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Abstract
Purpose A common variant of the melatonin receptor 1B (MTNR1B) gene has been related to increased signaling of 
melatonin, a hormone previously associated with body fatness mainly through effects on energy metabolism. We exam-
ined whether the MTNR1B variant affects changes of body fatness and composition in response to a dietary weight loss 
intervention.
Methods The MTNR1B rs10830963 variant was genotyped for 722 overweight and obese individuals, who were randomly 
assigned to one of four diets varying in macronutrient composition. Anthropometric and body composition measurements 
(DXA scan) were collected at baseline and at 6 and 24 months of follow-up.
Results Statistically significant interactions were observed between the MTNR1B genotype and low-/high-fat diet on changes 
in weight, body mass index (BMI), waist circumference (WC) and total body fat (p interaction = 0.01, 0.02, 0.002 and 0.04, 
respectively), at 6 months of dietary intervention. In the low-fat diet group, increasing number of the sleep disruption-related 
G allele was significantly associated with a decrease in weight (p = 0.004), BMI (p = 0.005) and WC (p = 0.001). In the high-
fat diet group, carrying the G allele was positively associated with changes in body fat (p = 0.03). At 2 years, the associations 
remained statistically significant for changes in body weight (p = 0.02), BMI (p = 0.02) and WC (p = 0.048) in the low-fat 
diet group, although the gene–diet interaction became less significant.
Conclusions The results suggest that carriers of the G allele of the MTNR1B rs10830963 may have a greater improvement 
in body adiposity and fat distribution when eating a low-fat diet.

Keywords Melatonin receptor 1B · Gene–diet interaction · High-fat diet · Weight-loss intervention · Adiposity

Introduction

It has long been recognized that circadian system is impli-
cated in the regulation of energy balance, and subsequently 
affecting body fatness [1]. In human beings, disruption of 
circadian rhythms by means of shift work, social jet lag, 
sleep deprivation, timed feeding, and consumption of a 
high-fat diet, among others, has been related to obesity and 

metabolic disturbances such as type 2 diabetes and cardio-
vascular disease [2–4]. One of the most important chronobi-
otics is melatonin, a hormone secreted mainly by the pineal 
gland and a key mediator used by the central master clock 
to synchronize the circadian system [5].

Recent genome-wide association studies (GWAS) have 
identified common variants in the Melatonin receptor 1B 
(MTNR1B) gene, which encodes one of the two high-affinity 
receptors for melatonin [6, 7], associated with fasting plasma 
glucose and the risk of type 2 diabetes [8–10]. Among them, 
the MTNR1B rs10830963 risk allele has been related to 
melatonin signaling [11]. The sleep disruption G allele has 
also been associated with adiposity measures such as body 
mass index (BMI) and waist circumference (WC) as well as 
with body weight loss [12–15]. Notably, evidence has indi-
cated that melatonin also plays a key role in the regulation 
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of adipocyte biology (lipolysis, lipogenesis), the activation 
of brown adipose tissue, the participation in the brown-
ing process of white adipose tissue, and the maintenance 
of an adequate energy balance acting on the regulation of 
energy expenditure and energy intake [5, 16, 17]. Therefore, 
we hypothesized that the MTNR1B genotype might affect 
changes in body fatness and composition in response to 
dietary interventions.

In the current study, we investigated the effect of the 
MTNR1B rs10830963 genetic variant on changes in body 
fatness and body composition in response to weight-loss 
diets varying in macronutrient contents in the Preventing 
Overweight Using Novel Strategies (POUNDS Lost) trial.

Methods

Study population

The POUNDS Lost trial is a 2-year randomized clinical 
trial (clinical trial reg. no. NCT00072995) conducted from 
October 2004 through December 2007 at two sites: Harvard 
School of Public Health and Brigham and Women’s Hos-
pital in Boston, MA, USA, and the Pennington Biomedi-
cal Research Center of Louisiana State University System, 
Baton Rouge, LA, USA. Details of the study design and 
methods have been described elsewhere [18]. This 2-year 
study included 811 overweight and obese (BMI 25–40 kg/
m2) individuals who were randomly assigned to one of four 
diets in which calories were restricted by 750 kcal/day. The 
target percentages of energy derived from fat, protein, and 
carbohydrate in the four diets were: 20, 15 and 60%; 20, 25 
and 55%; 40, 15 and 45%; and 40, 25 and 35%, respectively. 
Thus, the four diets constituted a 2-by-2 factorial design: 
two diets were low fat (20%), two diets were high fat (40%), 
two diets were average protein (15%), and two diets were 
high protein (25%). At baseline, 6 months and 2 years of the 
intervention anthropometric and body composition meas-
urements, as well as blood samples (serum lipids, glucose 
and insulin levels) were collected under fasting conditions. 
Moreover, 24-h urine samples, blood pressure, and measure-
ment of resting metabolic rate were obtained. Major exclu-
sion criteria in this trial were the presence of diabetes or 
unstable cardiovascular disease, the use of medications that 
affect body weight, and insufficient motivation [18]. The 
study was approved by the institutional review board (Ref-
erence 15-852312, Tulane University) and by a data and 
safety monitoring board appointed by the National Heart, 
Lung and Blood Institute. All participants provided written 
informed consent.

In the present study, 722 subjects with baseline genotyped 
data of the MTNR1B rs10830963 variant were included 
[19]. Among them, 79.3% were White, 15.7% were African 

American and 5.0% were Hispanic or other ethnic groups by 
self-report. For the analyses, body weight and WC data were 
available for 722 individuals at baseline, 648 and 645 indi-
viduals at 6 months, and 587 and 549 individuals at 2 years, 
respectively. A dual-energy X-ray absorptiometry (DXA) 
scan was carried out in a random sample of 50% of the total 
study population including 382 participants at baseline, 304 
participants at 6 months and 222 participants at 2 years.

Measurements

Body weight and WC were measured in the morning before 
breakfast at baseline, 6 months and 2 years. Body weight was 
measured by calibrated hospital scales and WC was meas-
ured using a non-stretchable tape measure, 4 cm above the 
iliac crest. Height was measured at the baseline examination. 
BMI was calculated dividing weight (kg) by the square of 
height  (m2). Body composition was analyzed by a DXA scan 
using a Hologic QDR 4500A (Hologic, Inc. Waltham, MA, 
USA), after an overnight fast [20]. Total fat mass (kg), total 
lean mass (kg), the percentage of whole body fat mass, and 
percentage of trunk fat were obtained at baseline, 6 months, 
and 2 years of the intervention. To evaluate the adherence to 
the dietary intervention program, dietary intake was assessed 
in a random sample of 50% of the participants by a review of 
the 5-day diet record at baseline and by 24-h recall during a 
telephone interview on 3 nonconsecutive days at 6 months 
and 2 years of follow-up.

Genotyping

DNA was isolated from the buffy coat fraction of centrifuged 
blood using the QIAmp Blood Kit (Qiagen). The previously 
reported single nucleotide polymorphism (SNP) MTNR1B 
rs10830963 was successfully genotyped in 722 of 811 total 
participants using the OpenArray SNP Genotyping System 
(BioTrove) [19]. Replicated quality control samples (10%) 
were included and genotyped with > 99% concordance. The 
genotype distribution was consistent with Hardy–Weinberg 
equilibrium (HWE) in all study participants or in the major 
ethnic group (Whites) (p > 0.05).

Statistical analyses

The primary end points of this study were changes in body 
fatness (weight, BMI, WC) and composition measures (body 
fat, lean body mass, total fat mass percentage, and trunk fat 
percentage) over the course of the intervention. Chi-squared 
test for categorical variables and general linear models for 
continuous variables were performed for comparison of 
baseline characteristics across genotypes. To compare 
changes in body fatness and body composition measure-
ments by genotypes according to low- or high-fat group at 
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6 months and at 2 years of the diet intervention, general 
linear models were used adjusted for covariates (model 1 
adjusted for age, gender, ethnicity, and the respective base-
line variable; model 2 adjusted for model 1 plus BMI at 
baseline). Gene–diet interactions were evaluated including 
the interaction term in the models (e.g., MTNR1B geno-
type × high-/low-fat diet group). Sensitivity analyses were 
performed among White individuals to evaluate the influ-
ence of potential population stratification. Additive genetic 
models were used in the analysis. Statistical analyses were 
performed using STATA/SE version 12.0 (StataCaorp, Col-
lege Station, TX, USA). A p value < 0.05 was considered 
statistically significant.

Results

Table 1 shows baseline characteristics of the participants 
according to the MTNR1B rs10830963 genotype. The minor 
allele frequency (G allele) was 0.27 in the study population. 

The genotype frequencies were similar between males and 
females and among diet groups. Nonetheless, the distribution 
of the SNP was different by ethnicity (p < 0.001). Dietary 
intake and body fatness and compositional measurements 
were not related to the MTNR1B genetic variant at baseline 
examination. There were no associations of genotype with 
changes in body fatness and compositional measurements 
at 6 months and 2 years of diet intervention, after adjust-
ment for age, sex, ethnicity, BMI at baseline (if appropriate), 
high-/low-fat diet group, and baseline value for the accord-
ing outcomes were observed (data not shown) [19].

Although the targets of macronutrient intakes were not 
fully achieved, the reported dietary intake and changes in 
adherence biomarkers confirmed that participants modi-
fied their intakes of macronutrients in the direction of the 
intervention (Online Resource 1). There were no significant 
differences in mean values of macronutrient intakes and uri-
nary protein at 6 months and 2 years across the MTNR1B 
rs10830963 genotype and group diet, except for fat intake 
at 24  months among participants in the high-fat group 

Table 1  Baseline characteristics 
of study participants according 
to the MTNR1B rs10830963 
genetic variant

Data are expressed as mean (SD) or n (%)
BMI body mass index, WC waist circumference
a Data were available for 370 individuals (CC n = 208, CG n = 133, GG n = 29)
b Data were available for 382 individuals (CC n = 204, CG n = 149, GG n = 29)

CC
n = 393

CG
n = 273

GG
n = 56

p value

Age (years) 50.8 (9.2) 51.0 (9.1) 53.0 (10.3) 0.24
Sex 0.72
 Male 149 (37.9) 112 (41.0) 22 (39.3)
 Female 244 (62.1) 161 (59.0) 34 (60.7)

Race or ethnic group < 0.001
 White 279 (71.0) 247 (90.5) 49 (87.5)
 African American 96 (24.4) 12 (4.4) 3 (5.4)
 Hispanic or other 18 (4.6) 14 (5.1) 4 (7.1)

Diet group 0.69
 Low fat 198 (50.4) 134 (49.1) 31 (55.4)
 High fat 195 (49.6) 139 (50.2) 25 (44.6)

Dietary intake per  daya

 Energy (kcal) 1945 (555) 2016 (572) 1884 (448) 0.36
 Protein (%) 18.0 (3.4) 18.3 (3.0) 18.2 (3.2) 0.77
 Fat (%) 36.9 (5.9) 37.0 (6.1) 37.6 (6.3) 0.85
 Carbohydrate (%) 45.1 (7.8) 43.8 (7.6) 44.9 (7.3) 0.31

Body weight (kg) 93.7 (15.0) 92.8 (16.0) 92.0 (17.5) 0.66
BMI (kg/m2) 32.9 (3.8) 32.3 (3.9) 32.5 (3.7) 0.11
WC (cm) 103.9 (13.0) 103.2 (13.2) 103.9 (13.4) 0.78
Body  compositionb

 Total body fat (kg) 35.3 (8.0) 34.5 (8.1) 34.6 (5.6) 0.62
 Total body lean (kg) 60.8 (12.8) 60.4 (13.6) 56.5 (13.1) 0.26
 Total body fat mass (%) 37.0 (7.1) 36.6 (6.9) 38.4 (6.5) 0.44
 Trunk fat (%) 38.2 (6.2) 37.5 (6.1) 38.6 (5.8) 0.54
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(p = 0.04). Moreover, the G allele was significantly associ-
ated with a greater increase in respiratory quotient (RQ) in 
the low-fat diet group at 24 months, as has been previously 
reported [19].

After adjustment for age, sex, ethnicity, BMI at baseline 
(if appropriate), and the respective baseline variable, signifi-
cant interactions between the MTNR1B rs10830963 geno-
type and high-/low-fat diet on changes in weight, BMI, and 
WC were observed (Table 2; Fig. 1). An increasing number 
of the G allele of the MTNR1B genetic variant was signifi-
cantly associated with a decrease in body weight, BMI, and 
WC at 6 months in response to the low-fat diet (p interac-
tion = 0.01, 0.02 and 0.002, respectively). When we applied 
the analyses among Whites similar trends with significant 
interactions at 6 months on changes in body weight, BMI, 
and WC were found (all p interaction < 0.05).

The interaction between the MTNR1B rs10830963 geno-
types and dietary fat was also analyzed for the measure-
ments of body composition including total fat, total lean 
body mass, percentage total fat mass, and percentage trunk 
fat at 6 months (Table 2; Fig. 1). Consistent with the obser-
vations of changes in body fatness measurements, a statisti-
cally significant interaction between the MTNR1B genetic 
variant and low-/high-fat diet was found on changes in total 
fat, adjusting for age, gender, ethnicity, BMI at baseline, 
and the respective baseline variable (p interaction = 0.04). 
In response to the high-fat diet, an increasing number of 
the G allele was significantly associated with an increase of 
total fat (p = 0.03). Similar trends were also found for per-
centage of total fat mass and percentage trunk fat although 
the gene–dietary fat interaction was no longer statistically 
significant (p interaction = 0.07 and 0.10, respectively) after 
adjustment for covariates (model 2). Similar results were 
observed in the White population (data not were shown), 
although the interaction for body fat was not statistically 
significant (p interaction = 0.07, model 2).

At 2 years participants, on average, regained body weight 
[18]. The associations with MTNRB rs10830963 genotypes 
remained statistically significant for weight (p = 0.02), BMI 
(p = 0.02), and WC (p = 0.048) in the low-fat-diet group, 
although the gene–diet interaction became non-significant 
(Table 2; Fig. 2).

Discussion

In this 2-year randomized dietary weight-loss intervention 
trial, we found significant interactions between the circadian 
rhythm genotype MTNR1B and dietary fat intake on changes 
in fatness, fat distribution and body composition measure-
ments, especially at 6 months. In response to the low-fat 
diet, increasing number of the G allele was associated with 

a greater reduction in body weight, BMI, WC, and total body 
fat.

The circadian system has long been implicated in the 
regulation of body fatness due to its role in the control of 
energy balance [21]. Mice with mutations in the circadian 
rhythm gene clock fed with a high-fat diet developed obesity 
at a young age as well as a variety of metabolic and endo-
crine abnormalities consistent with the metabolic syndrome 
[22]. In addition, the circadian clock mutant mice exhibited 
decreased expression of transcripts encoding selected hypo-
thalamic peptides involved in energy balance. Melatonin is 
used by the central master clock as an internal synchronizer 
coordinating central and peripheral tissues [5]. Our findings 
are consistent with the biological role of melatonin in energy 
metabolism and energy balance [5]. On the one hand, mela-
tonin plays roles not only in the regulation of metabolic pro-
cesses but also in the maintenance of their circadian organi-
zation [23]. On the other hand, the effect of melatonin on 
energy balance has been consistently observed [5]. Wolden-
Hanson et al. demonstrated that melatonin supplementation 
therapy decreased body weight and intraabdominal fat, and 
increased the nocturnal locomotor activity and core body 
temperature [24]. While the precise mechanisms underlying 
our results remain largely unknown, several lines of evi-
dence have implicated the MTNR1B rs10830963 genotype 
in regulating melatonin signaling [11]. Tuomi et al. ascer-
tained that subjects carrying 1 and 2 MTNR1B rs10830963 
G alleles showed a two- and fourfold increase in MTNR1B 
mRNA expression in human pancreatic islets, respectively, 
compared with the non-carriers [11]. Moreover, the authors 
demonstrated that the administration of melatonin to non-
diabetic individuals inhibits insulin secretion in all subjects, 
and the effect was stronger among GG than those who did 
not carry this allele. Another recent study reported that the 
common genetic variant was associated with the timing of 
the melatonin rhythm [25]. MTNR1B rs10830963 G allele 
carriers showed a later melatonin offset and a longer dura-
tion of elevated melatonin levels. The authors suggested that 
the disruption of melatonin rhythm among carriers of the 
risk allele may result in an increase of food intake to coin-
cide with elevated melatonin levels in the morning leading 
to decreased glucose tolerance.

In line with our previous results, we found that the rela-
tions of the MTNR1B rs10830963 genetic variant with 
changes in fatness and body composition measurements 
were significantly modified by dietary fat intake [19]. Nota-
bly, a high-fat diet has been found to alter the circadian 
molecular clock, both centrally and peripherally, leading to a 
state of chronodisruption [1, 26]. Interestingly, several previ-
ous studies reported that the expression levels of clock genes 
and also the rhythmic mRNA expression were influenced by 
a high-fat diet consumption, in different animal tissues [27, 
28]. Moreover, it has been demonstrated that a significant 
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alteration of circadian rhythmicity of different hormones is 
related to obesity such as pineal melatonin, leptin, ghrelin, 
and adiponectin among others, in rats fed a high-fat diet 
[29–31]. Taken together, these data lent support to potential 
interplays between the MTNR1B genotype and dietary fat.

Our findings of body composition analysis suggested that 
the MTNR1B genotype might affect total body fat composi-
tion, instead of specific fat compositions (trunk fat). Accord-
ing to our results, a previous study showed that MTNR1B 
was expressed in rodent inguinal and epididymal adipocytes 
[32]. In this sense, it should be highlighted that the effect 
of melatonin on adipocyte biology is not only mediated by 
means of the receptors in adipocytes but also through the 
action of the sympathetic nervous system [16]. In humans, 
Staiger et al. found an association between the MTNR1B 
rs4753426 genetic variant and total body fat [33]. More stud-
ies are needed to further verify our findings.

In the current study, the gene–diet interactions on changes 
in body fatness and composition measurements were attenu-
ated at 2 years of follow-up. On the one hand, this might be 
due in part to decreasing adherence to the diet that occurred 
between 6 months and 2 years in the POUNDS Lost trial, 
similar to other weight-loss interventions [18, 34–36]. On 
the other hand, the statistical power might also be dimin-
ished because of more dropouts at 2 years of diet inter-
vention than at 6 months. Even though, similar relations 
of the MTNR1B rs10830963 genotype with a decrease in 
body weight, BMI, and WC in the low-fat diet group were 
observed at 2 years, indicating the genetic effects were stable 
and for up to 2 years.

As far as we know, this is the first study to date to report 
significant interactions between the MTNR1B rs10830963 
genetic variant and dietary fat intake on changes in fatness 
and body compositional measurements, in a large and long-
term randomized weight-loss dietary intervention trial. 
Nonetheless, we acknowledge several limitations. First, we 
did not measure clock parameters such as melatonin and 
MTNR1B expression which limited our ability to explore 
plausible underlying mechanisms. Second, the power to 
detect long-term genotypic effect in response to a high-/
low-fat diet was reduced due to the decline of adherence 
after 6 months of diet intervention, as has been reported by 
other authors [18, 34–36]. Third, because low-fat intake is 
usually characterized by high-carbohydrate intake, it is dif-
ficult to determine which macronutrient would best explain 
our results. Finally, around 80% of the study participants 
were White, and the genotype distribution differed across 
ethnicity, so further studies are required to generalize our 
findings to other ethnic groups.

In conclusion, the results of the present study showed that 
the level of fat intake might modify the effect of the circa-
dian rhythm-related MTNR1B rs10830963 genetic variant on 
changes in body fatness and composition. Subjects with the 

A

B

C

D

Fig. 1  Effect of the MTNR1B rs10830963 genetic variant and fat diets 
on changes in body weight (a), BMI (b), WC (c) and body fat mass 
(d) at 6 months of diet intervention (black bars, CC genotype; gray 
bars, CG genotype, white bars, GG genotype). Data are means (SD) 
after adjusted for age, sex, ethnicity, BMI at the baseline (if appropri-
ate), and value for the respective outcome trait at baseline
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A

B

C
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Fig. 2  Effect of the MTNR1B rs10830963 genetic variant and fat 
diets on changes in body weight (a), BMI (b), WC (c) and body fat 
mass (d) at 6 months and 2 years of diet intervention (black circle and 
solid line, CC genotype; gray circle and gray solid line, CG genotype; 

white circle and dotted line, GG genotype). Data are means (SE) after 
adjusted for age, sex, ethnicity, BMI at baseline (if appropriate), and 
the value for the respective outcome trait at baseline
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GG genotype might have a better response to a weight-loss 
dietary intervention by choosing a low-fat diet.
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