio, PRESSO Pleiotropy RESidual Sum and Outlier

Instrument F statistics IVW Weighted median MR-Egger* Pleiotropy test

OR (95% CI) p OR (95% CI) p OR (95% CI) p MR-Egger inter-
cept test p value

MR-PRESSO 
global test p 
value

4 SNPs 124 0.76 (0.51, 1.14) 0.19 0.79 (0.50, 1.23) 0.29 0.92 (0.32, 2.66) 0.88 0.69 0.97
6 SNPs 119 0.77 (0.48, 1.25) 0.29 0.72 (0.41, 1.28) 0.26 0.54 (0.16, 1.86) 0.33 0.54 0.84

Fig. 1  Causal relationship between coffee intake and NAFLD risk. a Causal estimate by the 4 SNPs; b causal estimate by the 6 SNPs

Table 5  Exploratory MR analysis based on GWAS identified SNPs at 
different significance levels

SNPs associated with coffee at dif-
ferent significance levels (N)

Estimate SE p

p < 5e-8 (n = 5) − 0.128 0.196 0.516
p < 1e-7 (n = 5) − 0.128 0.196 0.516
p < 1e-6 (n = 8) − 0.149 0.188 0.43
p < 1e-5 (n = 22) − 0.169 0.159 0.288
p < 1e-4 (n = 77) − 0.069 0.118 0.562

https://www.r-project.org/
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Coffee contains more than 1500 chemical components 
including caffeine, phenolic polymer, polysaccharides, chlo-
rogenic acids, organic acids, et al. [25, 26]. Studies have 
demonstrated compounds in coffee exhibit antioxidant and 
anti-inflammatory properties [27, 28]. It has been suggested 
that coffee intake or components of coffee may have benefi-
cial effects on metabolic disorders, e.g., obesity and diabe-
tes. Multiple studies have indicated that caffeine intake leads 
to weight loss by enhancing thermogenesis and increased 
production of energy among type 2 diabetes patients with 
overweight [29]. Habitual coffee consumption may also be 
able to attenuate the genetic risk for increased BMI and obe-
sity [30]. In addition to weight loss, coffee and its compo-
nents have also demonstrated to enhance insulin secretion 
and sensitivity. Loopstra-Masters et al. [31] showed that 
caffeinated coffee intake can increase the insulin sensitivity 
while decaffeinated coffee was positively correlated with 
beta cell function in a population-based study included 954 
multi-ethnic non-diabetic adults from the Insulin Resistance 
Atherosclerosis Study. As another biological component of 
coffee, cafestol was shown to significantly increase insulin 
secretion in insulinoma cells of the INS-1E rat [32]. Another 
study also suggested that coffee may also upregulate the 
function of skeletal muscle [33].

With regard to NAFLD, epidemiological studies have 
indicated that coffee intake is significantly associated with 
reduced risk of NAFLD [10, 34]. Animal studies also indi-
cated that caffeine or other nutritional components in coffee 
may exert certain health benefits such as reducing angio-
genesis and the production of reactive oxygen species [35, 
36], improving insulin sensitivity, decreasing body weight 
and liver triglycerides [7–10, 37, 38], as well as reducing 
the pro-fibrotic activity of hepatic stellate cells and pro-
inflammatory activity of Kupffer cells [39, 40]. Coffee may 
also alter the diversity of the gut microbiota, thus modulat-
ing the gut–liver axis for energy uptake and metabolism [8, 
41]. Based on these observations, there is increasing interest 
in using coffee as supplementation for NAFLD prevention. 
However, despite these lines of evidence, the causal asso-
ciation between coffee intake and reduced NAFLD risk in 
humans remains unclear. Findings of the current study do 
not support a significant causal relationship and echoed the 
work done by Nordestgaard et al. [42] where genetically 
derived high coffee intake was not causally associated with 
obesity, metabolic syndrome and type 2 diabetes. Also, Hos-
seinabadi et al. [43] found that green coffee extract supple-
mentation had no effect on liver steatosis grade, serum level 
of ALT, AST, LDL-C, total cholesterol and adiponectin in 
NAFLD clinical trials, albeit that BMI and serum HDL-C 
shows significant changes when compared to the control 
group.

The discrepancies between the epidemiological obser-
vations and the non-significant causal relationship between 

coffee consumption and NAFLD in our study could be 
due to multiple reasons. As we have summarized previ-
ously [44], the genetic alleles identified in GWAS of cof-
fee drinking may be associated with caffeine metabolism, 
reward-response and potentially taste and thus not strong 
and specific genetic markers of coffee drinking per se. 
Pleiotropy is of particular concern. Indeed, seven of 14 
SNPs reaching genome-wide significance are also strongly 
associated with other traits [44]. To address this potential 
bias, we used up to 77 different genetic variants to explore 
the causal association between coffee intake and NAFLD 
but obtained similar results. Finally, despite the very large 
sample size, we may still have been underpowered to rule-
in or rule-out a causal relationship. These reasons may be 
an intrinsic issue of coffee genetics since a number of MR 
analyses have been published to date studying the causal 
relationship between coffee intake and many clinical out-
comes but the majority of these studies did not show evi-
dence for such a causal linkage [45–48]. It should be also 
noted that the NAFLD phenotype in our study is based 
on the ICD codes which may not reflect the true disease 
spectrum as observed in clinically characterized NAFLD 
patients. Unfortunately, although a few GWAS studies on 
clinically validated NAFLD have been published, the full 
summary data of these studies are not publically available 
to support a MR analysis. However, as demonstrated in 
our previous study [15], the GWAS based on these ICD 
codes-defined NAFLD produced a signature of genetic 
variants at the genome-wide level that is highly similar to 
the well-established genetic alleles and underlying genes 
identified in previous GWASs for NAFLD (e.g., PNPLA3, 
TM6SF2, etc.), suggesting that our GWAS data are reliable 
for MR analyses.

Conclusion

Our findings provided no statistically compelling evidence 
to support a causal relationship between coffee intake and 
NAFLD risk. However, our study may be limited by the 
choice of instrument variables that are not necessarily 
associated with coffee consumption. The study may be 
underpowered as well. More studies with a better-defined 
phenotype and well-characterized populations or clinical 
studies are needed to further clarify the true impact of 
coffee intake and the NAFLD risk.
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