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Abstract
Introduction The influence of sex and gender is particularly relevant in cardiovascular diseases (CVD) as well as in several 
aspects of drug pharmacodynamics and pharmacokinetics. Anatomical and physiological differences between the sexes may 
influence the activity of many drugs, including the possibility of their interaction with other drugs, bioactive compounds, 
foods and beverages. Phenolic compounds could interact with our organism at organ, cellular, and molecular levels trigger-
ing a preventive action against chronic diseases, including CVD.
Results This article will review the role of sex on the activity of these bioactive molecules, considering the existence of 
sex differences in oxidative stress. It describes the pharmacokinetics of phenolic compounds, their effects on vessels, on 
cardiovascular system, and during development, including the role of nuclear receptors and microbiota.
Conclusions Although there is a large gap between the knowledge of the sex differences in the phenolic compounds’ activity 
and safety, and the urgent need for more research, available data underlie the possibility that plant-derived phenolic com-
pounds could differently influence the health of male and female subjects.
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Introduction

Until now, women have been underrepresented or excluded 
in medicine, except in the field of female reproduction, lead-
ing the male body to be considered the “norm”. Currently, 
there are relevant clinical examples of the impact of the vari-
ables sex (biological differences between males and females 
in terms of genetics, epigenetics, endocrinology, etc.) and 
gender (sociocultural aspects), including cardiovascular dis-
eases (CVD), diabetes mellitus, autoimmune diseases, and 

alcoholism ([1, 2] and cited literature). As it is very difficult 
to separate sex and gender because of their multiple and 
varied interactions in the time and in different countries and 
societies, the simultaneous use of the two terms is more 
appropriate. The influence of sex and gender is particularly 
relevant in CVD [3, 4] as well as in several aspects of drug 
pharmacodynamics and pharmacokinetics [5]. There are, 
in fact, numerous anatomical and physiological differences 
between the sexes (body dimension and composition, gas-
tric and intestinal differences, metabolism, renal functions) 
that may influence the activity of many drugs, including the 
possibility of their interaction with other drugs, bioactive 
compounds, foods and beverages [6].

Although investigations on sex-related differences have 
recently increased, and sex and gender are pivotal deter-
minants of health [3], the awareness of their relevance and 
importance is still lacking. Little is known, for example, 
about the influence of sex and gender on the imbalance 
between oxidants and antioxidants, i.e., the so-called oxida-
tive stress [7], although some sex differences have emerged 
[4, 8, 9].

Oxidative stress is a known hallmark of many diseases, 
including CVD (ischemic diseases, cardiac hypertrophy, 
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stroke, etc.), and cardiovascular risk factors (CVR), such as 
hypercholesterolemia, hypertension, diabetes, and athero-
sclerosis [10, 11]. Moreover, it is important to recall that car-
diovascular homeostasis depends on the balance between the 
generation of nitric oxide (NO) and reactive oxygen species 
(ROS): NO has beneficial effects against damage induced 
by ROS, and vice versa, ROS reduces the effect of NO [11].

Oxidizing agents include  O2·, peroxynitrite, hydroxyl 
radicals, and non-radicals, such as hydrogen peroxide 
 (H2O2). They are physiologically generated intracellularly, 
extracellularly, or in specific intracellular compartments 
[12] through the activity of numerous enzymes, such as 
xanthine oxidase, cyclo-oxygenases, lipo-oxygenases, mye-
loperoxidases, cytochrome P450 mono-oxygenases (CYP), 
uncoupled NO synthase, peroxidases, and NADPH oxidase 
[12]. However, the human body has evolved different physi-
ological defences against ROS [7], including superoxide 
dismutase (SOD), catalase (CAT), glutathione peroxidase 
(GPx), glutathione transferases (GST), albumin, bilirubin 
and glutathione (GSH) [8], which act as ROS scavengers. 
In addition, ROS activate the intracellular molecular path-
way of Nrf2/ARE-mediated antioxidant gene expression [7, 
13]. However, under pathophysiological conditions, produc-
tion of ROS might exceed the natural antioxidant defence 
of the cells. Although oxidative stress plays a crucial role 
in CVD, antioxidant therapy with supplements of micro-
nutrients, such as vitamin E, has not resulted, to date, in a 
clear efficacy in the prevention of CVD [14, 15]. Notably, 
some authors report a slight elevation in the risk of angina 
pectoris [14].

Another class of food-derived bioactive molecules that 
acts as antioxidants and thus may have health benefits for 
CVD is phenolic compounds, which are a ubiquitous class 
of secondary plant metabolites. Some phenolic compounds 
are responsible for colour and others for the organoleptic 
properties of fruits and vegetables. The potential health ben-
efits of phenolic compounds are attributed, in part, to their 
antioxidant activity [16, 17]. In vitro, they scavenge  O2 as 
well as hydroxyl, peroxyl, alkoxyl radicals, and NO [18], 
and some of them may also chelate transition metal ions, 
inhibiting the iron- and copper-catalysed formation of ini-
tiating radical species [18]. However, phenolic compounds 
act through multiple pathways and may interact with dif-
ferent cellular functions at concentrations much lower than 
that required for effective antioxidant activity [19]. In brief, 
phenolic compounds bind to both oestrogen receptors (ER), 
ERα and ERβ [19, 20]. Regrettably, very few papers have 
addressed the effects of these substances on the androgen 
receptor (AR) [21].

There are evidences, although not unequivocal, that link 
high consumption of fruits and vegetables to a lower risk 
of CVD [22–25]. Multiple factors could be used to explain 
the heterogeneity of the results in the literature, and among 

them, are the gut microbiome, body mass index, age, genet-
ics, the country where people live and the sex [26–29].

The goal of this review is to demonstrate the effect of sex 
on the activity of these bioactive molecules.

Phenolic compounds

Phenolic compounds classification

Phenolic compounds are among the most important and 
abundant phytochemicals in plants and are found in many 
foods and beverages, such as beverages made from fruits, 
vegetables and chocolate, as well as in coffee, tea, beer, and 
wine ([30] and cited literature). Chemically, phenolic com-
pounds are characterized by one or more phenolic rings and 
are classified into different groups (mainly flavonoids, phe-
nolic acids, stilbenes and lignans) as a function of the num-
ber of phenol rings that they contain as well as of the struc-
tural elements that bind these rings to others [31] (Fig. 1). 
In plants, phenolic compounds are mainly conjugated with 
sugars, forming glycosides. The most studied class, due to 
its potential and preventive role in degenerative diseases, is 
that of flavonoids, which are characterized by two aromatic 
rings connected through an oxygenated heterocycle (Fig. 1). 
They can be further subdivided into six main subclasses, 
isoflavones, flavones, flavanols, flavanones, anthocyanidins, 
and flavonols (catechins and proanthocyanidins) ([30] and 
cited literature), which differ in the characteristics of the 
heterocyclic ring.

Sex‑dependent bioavailability of phenolic 
compounds

In foods and beverages, phenolic compounds are mainly 
stored as a glycone or, mostly, as glycosidic conjugates. In 
the organism, they are widely metabolized [32]. Briefly, 
their metabolism starts in the oral cavity, where they come 
into contact with saliva and bacteria, which may possess 
glycosidases that induce hydrolysation of glycosylated 
phenolic compounds [33]. In the intestine, they are fur-
ther hydrolysed [34] by lactase phlorizin hydrolase and 
by β-glucosidases of intestinal bacteria (microbiome; the 
importance of sex on microbiome is described below). The 
resulting aglycones generally enter into the enterocyte by 
passive diffusion. However, some particular flavonoids 
might also be transported into intestinal epithelial cells by 
the active sodium-dependent glucose transporter SGLT1 
and hydrolysed inside the cell by a cytosolic β-glucosidase 
[35]. Furthermore, some phenolic compounds, such as 
genistein and daidzein, can also be biotransformed by 
CYP, which are responsible for the oxidative metabo-
lism of various and numerous endogenous and exogenous 
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molecules. It is well-known that some CYPs are differ-
ently expressed in males and females: CYP2B6, CYP2A6, 
and CYP3A have higher activity in women than in men, 
while CYP2D6, CYP2E1, and CYP1A2 have slightly 
higher activity in men than in women ([5, 36, 37] and 
the references therein). The activity of CYP can be regu-
lated by inhibitors and inducers, including nuclear recep-
tors, such as constitutive androstane receptor (CAR), and 
pregnane X receptor (PXR), and peroxisome proliferator-
activated receptor α (PPARα) [38]. CAR also regulates 
phase III transporters, such as multidrug resistance-asso-
ciated proteins 2 and 3. Interestingly, androgens seem to 
inhibit CAR, and CAR mRNA expression is greater in 
females [39]. CAR-regulated CYP2B6 has higher activity 
in women than men and is especially higher in Hispanic 
females than Caucasian or African–American females 
[40]. In addition, genetic polymorphisms appear to be 
sex-specific. For example, the 1459C>T SNP and intron-3 
15582C>T SNP are associated with the lowest level of 
CYP2B6 activity in the livers of females [40]. The above 
findings suggest the importance of sex and ethnicity in 
the regulation of CYP2B6 polymorphism. The effects of 
rutin, myricetin, quercetin, isorhamnetin, p-coumaric acid, 
gallic acid, and caffeic acid on CYP1A, CYP2A, CYP2E1, 
and CYP3A are sex-related. In female pigs, rutin, myrice-
tin, quercetin, isorhamnetin, p-coumaric acid, gallic acid, 
and caffeic acid mainly inhibit the activity of CYP1A. 
Quercetin inhibition of CYP1A is not sex-dependent, but 
quercetin-induced inhibition of CYP2E1 only occurs in 
male pigs. Regarding CYP3A activity, myricetin only 
inhibits CYP3A in male pigs, whereas isorhamnetin is 
a competitive inhibitor of CYP3A activity in both sexes 
[41]. In humans, the sex effect is less clear [42]. Finally, 
it is relevant to recall that phenolic compounds may regu-
late the activity of transcription factors. In vitro, genistein, 

daidzein, and equol can activate human and mouse PXR, 
with equol being more active compared to human PXR 
[43].

Another important aspect is that phenolic compounds 
can interact with the pharmacokinetics of endogenous 
and exogenous compounds, including drugs [44, 45]. The 
above results indicate that at least isoflavones may modify 
the metabolizing activity of CYP in a sex-dependent man-
ner. Thus, more detailed investigations are needed, because 
many individuals combine drugs and isoflavone-containing 
supplements.

The aglycones are biotransformed by conjugation (phase 
II of metabolism) in the small intestine and in the liver. With 
only a few exceptions, the metabolism of dietary phenolic 
compounds leads to plasma conjugates (glucuronates or 
sulphates, with or without O-methylation). Rats, mice and 
humans differ in plasma metabolites after ingestion of phe-
nolic compounds [46]. Moreover, the levels of these metabo-
lites are also influenced by sex. In particular, in male rats, 
the main molecule is represented by disulphates, followed 
by 7-sulpho-4′-glucuronides, while female rats have a higher 
concentration of 7-glucuronides [46]. The conjugation with 
glucuronic acid occurs via numerous tissue-specific fami-
lies of UDP-glucuronosyltransferases (UGTs) ([30] and 
cited literature). There is some evidence that some UGTs, 
such as UGTA1, may be influenced by sex [47]. For exam-
ple, UGT2B17 is more expressed in men than women ([30] 
and cited literature); therefore, potentially, phenolic com-
pounds might be more conjugated in males than females. 
In humans and animals, UGTs are induced by foods, such 
as citrus fruits [48], cruciferous vegetables [49], and soy 
(e.g., genistein) [50]. Consequentially, increased ingestion 
of these foods may lead to variable UGT activity, altering 
substrate metabolism. UGTs are also activated by the aryl 
hydrocarbon receptor (AhR), hepatocyte nuclear factor 4 

Fig. 1  Plant phenolic compounds’ chemical classification and general structure. In phenolic acids, residue A should be represented by a hydrox-
ycinnamic, a hydroxybenzoic or an aldehyde residue
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alpha, CAR, and PXR [47]. In rodents, their activity seems 
to depend on steroid hormones [51]. In particular, AhR 
modulates ERα and ERβ and AR [52]. For example, AhR, 
which regulates the UGT1A gene, may interact with ERα, 
suppressing CYP1A1 transcription [53, 54].

Sulphate conjugation occurs through sulphatases 
(SULTs), which belong to two families: SULT1 and SULT 
2. SULT1A enzymes preferentially metabolize phenolic 
substrates [55] and are regulated by PPARα, RXR, CAR, 
vitamin D receptor, farnesoid X receptor, retinoid-related 
orphan receptors, ERs, and oestrogen-related receptors 
(ERR) [55]. Sex plays a role in the activity of SULTs, and 
some isoforms are oestrogen-dependent, suggesting a vari-
ation in their activity during the menstrual cycle or oestrous 
phase. Indeed, in rodents, oral bioavailability of genistein 
appears to be dependent on the oestrous phase and ovariec-
tomy: in ovariectomized female rats, oestrogen administra-
tion reduces the oral bioavailability of genistein, mostly via 
increased sulphation ([30] and cited literature). In the mouse 
liver, sulphation is more efficient in the female liver versus 
male liver, with the exception of SULT1c1, which is domi-
nant in male mice [56]. The opposite is observed in rats [57].

Catechol-O-methyltransferase (COMT) plays a role 
in methylation, a metabolic pathway that is implicated in 
the metabolism of epigallocatechin and quercetin [58, 59]. 
Notably, COMT has lower activity (approximately 25%) in 
women than in men ([30] and cited literature). Considering 
the sexual dimorphism in COMT activity, sex differences in 
methylation could be plausible.

Some conjugation reactions might also involve GSH. 
These reactions may occur either spontaneously or be cata-
lysed by GST [60]. Sex-specific (female mice more than 
male mice) induction of GST is observed with the flavone 
2-phenyl benzopyrone, but not with morin, naringenin, 
catechin, and quercetin. Notably, the effect depends on the 
isozyme [61]. Sex differences are also present in the rat liver, 
which displays a higher expression of GST in males than in 
females [62]. Finally, phenolic compounds may be subjected 
to enterohepatic transport in the bile [63].

Some sex differences are observed in daidzein metabo-
lism. Daidzein can be biotransformed in equol ([30] and 
cited literature). However, this does not occur in all humans 
(on average, 30–35% among the Caucasian population). Rel-
evantly, after 15 days of soy ingestion, only women develop 
the capacity to metabolize daidzein into equol ([30] and 
cited literature), which is more active than daidzein. This is 
in line with the results of a 2-year study in postmenopausal 
women. In particular, a major hypocholesterolemic effect is 
found in women who produce equol versus non-producers. 
Beyond equol, O-desmethylangolensin can also be produced, 
and its plasmatic level is higher in men than women [64].

Recently, it has been shown that the activity of some tran-
scription factors may be influenced by circadian rhythms, 

which in turn, are influenced by sex [65], suggesting the 
importance of timing on the influence of sex on the metabo-
lism of phenolic compounds.

Excretion of conjugated phenols occurs via renal (7–30%) 
and biliary (10%) routes ([30, 66] and cited literature). 
Sex differences are described for some molecules that are 
eliminated via the renal route: adult female rats eliminate 
a higher amount of the mono-glucuronoconjugate than 
mono-sulphoconjugate of apigenin after oral intake [67]. 
The basal urinary and plasma total phenolic contents are 
lower in women than in men [68]. Indeed, during 1 month 
of daily soy ingestion, women initially excreted more isofla-
vone conjugates in urine than men, but they also experienced 
a progressive decrease in urinary excretion of genistein and 
daidzein, unlike men [69]. Urinary isoflavone excretion fol-
lowing ingestion of different soy foods has been examined 
by Faughnan et al. [70]: they observed that women eliminate 
more genistein after higher ingestion of soy milk versus tex-
tured vegetable protein, while urinary excretion in men is not 
influenced by the food matrix. Urinary daidzein excretion 
does not depend on sex or on the food matrix. Finally, equol 
excretion (in equol producers) requires the food matrix to be 
higher following textured vegetable protein intake. Because 
women have lower renal excretion versus men [5], it is plau-
sible that renal excretion of phenolic compounds occurs in a 
sex-specific manner. Thus, isoflavone metabolism and dispo-
sition are affected by the duration of soy ingestion in women, 
but not in men.

In conclusion, the awareness of bioavailability, metab-
olism, distribution and excretion of these compounds in 
humans should be clearly established and linked with their 
biological effects. The interindividual variability in their 
pharmacokinetics suggest an interindividual variability in 
biological response, but interindividual variability in effi-
cacy has been little explored [71, 72]. The understanding of 
inter-individuality is necessary to clarify their role in well-
being and health.

Phenolic compounds effects from a sex 
perspective

Effect on vascular function

The effect of genistein and quercetin on blood pressure 
was recently reviewed [73, 74]; however, the effect of sex 
was not analysed. Nevertheless, some sex differences have 
been described in animals and humans. In short, genistein 
(600 mg genistein/kg food for 4 weeks) reduces systolic 
blood pressure, pulse pressure, and cardiac work only in 
female normotensive mice [75]. The inhibitory effect of the 
endocannabinoid: anandamide on the contractility induced 
by noradrenaline is only potentiated by oral genistein in 
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female rats [76]. This effect is prevented by the concomi-
tant administration of the oestrogen receptor antagonist 
fulvestrant. Phenolic compounds of red wine relax aortic 
rings, especially in female rats [77], this action is linked 
with redox-sensitive PI3-kinase/Akt-dependent NO-medi-
ated relaxations, which is higher in the aorta of female than 
male aorta [77]. In rabbits, genistein and daidzein inhibit the 
formation of neointimal cells, and genistein is more active 
in male aortic rings [78].

A recent meta-analysis that included subjects supple-
mented with flavanols from 18 randomized studies (9 trials 
enrolled men and women, while 5 and 4 studies included 
only males and only female subjects, respectively) demon-
strates that there are significant decreases in blood pressure, 
fasting plasma glucose, total cholesterol, low-density lipo-
proteins, and triglycerides, whereas high-density lipopro-
teins were significantly increased. A comparison of studies 
that enrolled only men or only women is inconclusive due 
to the low number of subjects [79].

The supplementation with flavonoids seems to improve 
vascular function and reduce reactive protein C, VCAM, and 
E-selectin, whereas the plasma NO concentration is higher, 
especially in men with an increased risk of CVD [80]. The 
SU.VI.MAX study demonstrates that there is an inverse rela-
tionship between flavonoids present in the diet and blood 
pressure in women [81]. These discrepancies could be attrib-
uted to the limited consumption of soy in Western popula-
tions, to short-term and small-size studies, to ethnicity, and 
to pharmacokinetics. For example, only 25% of non-Asians 
and 50% of Asians lack the intestinal bacteria that convert 
daidzein into equol [82], and it has been reported that indi-
viduals who do not have these bacteria may benefit from 
soy consumption [83]. However, other studies suggest that 
subjects that are able to produce more equol are more sensi-
tive to the beneficial effects of isoflavone ingestion [84].

Uric acid is the major antioxidant of plasma and hydro-
philic environments and is also able to propagate oxidative 
damage. Moreover, it is considered to be a CVD risk factor 

[85]. Blueberries are rich in phenolic compounds and are 
able to decrease uric acid both in men and women, even if 
the effect lasts for a shorter period in women than in men 
[86].

A recent paper shows that flavan-3-ol, which is present 
in dark chocolate, only reduces platelet aggregation and 
P-selectin expression induced by adenosine diphosphate in 
men. Moreover, it reduces platelet aggregation induced by 
thrombin receptor-activating peptide and increases thrombin 
receptor-activating peptide-induced fibrinogen binding in 
women [87]. In addition, the ex vivo bleeding time induced 
by collagen/epinephrine is increased both in women and 
men. White chocolate only reduces P-selectin expression 
induced by adenosine diphosphate and elevates collagen/
epinephrine-induced ex vivo bleeding time in men [87].

Chronic supplementation with quercetin, one of the most 
potent antioxidants of plant origin, also significantly reduced 
systolic blood pressure [88, 89] in women with type 2 diabe-
tes mellitus [90]. Moreover, Alonso and Martinez-Gonzalez 
[91] showed that the antihypertensive effect of extra-virgin 
olive oil is only present in men, and Nagata et al. [92] found 
an inverse correlation between soy intake and diastolic blood 
pressure in Japanese men as well as a marginally positive 
association in peri-and postmenopausal women. In humans 
of both sexes with mild to moderate hypertension, con-
sumption of soy milk for 3 months induces a modest but 
significant hypotensive effect [93]. The hypotensive effect 
is also present in healthy normotensive men and postmeno-
pausal women (50–76 years old), in which 3 months of soy 
dietary supplementation also significantly reduce the lipid 
profile [94, 95]. However, other authors have not confirmed 
hypotensive effects in either hypertensive or normotensive 
subjects [73]. Globally, the above data suggest that sex is 
important for the effects of phenolic compounds in vessels 
(Table 1).

In humans, the results of a placebo-controlled interven-
tion study conducted in healthy men showed that quercetin 
can improve endothelial function by increasing endogenous 

Table 1  Summary of the effects of phenolic compounds on cardiovascular functions of female rodents and women in comparison with their 
male counterparts

Blood pressure Heart functions CVD prevention LDL-cholesterol profile

Genistein Reduction [75] Protection [100]
Quercetin Reduction [88, 89]
Flavanols Reduction [122] Reduction [122]
Extra-virgin olive oil phenolic compounds No effect [91]
Soy milk phenolic compounds Reduction [93]
Soy supplementation Reduction [94, 95]

No effect [73, 107]
Protection [101, 102] Protection [109–114]

Lower risk [118]
No effect [108]

No effect [107]

Flavonoid enriched diet Reduction [81]
Wine phenolic compounds Aortic ring relaxation [77]
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NO and reducing endothelin-1 production through inhibi-
tion of NADPH oxidase and activation of endothelial NO 
synthase [96].

In addition, soy products improve the lipid profile, espe-
cially in Chinese men [97], and two meta-analyses [98, 99] 
demonstrated that soybean isoflavones ameliorate endothe-
lial function in postmenopausal women. Subgroup analysis 
shows that this effect is more evident in women who have 
impaired endothelial function at baseline [98].

Effect on CVD prevention

Studies conducted in animals and humans indicate a poten-
tial beneficial effect of flavonoids on heart health. In isolated 
guinea pig myocytes, an electrophysiological study shows 
that the genistein effects on the intracellular  Ca2+ cycle dif-
fers in male and female cells [100]. The results suggest that 
genistein may afford greater cardioprotection in females than 
males.

An in vivo study performed on transgenic mice with a 
mutation in the alpha-myosin heavy chain gene, usually fed 
with a soy enriched diet, shows that while female mice pre-
serve cardiac contractile function and continue to increase 
their cardiac mass, male mice develop thin ventricular walls 
and have poorly contractile hearts[101, 102]. When the diet 
of these mice were substituted with a casein-based diet, 
males no longer deteriorate versus cardiomyopathy [103], 
suggesting that the soy-based diet worsens hypertrophic car-
diomyopathy more in male mice than female mice [104]. 
The supplementation with genistein and daidzein into 
casein-based diet does not recapitulate the entire cardiac 
phenotype of the young animals consuming the soy diet, 
but it augments the hypertrophy in the transgenic males and 
attenuates the myocardial growth in the females [105]. In 
addition, the hearts of female mice experience hypertrophy 
in response to the exercise stimulus regardless of diet [106].

Notably, these results also show that dietary manipulation 
of the heart can lead to adaptation. These results strongly 
suggest that caution should be used before recommending 
oestrogenic compound supplementation, at least in patients 
with cardiac disease [104].

The beneficial health effects of phytoestrogens are not 
clearly demonstrated regarding CVD prevention. The Amer-
ican Heart Association reversed its endorsement of soy, 
because it did not find a significant beneficial effect of soy 
on lipids, blood pressure, or menopausal changes [107], and 
it has been observed that dietary isoflavones do not reduce 
the risk of CVD or stroke in Dutch women [108]. However, 
some clinical studies indicate a potential beneficial effect 
of soy intake on cardiovascular risk factors or CVD mortal-
ity [109–115]. The Shanghai Women’s Health Study shows 
that higher soy protein ingestion is linked with a lower risk 
of incident CVD in Chinese women [116], whereas there 

is a positive association in men [117]. In a Japanese study, 
total soy intake and soy isoflavones are only associated with 
a lower risk of CVD and stroke in women [118], but this 
association is not present in another Japanese cohort that 
included men and women aged > 35 years [119]. In a large 
cohort study in Chinese men and women, a soy-rich diet 
is not significantly associated with CVD mortality [120]. 
Notably, in men, the highest quartile of soy protein intake is 
linked with a slightly elevated risk of CVD mortality. How-
ever, a systematic meta-analysis shows little evidence of the 
beneficial effects of soy consumption on the risk of stroke 
and CVD [121].

Flavanols are strong antioxidants in plant foods, and tea is 
a major dietary source. There is evidence from prospective 
cohort studies that tea and flavanols are inversely related 
to stroke incidence [122]. Finally, a systematic review and 
meta-analysis performed with apple, tea and cocoa contain-
ing flavanols in cohorts coming from different countries 
shows that low-density lipoprotein and body mass index 
are reduced in women and men, respectively [29], whereas 
total white cell reduction and triglycerides are not influ-
enced by sex. These results again show a great interindi-
vidual response, indicating that beneficial effect may par-
tially depends on sex of individual in combination with other 
individual characteristic such as genetical, hormonal, and 
metabolic status.

Phenolic compound mechanisms from a sex 
perspective

Oxidative stress among males and females

Sex differences in oxidative stress and inflammation have 
already been reviewed, and they seem to depend on species 
and tissues and cells ([4, 8, 9, 123–125] and cited literature). 
Oxidative stress and inflammation play a crucial role in the 
pathogenesis of atherosclerosis vascular inflammation lead-
ing to infarction and ischemia. Oxidized low-density lipo-
proteins (oxLDL) are internalized by macrophage, vascular 
endothelial and smooth muscle cells, and these cells are 
the source of foam cells [9, 125]. Internalization of oxLDL 
activates the inflammasome, which in part is regulated by 
sexual hormones [125] through ERα, ERβ, and G-protein-
coupled receptor-30 (GPR30) (see below) as well as AR. 
We currently do not understand how the immune response 
and oxidative stress in women differ from men and in ath-
erosclerosis. However, some differences have been found in 
animal models and humans.

Oxidative stress seems to be higher in male than female 
rats, being that the levels of SOD, GPx and lipid peroxida-
tion are lower and higher in males versus females, respec-
tively [126]. In rats,  H2O2 and  O2· production, at baseline, 
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is lower in females than in males in aortic vascular smooth 
muscle cells (VSMCs) and isolated aortas [127–129] and 
lipid peroxidation is higher in male cells versus female cells 
[129]. In addition, male VSMCs have less SOD and CAT 
activity [127, 129], and the in vivo SOD levels are also lower 
in male rat carotid arteries than in female ones [127].

Furthermore, sex differences also emerge or persist 
after different treatments: exposure to NO, for example, 
only reduces  O2· and elevates SOD activity as well as gene 
expression in male rat VSMCs [127]. In aortic rat VSMCs, 
UVB radiation significantly increases production of the 
4-hydroxynonenal,  H2O2 and O−

2
 , the effect of which is 

larger in male VSMCs than in female VSMCs. Further 
UVB exposure induces a higher reduction of GPx in female 
VSMCs [130].

SOD activity is higher in female rat hearts than in male 
[126], whereas male rats and mice have a higher level of 
GPx [126, 131]. Moreover, at the cardiac level, in young and 
aged male rats, cardiac protein oxidation is higher in males 
than in females, whereas cardiac lipid peroxidation is not 
different between sexes [132, 133]. In spontaneously hyper-
tensive rats, the SOD, CAT and trolox equivalent antioxi-
dant capacities are higher in males than in females, whereas 
GPx is not different, while sex-dependent differences are not 
observed in normotensive and borderline hypertensive rats 
of both sexes, with lipid peroxidation being similar in both 
sexes [134]. Finally, sex differences have been described in 
response to antioxidant therapy. Fortepiani and Reckelhoff 
[135] demonstrate that the antioxidant tempol decreases 
blood pressure only in male spontaneously hypertensive rats. 
In rats, sex differences are also present when enzymes that 
produce ROS are considered. As a subunit-specific example, 
Nox1 and Nox4 of NAPH oxidase are higher in male than in 
female rats, while Nox2 does not differ between males and 
females [136, 137].

In mice, SOD activity is higher in females than in males 
in the brain and lung, but not at the renal and cardiac levels 
[131]. Moreover, CAT activity is similar in the two sexes in 
the brain, heart, and lung of mice, but is higher in female 
kidneys [131]. The activities of GPx and glutamate-cysteine 
ligase (GCL), a key enzyme in the synthesis of GSH, are 
more elevated in the female mouse kidney and brain ver-
sus the male equivalents. By contrast, the activities of GCL 
and GPx are more elevated in the male heart than in the 
female heart [131]. Notably, at least in the mouse brain, 
age increases oxidation, which is greater in females than in 
males [138].

Nrf2 activates cytoprotective genes during periods of 
oxidative stress, and interestingly, many of cytoprotective 
genes are more highly expressed in the livers of female than 
male mice [139, 140]. Furthermore, male and female Nrf2 
knockout mice have different phenotypes, because Nrf2-
dependent antioxidant enzymes are only expressed in female 

bones [141]. Oestrogens can up-regulate Nrf2 and increase 
the expression of antioxidant enzymes during ischemic and 
reperfusion injury [142].

In humans, at baseline,  H2O2 production is higher in male 
human umbilical vein endothelial cells (HUVECs) than in 
female ones [143]. Clinically, the biomarkers of oxidative 
stress are higher in young men than in women of the same 
age [144], although this is not a univocal result, because 
another study reports that women present a higher oxidative 
status than males [145]. Tóthová et al. [146] demonstrated 
that MDA and advanced glycation end-products are signifi-
cantly higher in healthy adult women, whereas advanced 
oxidation protein and the ferric-reducing ability of plasma 
are greater in men. Young fertile women present higher lev-
els of MDA than men, whereas no differences are detected 
between postmenopausal women and men of the same 
age [147]. Interestingly, when data are corrected for body 
weight, the difference in the MDA levels between fertile 
women and young men persists and extends to postmeno-
pausal women and men > 45 years old [147]. The same study 
shows that protein oxidation does not diverge between men 
and women, but when the body weight correction is applied 
to carbonyl groups, fertile and postmenopausal women have 
higher levels of carbonyls than men of both ages [147].

As previously noted, plant-derived phenolic compounds 
might protect against heart disease through inhibition of 
oxidative damage [19]. Flavonoids can be used as an illus-
trative example of such activity. Their chemical structure is 
compatible with a one-electron donor activity. They function 
as antioxidants in vitro in both cell cultures and cell-free 
systems by scavenging superoxide anion, singlet oxygen, and 
lipid peroxy-radicals and/or by stabilizing free radicals that 
are involved in oxidative processes through hydrogenation 
or complexing with oxidizing species ([32], and cited litera-
ture). As a product of this reaction, flavonoids themselves 
become free radicals, but their conjugated structure allows 
the remaining orbital electron to be relatively inactive. Con-
sequently, the beneficial effect of bioactive phenolic com-
pounds has been widely attributed to the putative antioxidant 
capacity of these molecules. Although in vitro experiments 
clearly sustain the positive influence of phenolic compounds 
on oxidative stress, the effects of these substances in living 
systems are inconclusive or could not confirm the in vitro 
data at all [148]. More recently, the real impact of phenolic 
compounds as antioxidants has been reconsidered and ques-
tioned based on evidence that shows that the molecular basis 
of their activity is much larger than originally considered 
[149]. For example, it has been reported that the phenolic 
compounds of extra-virgin olive oil, in a sex-specific man-
ner, increase glutathione reductase activity and GPx and 
GSH levels by activating the Nrf2 pathway in rat VSMCs 
[150]. Moreover, the effect of red wine phenolic compounds 
on increasing aorta ring relaxation is greater in females than 
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males, probably due to the high expression of endothelial 
NOS in females [77].

These data may, in part, provide a partial explanation for 
the variability in the literature that indicates the importance 
of sex on phenolic compounds effects. Moreover, sex dif-
ferences may vary according to a specific species, organ or 
tissue, as well as the studied parameters. Globally, the above 
findings urge for future detailed studies that focus on the 
evaluation of the influence of sex on redox homeostasis, also 
considering that the deterioration of the redox status seems 
to be a link between psychological stress and cardiovascular 
risk [151].

Nuclear receptors

Although the affinity of phenolic compounds for both ERα 
and ERβ is lower than oestrogen, competition-binding stud-
ies have confirmed that nutritional molecules (e.g., genistein, 
coumestrol, daidzein, and equol) showed a distinct prefer-
ence for ERβ [152]. By contrast, in comparison with gen-
istein, 8-prenylnaringenin, which only occurs in hops, was 
found to be 100 times more potent as an ERα agonist [153]. 
The ability to modulate ER activities led to the inclusion 
of phenolic compounds in the class of selective oestrogen 
receptor modulators (SERM) [19]. However, accumulating 
data on phenolic compounds’ action mechanisms indicate 
that these compounds have a very complex spectrum of 
activities. Thus, they should not be considered to be “natu-
ral” SERMs, which function as ER agonists in some tis-
sues and antagonists in other organs. Rather, phenolic com-
pounds could function as ER agonists on certain pathways 
(i.e., membrane-initiating pathways) in all organs, eliciting 
effects downstream of these pathways. We recently defined 
these substances as mechanism-specific ligands that differ-
entially modify ER signalling and physiological outcomes. 
Although the available data are currently limited, they may 
be important in providing a conceptual background for the 
putative protective effect of phenolic compounds against 
CVD. Apart from the direct effect on sex-hormone receptors, 
phenolic compounds could affect the levels of these recep-
tors. As example, quercetin inhibits AR protein levels in a 
dose-dependent manner [21], while naringenin maintains a 
high level of ER in cells [154].

To evaluate whether a different susceptibility of male and 
female sex-hormone receptors to phytochemicals exists, we 
evaluated the impact of naringenin on rat VSMC motility. 
Naringenin inhibits VSMC migration, a protective effect 
against atherosclerosis insurgence in both female- and male-
derived cells, via ERβ [155]. Naringenin requires ERβ and 
p38 activation to affect female VSMC motility. Intriguingly, 
this naringenin effect is also present in male VSMC in which 
ERβ is expressed. Thus, these data indicate that ERβ signals 
are prone to flavonoid modulation in both male and female 

VSMC [155]. In humans, ERα, ERβ, and GPR30 are differ-
ently expressed in males and females, whereas AR presents 
the same level of expression.

Microbiota

Numerous studies link the gut microbiota (the microorgan-
isms living in the digestive tracts of humans and other ani-
mals) to the so-called metabolic syndrome, obesity, type 2 
diabetes, and CVD [156–159]. Metabolic syndrome is also 
associated with autoimmune disorders, such as diabetes type 
I [160], depression and anxiety [161].

The dominant phyla in the human gastrointestinal tract 
are Firmicutes (including Clostridium, Enterococcus, Lacto-
bacillus, Ruminococcus, and Faecalibacterium genera) and 
Bacteroidetes (including Bacteroides and Prevotella genera) 
[162, 163], with phyla such as Actinobacteria, Proteobac-
teria, Synergistetes, Fusobacteria, and Verrucomicrobia is 
also present [162]. The human adult microbiota is relatively 
stable from adulthood to old age [163]. Notably, sex differ-
ences are described in the gut microbiota [164, 165] and 
could be implicated in sexual dimorphic patterns in energy 
and nutritional requirements [166–170]. In particular, an 
American study demonstrates that Bacteroidetes are lower 
in the gut of men than women [168]. This is line with a 
European study that shows that Bacteroides–Prevotella is 
more prominent in males than females [171], whereas Bacte-
roides thetaiotaomicron is higher in Chinese men in Chinese 
women [170]. Indeed, the abundance of the Bacteroides is 
lower in obese men than obese women [172]. The mater-
nal gut microbiome varies during pregnancy, with bacterial 
diversity more pronounced during the third trimester, when 
oestrogens are at maximum levels [173].

In this context, it is important to recall that a two-way 
interaction exists between phenolic compounds and the 
gut microbiota, being that the gut microbiome is involved 
in the metabolism of phenolic compounds (i.e., bioavail-
ability), and the phenols and their microbial metabolites 
can promote factors for proliferation of beneficial gut 
inhabitants and can inhibit the pathogenic species [174, 
175]. Microbiota can metabolize oestrogen-like com-
pounds, which in turn, may induce the proliferation and 
growth of certain types of bacteria. For instance, daid-
zein is metabolized by gut bacteria to O-desmethylan-
golensin and S-equol [176], which can activate ERα or 
ERβ[177, 178]. Additionally, genistein and glycitin can 
vary the composition of the faecal bacterial community 
in postmenopausal women by increasing and decreasing 
the concentration of the Bifidobacterium and Clostridi-
aceae, respectively [176, 177]. Notably, Clostridium 
scindens may convert glucocorticoids into androgens by 
side-chain cleavage [179]. Intriguingly, some bacteria that 
have β-glucuronidase activity might increase intestinal 
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reabsorption of oestrogens (see above). As a whole, the 
modulation exerted by phenolic compounds on the com-
position of the gut microbiota should be considered to 
be possible novel action mechanisms that are activated 
by these molecules to exert effects on cardiovascular 
functions.

Phenolic compounds’ effect 
during development

Early life experiences have profound influences on health 
in adult life; therefore, we report the sex differences with 
phenolic compounds observed in early life, even if only 
a few studies are available. Daidzein and genistein are 
detected in amniotic fluid, and genistein can cross human 
(in vitro) and rat (in vivo) placentae [180–182]. Notably, 
amniotic fluid containing female foetuses can store more 
daidzein and genistein than amniotic fluid containing male 
foetuses [183]. Moreover, a mother of a female baby pre-
sents a higher total antioxidant status and lower plasma 
hydroperoxides than a mother of a male baby: umbili-
cal cords obtained from female babies have, indeed, a 
higher total antioxidant capacity, lower plasma membrane 
hydroperoxides and higher CAT, GPx, and SOD activi-
ties than male samples [184]. It has been observed that 
HUVECs obtained from umbilical cord of males produce 
more  H2O2 than female ones [143]. The importance of 
the perinatal environment on the development of modify-
ing the risk profile for disease in adulthood is now well-
recognized [185]. Epidemiological studies underline the 
association between perinatal factors, such as breastfeed-
ing versus formula milk. It is relevant to recall that soy-
based milk composes 13% of the infant formula marketed 
in the United States [186]. Neonates fed with soy milk 
have higher soy isoflavones than Japanese men consuming 
a soy-based diet and much higher soy isoflavones than in 
US adults [186, 187].

Animal studies demonstrate that ingestion of genistein in 
the first 22 days after birth increases the fat/lean mass ratio, 
fat mass, adipocyte size and number as well as decreases 
the muscle fibre perimeter in females [188]. These findings 
suggest that postnatal exposure induces sex-specific effects. 
Indeed, environmentally relevant ingestion of genistein may 
disrupt female reproductive development and function [189], 
as genistein is a reproductive toxicant and endocrine dis-
ruptor in rodents [190, 191]. Some consequences (irregular 
oestrous cycles, early reproductive senescence, infertility) 
appear late in life [189]. Male rats also appear to be sensitive 
to phytoestrogens during development, because the central 
nervous system-gonadal axis and male sexual behaviour are 
altered [192]. All of these data, as also demonstrated by 

others [193], suggest that differences in male and female 
susceptibility to phytoestrogen could be present.

Conclusions

CVD is the first cause of death in developed countries; thus, 
primary prevention of CVD is a major public-health prior-
ity. Regarding phenolic compounds, a recent meta-analysis 
shows that some phenolic compounds, such as flavanols, 
may be beneficial in the prevention of CVD. This is not an 
univocal result, because although CVD is associated with 
increased oxidative stress, data on the efficacy of antioxidant 
therapy is still lacking [14]. In addition, many, if not all, 
trials are of low quality, and this does not permit any firm 
conclusions.

Considering that dietary intake is not sufficient to reach 
pharmacological concentrations of phenolic compounds, 
the problem of dosage must be resolved. Data on the influ-
ence of sex on the activity of phenolic compounds are even 
scarcer; nevertheless, sex differences in the biotransforma-
tion of phenolic compounds have been described. The dif-
ficulty of reaching a firm conclusion is further aggravated 
by the fact that sex differences in oxidative stress and the 
response to antioxidants are species (mouse, rat, humans)-
specific, making data not transferable from animals to men 
and women. It is evident that there are still large gaps in our 
knowledge regarding the sex differences of phenolic com-
pounds’ activity and safety, and significantly more research 
is urgently required.
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