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unaltered in NASH patients. There is an increase in the 
Escherichia and Bacteroides genus. There is depletion of 
certain taxa, such as Prevotella and Faecalibacterium.
Conclusion  Although few studies have evaluated the com-
position of the gut microbiota in patients with NASH, it is 
observed that these individuals have a distinct gut microbi-
ota, compared to the control groups, which explains, at least 
in part, the genesis and progression of the disease through 
multiple mechanisms. Modulation of the gut microbiota 
through diet control offers new challenges for future studies.

Keywords  Nonalcoholic fatty liver disease · Dysbiosis · 
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Introduction

Nonalcoholic steatohepatitis (NASH) is the most severe his-
tological form of nonalcoholic fatty liver disease (NAFLD) 
[1], characterized by the presence of hepatic steatosis and 
inflammation, associated with ballooning degeneration, with 
or without fibrosis [2]. Even as the prevalence of NASH in 
the general population is approximately 2–5% [3, 4], around 
70% of morbidly obese individuals are affected by this con-
dition [5]. Although in most cases, NASH carriers present 
no symptoms, this condition may increase the risk of cirrho-
sis, liver failure, and hepatocellular carcinoma [6–9].

The exact cause of NASH is not yet clear, but studies have 
suggested the role of the gut microbiota in the pathogenesis 
of this disease [10–12]. In fact, it has been shown in animal 
models that gut microbiota increase intrahepatic fat through 
mechanisms associated with increased dietary energy extrac-
tion or change in lipogenesis and β-oxidation [10, 11]. Fur-
thermore, hepatocellular inflammation may be secondary 
to increased intestinal permeability and translocation of 
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microbial cell components to the circulation [12]. Finally, 
gut microbiota can contribute to fibrogenesis through activa-
tion of hepatic stellate cells [13].

Although animal experiments have associated gut micro-
biota with the histological components of NAFLD, there 
are few clinical studies with emphasis on the composition 
and functionality of the microbiome in NASH. There is evi-
dence that NASH patients have a higher prevalence of small 
intestinal bacterial overgrowth (SIBO) [14, 15] and the low-
est percentage of Bacteroidetes in their fecal content when 
compared to healthy subjects [16]. On the other hand, other 
studies have observed a higher abundance of Bacteroidetes 
in the gut microbiota of patients with NASH, compared to 
healthy controls [17, 18]. Thus, the results of the studies are 
still controversial regarding the microbiome profile in this 
population.

A detailed study of the composition of the gut microbiota 
and its metabolic functions can determine which microor-
ganisms contribute to gut health maintenance and what 
changes can lead to the development of pathologies [19]. 
Therefore, the aim of this review is to highlight the studies 
that investigate the relationship between gut microbiota and 
NASH. Pathophysiological mechanisms and the influence of 
diet on the gut–liver axis are also discussed.

Development and progression of nonalcoholic 
steatohepatitis

Traditionally, the pathogenesis of NASH is explained by 
the hypothesis of “two hits” proposed by Day and James 
[20], in 1998. According to the authors, insulin resistance 
would be the first stimulus (the first “hit”) that determines 
the accumulation of fat in hepatocytes, resulting in steatosis. 
The steatosis itself increases the sensitivity of the liver to the 
second “hit”. The second “hit” would be the oxidative stress, 
which promotes liver injury, characterized by tissue lesions, 
inflammation, and fibrosis [20].

According to the hypothesis of the “two hits”, insulin 
resistance promotes hepatic lipogenesis and lipolysis in the 
adipose tissue, increasing the amount of fatty acids released 
to the liver in the initial event. On a smaller scale, the avail-
ability of fatty acids in the liver may result from the trans-
port mediated by lipoproteins after intestinal absorption of 
dietary fats [21]. Upon entering the hepatocytes, the free 
fatty acids are oxidized by mitochondria to generate energy 
or are esterified in triacylglycerols (TG), incorporated into 
very-low density lipoprotein (VLDL) particles, and exported 
from the liver to the peripheral tissues [22]. When free fatty 
acids in the hepatocytes exceed their metabolization and 
export capacity, they can cause hepatic steatosis [22]. The 
accumulation of fatty acids in the liver results in excessive 
increase in the production of reactive oxygen species (ROS) 

from the mitochondria [23]. In addition, peroxisomes and 
microsomal oxidation pathways are activated and generate 
more ROS, culminating in hepatic oxidative stress [24]. Oxi-
dative stress appears to be responsible for initiating necroin-
flammation. The consequence of oxidative stress is hepatic 
lipid peroxidation in cell membranes and mitochondria, pro-
ducing malondialdehyde and hydroxynonenal, resulting in 
mitochondrial dysfunction [25]. Malondialdehyde activates 
the regulatory transcription factor and the expression of pro-
inflammatory cytokines and adhesion molecules (NF-kB), 
stimulating production of the tumor necrosis factor alpha 
(TNF-α), interleukin 8 (IL-8), and selectin E [26]. Hydrox-
ynonenal activates hepatic stellate cells, promoting colla-
gen deposition, and hence, the development of fibrosis [27]. 
Thus, ROS, lipid peroxidation products, and cytokines are 
involved in the second hit, which induces the progression of 
simple steatosis to NASH.

At present, it is believed that the process of “two hits” 
is insufficient to explain the pathogenesis of this heteroge-
neous disease, particularly in non-obese individuals [28]. 
Furthermore, simple hepatic steatosis, which is benign and 
nonprogressive in a majority of patients, and NASH, may 
reflect different pathogenesis [29]. In fact, the accumulation 
of free fatty acids in the liver occurs mainly in the form of 
TG [30]. There is evidence to indicate that TG by themselves 
is not hepatotoxic, at least in mice (BKS.Cg-m/Leprdb/J) 
with steatohepatitis [30]. Therefore, TG synthesis seems 
to be an adaptive, beneficial response in situations, where 
hepatocytes are exposed to potentially toxic TG metabolites 
[30]. On the contrary, several other lipids, such as free fatty 
acids, diacylglycerol, cholesterol, ceramide, and phospholip-
ids, also accumulate in the liver, and they are considered as 
‘‘aggressive’’ lipids [31], that induce endoplasmic reticulum 
(ER) stress, mitochondrial dysfunction, and oxidative stress, 
resulting in hepatic inflammation and fibrogenesis [32, 33].

In this sense, a new theory was proposed by Tilg et al. 
[31]: the hypothesis of “multiple parallel hits”. This hypoth-
esis proposes that several concurrent and not consecutive 
stimuli (“multiple parallel hits”) induce oxidative stress, 
which results in both hepatic steatosis and steatohepatitis. 
Even as the two “hits” hypothesis suggests that steatosis 
always precedes inflammation, the “multiple parallel hits” 
hypothesis indicates that inflammation in NASH may pre-
cede steatosis in some cases [31]. In this new paradigm, 
NASH results not only from oxidative stress, but also from 
the interaction between different “hits”, including altered 
lipid metabolism, mitochondrial dysfunction, ER stress, 
genetic predisposition, and gut microbiota alterations [31]. 
It is increasingly recognized that the gut microbiota is impli-
cated in the pathogenesis and progression of NASH [34]. 
Thus, the gut microbiota has become a topic of interest in 
recent investigations and a potential target of intervention 
[35, 36].
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Gut microbiota

The human gut contains a large number of microorganisms, 
mostly bacteria, collectively called gut microbiota [37]. The 
latest estimate for the total number of bacteria cells in the 
body is around 40 trillion (3.8 × 1013), the same order as the 
number of human cells (3.0 × 1013), and their total mass is 
about 0.2 kg [38]. More than 1000 cultured gastrointestinal 
species have been identified in the human microbiota [39]. 
Recent advances in molecular techniques, sequencing and 
bioinformatic programs, have allowed the identification of 
specific taxonomic groups, that is, phyla, classes, orders, 
families, genera, and bacterial species [40]. Currently, 
metagenomic techniques have been used to characterize the 
composition, diversity, and potential physiological effects of 
entire microbial communities, without cultivation and isola-
tion of the members of the community [41].

The Firmicutes and Bacteroidetes are the most prevalent 
phyla in adults, followed by Actinobacteria, Proteobacteria, 
Fusobacteria, Spirochaetae, and Verrucomicrobia [42]. The 
stomach and small intestine are rich in Firmicutes (Lac-
tobacillaceae) and Proteobacteria (Enterobacteriaceae), 
whereas the large intestine shows higher counts of Bacte-
roidetes (Bacteroidaceae, Prevotellaceae, and Rikenellaceae) 
and Firmicutes (Lachnospiraceae and Ruminococcaceae) 
[43]. The composition of adult microbiota remains relatively 
stable, although the microbial diversity is acquired within 
the first hours post birth, and is shaped over time as the diet 
becomes more complex and the immune-system matures 
[44]. A combination of multiple factors, including genetic 
and environmental characteristics (type of delivery, antibi-
otic therapy, diet composition, lifestyle, social interactions, 
and exposure to various xenobiotics) shapes the gut micro-
biota to make every individual microbially unique [45]. 
The gut microbiota can also be very dynamic and change 
rapidly, for example, in response to dietary changes. One 
study shows that an increase in caloric intake from 2400 to 
3400 kcal/day (with a similar nutrient profile that includes 
24% protein, 16% fat, and 60% carbohydrates) over 3 days 
increases Firmicutes ratio and decreases the ratio of Bacte-
roidetes [10]. Diet is a major factor driving the composition 
and metabolism of the gut microbiota [40] and the influence 
of the diet on gut microbiota will be described in more detail 
in the next sessions.

Nowadays, the gut microbiota is considered a metabolic 
organ, which performs a wide range of functions including 
an important role in the physiology of energy homeostasis 
[46]. For example, some members of the Firmicutes phylum 
are among the butyrate-producing bacteria that increase the 
energy extraction from the diet [47]. In contrast, members 
of the phylum Bacteroidetes participate in carbohydrate 
metabolism and accomplish this by expressing enzymes 
similar to glycosyl transferases, glycoside hydrolases, and 

polysaccharide lyases [48]. In this context, the knowledge of 
the composition and functions associated with the microbial 
community is fundamental, as alterations in the composition 
of the gut microbiota and/or its functions (called ‘dysbiosis’) 
are associated with metabolic diseases, such as NASH [17, 
18, 49]. Although human studies are scarce in the literature 
(Table 1), animal experiments support the link between gut 
microbiota and the development of NASH.

Dysbiosis and nonalcoholic steatohepatitis

Experimental data

Animal experiments have demonstrated direct roles for gut 
microbiota in the development and progression of nonalco-
holic steatohepatitis (NASH). Using germ-free C57BL/6J 
mice, Bäckhead et al. [50] have previously demonstrated that 
mice devoid of gut microbiota are resistant to diet-induced 
obesity, steatosis, and insulin resistance. Subsequently, 
Le Roy et al. [51], using the transplantation experiment, 
have shown that differences in microbiota composition can 
determine responses to a high-fat diet (HFD) in mice and 
contribute to the development of steatosis, independent of 
obesity. In this study, the conventional C57BL/6J mice, fed 
with an HFD, have generally displayed liver steatosis, hyper-
glycemia, and systemic inflammation (called the ‘respond-
ers’), but some mice are nonresponders, normoglycemic, 
and have a lower level of systemic inflammation, with the 
same diet. Germ-free mice have been colonized with gut 
microbiota from either the responders or the nonrespond-
ers and then fed the same HFD. Despite a similar weight 
gain, responder–receiver mice have been found to develop a 
higher level of liver steatosis, glycemia, and insulin resist-
ance than nonresponder–receivers. Pyrosequencing of the 
16S ribosomal RNA genes has revealed that responder and 
nonresponder mice have distinct gut microbiota includ-
ing differences at the phylum, genera, and species levels. 
Responder mice harbour a significantly increased number of 
sequences belonging to the Firmicutes phylum, Barnesiella, 
Roseburia genera, Lachnospiraceae bacterium 609, and 
Barnesiella intestinihominis species [51].

Barnesiella intestinihominis, that is part of the Porphy-
romonadaceae family, in particular, showed an increase in 
inflammasome-deficient mice (C57Bl/6) associated with 
the progression of NASH. It was revealed that the nucle-
otide-binding domain, leucine-rich repeat protein (NLRP) 
6, NLRP3 inflammasomes, and the effector protein IL-18 
negatively regulated the exacerbated hepatic steatosis and 
inflammation via modulation of the gut microbiota. Antibi-
otic treatment with ciprofloxacin and metronidazole reduced 
the severity of NASH in inflammasome-deficient mice 
and abolished transmission of the phenotype to wild-type 
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animals, showing that gut microbiota drove NASH progres-
sion in this model [52].

Progression of NASH was also strictly related to reduced 
microbial diversity and an increased ratio of Firmicutes to 
Bacteroidetes in model C57BL/6J mice [53]. The abundance 
of Bacteroides spp., Bacteroides vulgatus, Desulfovibrio 
spp., Atopobium spp., Clostridium cocleatum, and Clostrid‑
ium xylanolyticumin was increased in these animals and 
positively correlated with the increased levels of lipopoly-
saccharides (LPS) [53], an endotoxin present on the cell sur-
face of Gram-negative bacteria, which induced inflammation 
[54]. The authors also observed a reduction in the abundance 
of gut barrier-protecting bacteria, such as the Lactobacillus 
spp. [53]. Another study with rats also showed that during 
the progression of NASH, the levels of LPS were highly 
increased. In addition, an increase was found in Escherichia 
coli and Enterococcus as well as a decrease was seen in 
Lactobacillus, Bifidobacteria, and Bacteroide [36]. Based on 

the connection between the intestine and liver, also termed 
‘gut–liver axis’, the gut microbiota and their metabolic by-
products may influence liver pathology [36].

Dysbiosis could also promote liver fibrogenesis. Indeed, 
C57BL/6 mice fed an HFD developed more severe liver 
fibrosis than control mice that were fed a standard chow 
diet, by changes in gut microbiota, activating an inflamma-
some cascade [55]. HFD-related increases in liver fibrosis 
were associated with an increase in the percentage of Gram-
negative (mainly Proteobacteria) versus Gram-positive bac-
teria (mainly reduction in Erysipelotrichaceae and a com-
plete disappearance of Bifidobacteriaceae) and a reduced 
ratio between Bacteroidetes and Firmicutes [55]. Bifido-
bacteriaceae (Firmicutes) was known to exert a protective 
role during liver injury [56, 57], whereas Proteobacteria was 
considered the main pathogen bacteria, expressing endotox-
ins [58]. Thus, the outcome suggested that dietary habits, 
by increasing the percentage of intestinal Gram-negative 

Table 1   Human studies that have evaluated the gut microbiota in nonalcoholic steatohepatitis

↑, increase; ↓, decrease; 16S rRNA, 16S ribosomal RNA sequencing; NASH, nonalcoholic steatohepatitis; qRT-PCR, quantitative real-time 
polymerase chain reaction; SS, simple steatosis

References Study Sample Method Results and p value

Boursier et al. [49] Cross-sectional Adult NASH (n = 35), obese no-
NASH (n = 22)

16S rRNA ↑Bacteroides and ↓Prevotella 
in NASH vs. obese no-NASH 
(p = 0.013 e p = 0.053, respec-
tively)

Del Chierico et al. [69] Cross-sectional Children NASH (n = 26), healthy 
controls (n = 54)

16S rRNA ↑Ruminococcus, Blautia, Dorea 
↓Oscillospira in NASH vs. healthy 
controls (p < 0.05)

Zhu et al. [18] Cross-sectional Children NASH (n = 22), obesity 
(n = 25) and healthy controls 
(n = 16)

16S rRNA ↑Bacteroidetes and ↓Firmicutes 
in NASH vs. healthy controls 
(p = 0.009 e p = 0.002, respec-
tively)

↑Proteobacteria, Enterobacteriaceae 
and Escherichia in NASH vs. 
healthy controls and obesity 
(p = 0.0007)

Wong et al. [17] Longitudinal (6 months) Adult NASH (n = 16) and healthy 
control (n = 22)

16S rRNA ↓Faecalibacterium and Anaero‑
sporobacter in NASH vs. healthy 
controls (p < 0.05)

↑Parabacteroides and Allisonella 
in NASH vs. healthy control 
(p < 0.05)

↓Firmicutes in NASH vs. healthy 
controls (p < 0.05)

Mouzaki et al. [16] Cross-sectional Adult NASH (n = 22), SS (n = 11) 
and healthy controls (n = 17)

qRT-PCR ↓Bacteroidetes in NASH vs. SS and 
healthy controls (p = 0.006)

Shanab et al. [60] Cross-sectional Adult NASH (n = 18) and healthy 
controls (n = 16)

Lactulose 
breath 
hydrogen 
test

SIBO in NASH (77.78%) vs. SIBO 
in healthy controls (31.25%) 
(p < 0.0001)

Wigg et al. [14] Cross-sectional Adult NASH (n = 22) and healthy 
controls (n = 23)

Combined 
xylose and 
lactulose 
breath test

SIBO in NASH (50%) vs. SIBO in 
healthy controls (22%) (p = 0.048)
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endotoxin producers, might accelerate liver fibrogenesis, 
introducing dysbiosis as a cofactor that contributed to 
chronic liver injury in NASH [55].

Human data

The first report, on humans, of the relationship between 
gut microbiota and pathogenesis of NASH was published 
by Drenick et al. [59]. In this study, patients undergoing 
intestinal bypass developed parallel NASH and SIBO. After 
being treated with antibiotics, the patients showed regres-
sion of hepatic steatosis, suggesting that microbiota were the 
possible cause of NASH [59]. Subsequently, other studies 
investigated gut microbiota in patients with NASH (Table 1). 
Wigg et al. [14] observed small intestinal bacterial over-
growth (SIBO) in 50% of the patients with NASH and in 
22% of the control subjects (p = 0.048). Shanab et al. [60] 
also observed a higher prevalence of SIBO in the NASH 
group, compared to the control group (77 vs. 31%).

SIBO may be characterized by an increase in the num-
ber of bacteria in the proximal small intestine (≥105 col-
ony-forming units/mL of intestinal content) or a change in 
microbial composition, with a profile that is typical of the 
microorganism species that colonize the large intestine [61]. 
Although the “gold standard” for the diagnosis of SIBO is 
still thought to be jejunal aspiration and culture, this tech-
nique requires intestinal intubation that may not be well tol-
erated and may not detect the un-culturable species [62]. To 
investigate the possible presence of SIBO, all the studies in 
patients with NASH used the breath test (Table 1), because 
it provides the simplest noninvasive and widely available 
diagnostic modality for suspected SIBO, by determination of 
hydrogen and/or methane concentration produced by intes-
tinal bacterial metabolism in the exhaled air [63]. However, 
there is a lack of consensus on the breath test interpretation 
[64]. Studies seeking to validate breath testing have calcu-
lated sensitivities and specificities ranging from 31 to 77 
and 44 to 100%, respectively [65, 66], leading to high false-
positive rates [67]. In addition, a variety of test methods 
and diagnostic criteria are used in studies and they are not 
standardized to define a positive test for SIBO. These factors 
have led to a controversy regarding the diagnostic utility of 
breath testing in SIBO [64].

Many microbial studies have focused on the fecal micro-
biota. It is important to highlight the major drawback of the 
use of stool analyses. It is the fact that a fecal sample does 
not reflect the microbiota composition from the small intes-
tine, because it represents mainly fecal samples from the end 
of the colon [68]. Therefore, studies with NASH patients 
show changes in the composition of the fecal microbiota, but 
there is controversy regarding the profile of resident bacte-
ria in the gut. For example, Mouzaki et al. [16] show a low 
percentage of Bacteroidetes (Bacteroidetes to total bacteria 

counts) and no differences in Firmicutes, in the stool sam-
ples of NASH patients. Instead, two studies [17, 18] have 
observed an increase in Bacteroidetes and decrease in Fir-
micutes in NASH patients, compared to the healthy controls. 
There is recent evidence that shows that the abundance of 
Bacteroidetes and Firmicutes is similar between NASH and 
no-NASH patients [49].

Other changes in the gut microbiota are related to NASH 
(Table 1). Recent evidence shows that the percentage of Bac‑
teroides genus, one of the most important genera within the 
Bacteroidetes phylum, is significantly increased in NASH, 
whereas the percentage of the Prevotella genus is decreased 
[49]. In addition, pediatric NASH patients have a lower fecal 
abundance of Faecalibacterium and Anaerosporobacter, but 
higher abundance of Parabacteroides and Allisonella. A sig-
nificant difference is observed at the phylum, family, and 
genera level in the fecal samples of children with NASH. 
Proteobacteria/Enterobacteriaceae/Escherichia are higher in 
NASH compared to healthy controls and obese patients [18]. 
Another study with pediatric patients shows a decrease of 
Oscillospira and increases of Ruminococcus, Blautia, and 
Dorea in NASH compared to the controls [69].

The variability of methods (qPCR vs. pyrosequencing), 
exclusion of all taxa with an abundance below 1% and pro-
file of subjects (adults vs. children) may explain, in part, why 
there is still no consensus in the literature about which bac-
terial groups are increased or reduced in the gut of NASH 
patients, compared to no-NASH patients. In these studies, all 
NASH patients have a high body mass index (BMI) (>29 kg/
m2), and the BMI of NASH patients is significantly higher 
than that of healthy controls in two studies [16, 18]. As obe-
sity itself is linked to gut microbiota composition changes 
[47, 70], BMI can be a major confounder [28]. Thus far, no 
study has directly assessed the gut microbiota composition 
in non-obese patients with NASH, but recent evidence has 
shown that non-obese patients with nonalcoholic fatty liver 
disease (NAFLD) have 20% more Bacteroidetes phylum and 
24% fewer Firmicutes phylum, compared to healthy con-
trols [28]. Future studies should include non-obese NASH 
patients in their analyses, to exclude the impact of obesity.

Although few studies have evaluated the composition of 
the gut microbiota in NASH patients, it was observed that 
these individuals have a distinct gut microbiota, compared to 
the healthy control groups, which explains, at least in part, 
the genesis and progression of the disease through multiple 
mechanisms.

Mechanistic pathways in the development 
and progression of NASH

The mechanisms involved in the relationship between gut 
microbiota and NASH are not yet fully known, but the 
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proposed mechanisms in the literature are described below 
(Fig. 1). The proposed mechanisms may potentiate each 
other through shared molecular pathways of fat accumula-
tion, activation of inflammation, and fibrogenesis in the liver 
[71].

Modification of energy homeostasis

Energy harvest from the diet

The gut microbiota has the ability to extract energy from 
food via glycoside hydrolases and polysaccharide lyases, 
which are not encoded by the human genome (Fig. 1). Such 
enzymes in the colon metabolize undigested polysaccharides 
into monosaccharides and short chain fatty acids (SCFA) 
[50]. The monosaccharides produced by microbial fer-
mentation are absorbed and transferred to the liver through 
portal circulation, where they activate factors like the car-
bohydrate-responsive element-binding protein (ChREBP), 
which increases the transcription of proteins involved in 
hepatic lipogenesis [72]. The SCFA (acetate, propionate, 
and butyrate) can be used for lipid or gluconeogenesis [73]. 
Thus, bacterial SCFA provide an additional source of energy 
for the body, promoting fatty liver accumulation [74].

The first investigation in this line of evidence has been 
conducted by Bäckhed et al. [11]. Colonization of C57BL/6 
mice, germ-free (raised in absence of microorganisms), with 
cecal content from mice that were colonized with a normal 
microbiota at birth (termed ‘conventionally raised’) resulted 

in 60% of increased total body fat and consequently hepatic 
TG accumulation, without any increase in food consumption 
or energy expenditure [11]. Subsequently, Turnbaugh et al. 
[47] showed that the C57BL/6J obese mice had a higher con-
centration of SCFA and fewer calories in their stool, suggest-
ing that in these animals, the microbiota contribute to the 
extraction of additional calories from their diet. These ani-
mals showed higher levels of Firmicutes than Bacteroidetes 
compared to their lean counterparts. The changes observed 
in obese mice microbiota could increase energy delivery to 
the liver and reduce fecal energy loss [47].

Although the experimental data indicate that the gut 
microbiota influence the energy balance, it remains uncer-
tain as to what extent gut microbiota are an important regu-
lator of nutrient absorption in humans. One clinical study 
showed that the total amount of SCFA and propionate were 
higher in the obese group than in the lean group [73]. How-
ever, another study found no difference in energy excre-
tion in the stools and no difference in bacterial abundance 
between the obese and lean groups [10].

There is evidence that SCFA produced in the colon con-
tribute to approximately 5–10% of the energy requirements 
[75]. It may be possible that the additional calories provided 
to the host by the microbiota, due to the fermentation of 
undigested dietary molecules, are not sufficient to induce 
significant changes in weight [76]. One of the arguments to 
support this hypothesis is that consumption of a high-fiber 
diet could increase SCFA production, which usually helps 
to reduce weight and adipose tissue [77, 78]. Studies with 

Fig. 1   Mechanisms proposed 
in the relationship between gut 
microbiota and nonalcoholic 
steatohepatitis. LPL lipoprotein 
lipase, LPS lipopolysaccharide, 
NASH nonalcoholic steato-
hepatitis, ROS reactive oxygen 
species, TMAO trimethylamine-
N-oxide, TLR toll-like recep-
tor, VLDL very-low density 
lipoprotein
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prebiotics also have indicated that a higher intestinal pro-
duction of SCFA is associated with an increase in satiety 
and a consequent reduction in dietary intake. These effects 
are in part related to the increase of glucagon-like peptides 
(GLP-1 and GLP-2) and peptide YY (PYY), which lead to 
hypothalamic effects related to the reward mechanism [79, 
80]. Thus, more mechanistic studies are required to under-
stand the role of each of the SCFA on NASH.

Activation of G protein‑coupled receptors

The SCFA act on the G protein-coupled receptors, such as 
Gpr41 and Gpr43, expressed in intestine and adipose tissues 
[81]. GPR41 and GPR43 have been renamed free fatty acid 
receptors FFA3 and FFA2, respectively [82], based on their 
responsiveness to SCFA. There is a power order of SCFA in 
activating human FFA2 and FFA3 receptors, where FFA2 is 
activated more potently by acetate = propionate > butyrate, 
whereas for FFA3, it is propionate = butyrate > acetate [83].

The FFA3 activation stimulates enteroendocrine cells 
to increase production of the PYY, a hormone that reduces 
intestinal motility and provides greater absorption of nutri-
ents, particularly of SCFA [84]. The FFA2 activation con-
tributes to inhibition of lipolysis and adipocyte differen-
tiation, leading to increased adipose tissue [85]. FFA2 is 
also present on intestinal neutrophils and might, therefore, 
contribute to NASH pathogenesis by increasing intestinal 
inflammation and permeability [86, 87].

Effects of adenosine 5′‑monophosphate protein kinase 
and fasting‑induced adipose factor

Experimental studies suggest that the presence of microbiota 
inhibits the enzyme adenosine 5′-monophosphate protein 
kinase (AMPK) pathway and suppresses intestinal expres-
sion of the protein fasting-induced adipose factor (FIAF) 
[11, 50]. AMPK is a key enzyme that controls the cellular 
energy status, which in turn activates the key enzymes of 
mitochondrial fatty acid oxidation, including acetyl-CoA 
carboxylase (ACC) and carnitine-palmitoyltransferase I 
(CTP1). When inhibited, the AMPK suppresses muscle 
oxidation of fatty acids, favoring adiposity [50]. FIAF is 
a circulating lipoprotein lipase (Lpl) inhibitor produced by 
the intestine, liver, and adipose tissue [88]. Inhibition of 
FIAF increases the activity of the lipoprotein lipase, lead-
ing to fat accumulation in the adipose tissue and increases 
hepatic uptake of free fatty acids [11]. Inhibition of FIAF 
further decreases expression of the peroxisome prolifera-
tor-activated receptor gamma coactivator 1 alpha (PGC1-α) 
and enzymes involved in mitochondrial fatty acid oxidation 
[50]. Together, these effects may increase insulin resistance, 
resulting in obesity and hepatic steatosis (Fig. 1) [11, 50].

Lipopolysaccharide–endotoxemia

It has been proposed that changes in the gut microbiota 
favor an increase in circulatory lipopolysaccharides (LPS), 
particularly when the diets are rich in fat and energy [89, 
90]. Increased circulatory LPS may contribute to meta-
bolic endotoxemia (low-grade inflammation) [91], which 
plays a pivotal role in the development and progression of 
NASH (Fig. 1) [90]. LPS is recognized by pattern recogni-
tion receptors. These receptors include membranous toll-
like receptors (TLRs) (especially TLR-4) and intracellular 
NOD-like receptors (NLRP3 and NLRP6 inflammasomes). 
Stimulation of TLR-4 results in the activation of several dif-
ferent intracellular signaling cascades, inducing the synthe-
sis of a variety of inflammatory cytokines (especially TNF-
α), which induce inflammation, oxidative stress, and insulin 
resistance [92]. Kupffer cells, which express the highest lev-
els of TLR-4 liver, are cells that respond to LPS to produce 
cytokines and ROS [93]. The interaction between LPS and 
TLR-4 also activates receptors on stellate cells, resulting 
in hepatic fibrogenesis [15]. Increase in the levels of LPS 
also leads to liver injury through a mechanism mediated by 
the inflammasome, which includes NLRPs, a group of cyto-
plasmatic and multiprotein complexes [94]. NLRPs manip-
ulate the cleavage of proinflammatory interleukins (ILs), 
such as pro-IL-1β and pro-IL-18 [94]. Henao-Mejia et al. 
[52] experimentally revealed that the NLRP6 and NLRP3 
inflammasome alterations or IL-18 deficiency cause intesti-
nal microbial changes by enhancing portal influx of TLR-4 
and TLR-9 ligands, which in turn increase hepatic TNF-α 
production in C57Bl/6 mice. Apart from LPS, TNF-α, ILs, 
and plasminogen activator inhibitor-1 (PAI-1) may represent 
a good marker of NASH. The increased portal endotoxemia 
could induce the expression of PAI-1, a fibrinolysis inhibi-
tor [95]. Elevated PAI-1 has been correlated with enhanced 
LPS-induced liver damage and induction of liver inflamma-
tory response [96, 97].

Several studies conducted on animals and humans support 
the link between LPS–endotoxemia and the development of 
NASH [54, 98–100]. An animal study demonstrated that 
chronic infusion of LPS caused endotoxemia, hepatic stea-
tosis, and changed gut microbiota in HFD C57bl6/J mice 
[54]. Genetically obese mice exhibit increased sensitivity 
to endotoxin hepatotoxicity, quickly developing steatohepa-
titis after exposure to low doses of LPS [99]. In addition, 
intraperitoneal administration of LPS-augmented hepatic 
inflammation, apoptosis, and reactive substances in the 
methionine choline-deficient nutritional model of NASH/
C57/BL6 mice [100]. In human studies, increased levels of 
endotoxin were found in NASH patients, as compared to 
healthy individuals [101, 102]. Similarly, it was reported that 
morbidly obese subjects have increased levels of LPS and 
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LPS-binding proteins (LBP), which correlate with a major 
liver expression of TNF-α and the presence of NASH [98].

Possible mechanisms for endotoxemia in patients with 
NASH include SIBO and disruption of the intestinal mucosa 
barrier integrity, which may lead to an increased intestinal 
permeability and excessive absorption of LPS, resulting 
in low-grade inflammation and hepatic fibrosis [15, 103]. 
This association is supported by a growing body of experi-
mental and human data. Genetically obese C57BL/6J mice 
display enhanced intestinal permeability, leading to portal 
endotoxemia. Moreover, murine hepatic stellate cells iso-
lated from the livers of the animals were more sensitive to 
LPS, developing a stronger inflammatory and fibrogenic 
phenotype [103]. In human studies, Miele et al. [15] have 
shown that patients with NAFLD have increased intestinal 
permeability, and this abnormality is related to the increased 
prevalence of SIBO and disrupt tight junctions compared 
to healthy adults. Another study has associated SIBO with 
the expression of TLR-4 and IL-8 in NASH patients [60]. 
Wigg et al. [14] have found increased prevalence of SIBO 
and elevated TNF-α levels in patients with NASH, but have 
found no difference in the intestinal permeability or serum 
endotoxin levels. Despite the negative result of this study, 
the authors have suggested that endotoxin may still be an 
important factor in the pathogenesis of NASH. Some pos-
sible explanations for the paradox in this study are under-
estimated endotoxin levels, due to a retrospective collection 
of endotoxins. Endotoxins bound to plasma proteins are not 
measured and systemic levels may not reflect portal endo-
toxins [14]. In addition, NASH patients may have significant 
susceptibility to gut leakiness, and gut leakiness may still be 
an important pathogenic factor in patients with NASH and 
‘normal’ intestinal permeability [104].

Increased endogenous ethanol production

The hypothesis that endogenous ethanol contributes to the 
pathogenesis of NASH dates back from the Cope et al. study 
[105]. The authors have reported elevated alcohol concentra-
tion in the breath of obese mice and have demonstrated that 
breath alcohol concentration can be reduced by gut micro-
bial intervention with antibiotics [105]. Human studies have 
reported increased endogenous ethanol in NASH. Nair et al. 
[106] have demonstrated that obese women with NASH have 
higher breath ethanol concentrations than healthy controls 
detected by gas chromatography. Another study has shown 
that pediatric NASH patients have higher plasma concentra-
tions of ethanol when compared to healthy or obese indi-
viduals [18]. In addition, an increased expression of etha-
nol-metabolizing enzymes, alcohol dehydrogenase, catalase, 
and aldehyde dehydrogenase is seen in NASH liver [107]. 
In summary, these outcomes suggest that the microbiota of 
patients with NASH produce more ethanol, which induces 

the expression of ethanol-metabolizing enzymes in the liver 
[107].

The normal microbiota in the human large intestine is 
capable of producing and metabolizing ethanol [108]. It has 
been shown that under anaerobic conditions, the bacterial 
metabolism of pyruvate, produced during the breakdown of 
carbohydrates, generates acetaldehyde, which can then be 
further reduced to form ethanol [109]. This metabolic fate of 
carbohydrates is favored when there is intestinal overgrowth 
of bacteria or yeast [110] or if carbohydrates, particularly 
sugar (e.g., glucose, sucrose, and fructose), are consumed 
excessively [111].

Despite the lack of consistent NASH-related gut micro-
biota changes, the possible overgrowth of ethanol-producing 
bacteria may underlie an increase in the circulation of etha-
nol levels in NASH. Zhu et al. [18] have shown a higher E. 
coli rate in the NASH group, compared to groups without 
NASH. E. coli is a member of the Family of Enterobacte-
riaceae, which typically aerobically degrade carbohydrates 
by mixed acid fermentation [112]. Ethanol is one of the 
common-end products of this pathway [112]. Furthermore, 
it is possible to suggest that the intestinal overgrowth of 
other bacteria-producing ethanol or yeast (e.g., Lactobacil‑
lus fermentum, Weissella confusa, and Saccharomyces cer‑
evisiae) explain the higher plasma concentration of ethanol 
in some NASH patients [113], mainly in those with rich-in-
carbohydrate diets [114]. L. fermentum and W. confusa are 
both heterolactic organisms [115, 116]. Ethanol is one of the 
dominating metabolites of heterolactic intestinal microbes 
by mixed acid fermentation [115]. Finally, S. cerevisiae, 
typically for yeasts, metabolizes hexoses via ethanol fer-
mentation, yielding just ethanol and carbon dioxide [117].

The intestinally derived ethanol may contribute to the 
pathogenesis of NASH (Fig. 1), because gut-derived ethanol 
can induce hepatic steatosis [118]. In addition, increases in 
the production of ethanol by gut microbiota may injure the 
intestinal barrier and promote increasing permeability and 
endotoxemia [105, 119, 120]. Consequently, tissues, includ-
ing the liver, that are exposed to this blood flow are stimu-
lated to produce cytokines, such as TNF-α [105] and ROS, 
causing liver injury [119].

Altered bile acid metabolism

Primary bile acid (BA) species (cholic and chenode-
oxycholic acids) are synthesized and conjugated with 
glycine or taurine in the liver, stored in the gallbladder, 
and released into the duodenum until ingestion of a fat 
meal (Fig. 2) [121]. In the intestine, BA are metabolized 
by bacteria to more hydrophobic BA species, through 
7α-dehydroxylation and/or deconjugation of hydrophilic 
groups, resulting in secondary BA species (deoxycholic 
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and lithocholic acid) [122]. Over 95% of BA are reab-
sorbed in the distal ileum and then recycled via the portal 
vein into the liver [123].

In addition to promoting the absorption of fat, cholesterol, 
and fat-soluble vitamins in the intestinal tract, BA also act 
as signaling molecules that modulate a variety of physio-
logical processes [124]. Regulatory actions of BA are medi-
ated through specific BA-activated receptors, including the 
farnesoid X receptor (FXR), and members of the G protein-
coupled receptor, mainly the TGR5 [125]. FXR, which is 
highly expressed in hepatocytes and enterocytes, is activated 
by free and conjugated primary BA [124]. FXR induces the 
expression of a short heterodimer partner (SHP), which 
inhibits CYP7A1 activation, the first enzyme of BA syn-
thesis [121]. In the small intestine, FXR induces the fibro-
blast growth factor (human FGF19 and mouse FGF15), an 
intestinal hormone, to repress hepatic BA synthesis through 
FGF receptor 4 (FGFR4) expressed in the liver [125]. Acti-
vation of the FXR pathways not only regulates the synthesis 
and enterohepatic cycle of BA, but also acts on the control 
of hepatic de novo lipogenesis in the liver, exportation of 
TG by VLDL, and gluconeogenesis [126]. TGR5 is widely 
distributed and expressed in various tissues, including the 
intestines, enteroendocrine cells, and liver [121]. Activation 
of TGR5 by secondary BA induces intestinal glucagon-like 
peptide-1 (GLP-1) release from the intestinal enteroendo-
crine L cells and GLP-1-associated improvements in glucose 
tolerance and liver function [127]. Therefore, BA plays a 
crucial role in lipid and glucose homeostasis [126].

By altering BA metabolism and its regulated signaling 
pathways, gut microbiota could contribute to the patho-
genesis of NASH (Figs. 1, 2) [128]. Although the precise 
mechanism is unknown, altered BA concentrations have 
been reported in patients with NASH [34, 129, 130]. Patients 
with NASH have higher fasting and postprandial total serum 
BA concentrations, including secondary BA, which tend to 
be a more hydrophobic and cytotoxic species [129]. In a 
similar study [130], total and secondary BA were increased 
in the liver tissues of NASH patients. This increase in BA 
concentration could be the consequence of a higher rate 
of BA synthesis or possibly be an adaptive response to 
the accumulation of TG in the liver [131]. A healthy liver 
is very efficient in removing BAs from the enterohepatic 
cycle. When the liver function is compromised, more BA 
appears in the circulation, because the liver is not adequately 
removing them [131]. Higher levels of serum 7α-hydroxy-
4-cholesten-3-one (C4), a BA synthesis intermediate and a 
reliable marker of de novo BA synthesis, were also observed 
in NASH patients. C4 may represent the hepatic response 
to the increased fecal BA losses [35]. Indeed, higher fecal 
BA levels have been demonstrated in patients with NASH. 
In this study, higher levels of unconjugated primary BA in 
the stool correlated with dysbiosis [35].

Dysbiosis could substantially alter BA homeostasis 
[35], especially in the colon, where some bacteria, includ-
ing Bacteroides, Clostridium, and Escherichia, are able to 
deconjugate and/or dehydroxylate BA, which may lead to an 
increase in the circulation of unconjugated secondary BA 

Fig. 2   Influence of gut micro-
biota in the development of 
nonalcoholic steatohepatitis by 
altering bile acid metabolism 
and its regulated signaling path-
ways. BA bile acid, CYP7A1 the 
first enzyme of bile acid syn-
thesis, FGF15 fibroblast growth 
factor 15, FGFR4 FGF receptor 
4, FXR farsenoide X receptor; 
GLP-1 glucagon-like peptide-1, 
LPS lipopolysaccharide, NASH 
nonalcoholic steatohepatitis, 
ROS reactive oxygen species, 
TNF-α tumor necrosis factor 
alpha, TRG-5 G protein-coupled 
receptor, TLR-4 Toll-like recep-
tor 4, SHP short heterodimer 
partner, VLDL very-low density 
lipoprotein
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species [129]. At high levels, BA are able to activate inflam-
matory and oxidative stress, resulting in apoptosis or necro-
sis, and eventually fibrosis and cirrhosis [132]. In contrast, 
the relative abundance of Clostridium leptum (C. leptum to 
total bacteria counts) is decreased in patients with NASH 
compared to the controls and correlates with higher cholic 
and chenodeoxycholic acids in the stool [35]. Higher levels 
of unconjugated primary BA in the stool are positively cor-
related with steatosis, ballooning, and fibrosis. These find-
ings may represent the hepatotoxic impact of hydrophobic 
BA. BA can also contribute to the development of NASH 
through its effects on intestinal permeability [35]. BA has 
bactericidal activity and reduces the intestinal permeability 
to endotoxin [133]. However, increased deconjugation of 
BA reduces the bactericidal properties of the bile, causing 
growth of bacteria that promotes more deconjugation of BA, 
and ultimately, translocation and endotoxemia in homeo-
stasis conditions [134]. The interplay between BA and gut 
microbiota in human NASH needs to be investigated further.

Altered choline metabolism

Choline is an essential nutrient and phospholipid component 
of cell membranes required for the formation of VLDL and 
exportation of liver lipids [135]. The metabolism of dietary 
choline by microbiota reduces the bioavailability of choline 
free to the secretion of VLDL, favoring the accumulation 
of fat in the liver (Fig. 1) [135, 136]. It is also known that 
enzymes produced by the gut microbiota catalyze the con-
version of dietary choline into toxic methylamines, such as 
trimethylamine (TMA) [1]. TMA is subsequently oxidized in 
the liver, forming trimethylamine-N-oxide (TMAO), which 
induces liver inflammation. Moreover, TMAO may affect 
glucose and lipid metabolism, promoting the development 
of fatty liver [136]. TMAO increases fasting insulin levels 
and homeostasis model assessment-estimated insulin resist-
ance (HOMA-IR) and also exacerbates the impaired glucose 
tolerance in HFD mice (C57BL/6). These effects are associ-
ated with the expression of genes related to the insulin signal 
pathway, glycogen synthesis, gluconeogenesis, and glucose 
transport in the liver [137]. The effects of TMAO on lipid 
metabolism involve the overexpression of flavin contain-
ing monooxygenase (FMO3) in the human hepatoma cell 
line, resulting in increased lipogenesis. These effects may 
be mediated through the peroxisome proliferator-activated 
receptor alpha (PPARα) and Kruppel-like factor 15 (KLF15) 
pathways [138].

A few studies have examined the association of choline 
and its metabolites with fatty liver disease. A choline-defi-
cient diet greatly exacerbates a fatty liver induced by HFD 
consumption in C57Bl/6 mice [139]. Moreover, Pfp/Rag2 
mice, submitted to a choline-deficient diet, develop a fatty 
liver featuring fibrosis and elevation of the proinflammatory 

markers serum amyloid A (SAA) and TNFα. Hepatic TG is 
significantly increased as well as alanine aminotransferase, 
demonstrating inflammation-linked hepatocyte damage 
[140]. Human studies have shown that the consumption of a 
low-choline diet promotes accumulation of TG in the liver 
and worsens fibrosis [141]. In a recent study, Chen et al. 
[136] have shown adverse associations between the circulat-
ing TMAO level and the presence and severity of NAFLD in 
Chinese adults, but no significant choline–NAFLD associa-
tion has been observed. The composition of the gut micro-
biota can change with a low-choline diet. Healthy women 
during choline depletion show rate variations of Erysipel‑
otrichi (Firmicutes) and Gammaproteobacteria (Proteobac-
teria) in their fecal contents, which are directly associated 
with changes in the liver fat [142]. The Gammaproteobac‑
teria genera in particular, identified in their study, includ-
ing Klebsiella spp., Enterobacter spp., and Escherichia spp., 
are gram-negative bacteria with LPS-containing membranes 
[142]. Therefore, the increase of circulating LPS can be one 
of the possible mechanisms involved in NASH development 
in choline-deficient patients.

On the basis of all these mechanistic pathways, it is 
possible to suggest that modulation of the gut microbiota, 
through strategies that can include diet, probiotics, antibiot-
ics, or fecal microbiota transplantation, is a possibility for 
the treatment of NASH [143]. However, diet appears to be 
the simplest, most physiological, and most effective method 
to improve intestinal health [144].

Diet and gut microbiota

The diet is among the most easily controlled factors that 
can potentially manipulate the gut microbiota [145]. As dis-
cussed above, a high-energy diet, HFD, high-carbohydrate 
diet (mainly high-fructose diet), and decreased choline 
intake can alter the gut microbiota, which has been shown 
to be associated with NASH. Correcting dietary habits is 
typically part of the standard recommendations for NASH 
treatment [146]. However, we have not found studies in the 
literature that have investigated the effects of dietary habit 
modifications on the gut microbiota of NASH patients, with-
out the use of probiotics and/or prebiotics. There is some 
evidence in animal models and no-NASH subjects that sug-
gests that the amount of dietary calories and the balance 
between the three dietary macronutrients (fats, carbohy-
drates, and proteins) have the potential to improve the gut 
microbiota [147].

The impact of calorie restriction on gut microbiota has 
been demonstrated in C57BL/6J mice [148]. Calorie restric-
tion enriches phylotypes correlated with probiotic effects, 
such as Lactobacillus and Bifidobacterium, and reduces 
phylotypes correlated with inflammation and obesity, such 
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as Streptococcaceae and Desulfovibrionaceae. These calo-
rie restriction-induced changes in the gut microbiota are 
concomitant with significantly reduced serum levels of the 
LPS-binding protein, suggesting that animals under calorie 
restriction can establish a structurally balanced architecture 
of the gut microbiota that may exert a health benefit to the 
host via reduction of antigen load from the gut. In obese sub-
jects, the reduction in food energy content decreases the phy-
lum Firmicutes and increases Bacteroidetes [10, 149, 150]. 
Moreover, these calorie-restricted diets increase microbial 
gene richness in subjects with obesity [151] and normalize 
the circulating LPS levels [152].

The effects of dietary macronutrients on the human 
microbiota are still poorly understood. A number of studies 
focus on the impact of a “Western” diet (high in animal fat 
and protein and low in fiber), compared to a “non-Western” 
diet (low in animal fat and protein and high in fiber) [43, 
153, 154]. Western and non-Western human diets are con-
sistently associated with distinct gut microbial communities 
[43, 153, 154]. Amato et al. [154] observed elevated micro-
bial richness and a relatively higher abundance of Prevotella 
in non-Western humans and a relatively elevated abundance 
of Bacteroides in Western humans. These results are con-
cordant with a study of the human gut microbiota that asso-
ciates diets high in protein and animal fat with high levels 
of Bacteroides and diets high in plant carbohydrates with 
high levels of Prevotella [155, 156]. Similarly, all published 
studies of Western and non-Western humans to date report 
higher microbial richness and a higher abundance of Prevo‑
tella in non-Western populations [43, 153, 154]. One study 
also shows a higher abundance of Xylanibacter [156]. The 
genera Prevotella and Xylanibacter are known to contain 
a set of bacterial genes for cellulose and xylan hydrolysis, 
completely lacking in the non-Western population. In addi-
tion, Enterobacteriaceae (Shigella and Escherichia) were 
significantly under-represented in non-Western populations 
compared to Western populations [156]. Moreover, a clini-
cal trial has shown that healthy subjects with a prudent-style 
diet (20% of fat) for 1 month reduced plasma LPS levels by 
38%, whereas a Western-style diet induced a 71% increase 
in plasma levels of endotoxin [157].

The composition of gut microbiota could also be influ-
enced by the quality of dietary lipids. One experiment 
evaluated the effect of a fat-type diet, varying in polyun-
saturated-to-saturated fatty acid ratios in the gut microbiota 
composition and hepatic TG accumulation [158]. C57Bl/6J 
mice were fed purified HFDs (45E% fat) containing palm 
oil (saturated lipids), olive oil (monounsaturated lipids), or 
safflower oil (polyunsaturated lipids) for 8 weeks. According 
to the authors, HFD containing palm oil induced a higher 
liver TG content, reduced microbial diversity, and increased 
the Firmicutes:Bacteroidetes ratio, whereas HFDs contain-
ing olive oil or safflower did not change the gut microbiota 

[157]. Similarly, Caesar et al. [159] fed mice isocaloric 
diets that differed only in fat composition (either lard or fish 
oil, which are rich in saturated and polyunsaturated lipids, 
respectively) to assess how the dietary fat sources affected 
the microbiota. This study showed that the genera Bacte‑
roides, Turicibacter, and Bilophila had increased in lard-fed 
mice, while Actinobacteria (Bifidobacterium and Adlercreut‑
zia), lactic acid bacteria (Lactobacillus and Streptococcus), 
Verrucomicrobia (Akkermansia muciniphila), Alphaproteo‑
bacteria, and Deltaproteobacteria had increased in fish-oil-
fed mice. Moreover, TLR-4 was activated by serum from 
mice fed with lard, suggesting that a lard diet promotes an 
increase in the influx of microbial factors into the systemic 
circulation [159].

Regarding carbohydrate intake, there is evidence that 
low-carbohydrate diets can impair the gut microbiota, since 
they are also restricted in source foods, such as fruits, veg-
etables, and grains, which are rich in fiber (non-digestible 
carbohydrates) [160, 161]. In general, the consumption of 
fiber-rich diets is associated with greater richness and diver-
sity of the gut microbiota, being positively associated with 
the presence of Bacteroidetes and Actinobacteria and with 
reduction in the Firmicutes:Bacteroides ratio [150]. Fiber-
rich diets also promote a higher concentration of SCFA in 
the fecal contents, especially of butyrate, which has a benefi-
cial effect on inflammation [162]. Thus, the replacement of 
fructose, and other simple carbohydrates, with non-digesti-
ble carbohydrates can avoid the consequences of dysbiosis 
in the gut–liver axis, especially in NASH.

Finally, the relationship between protein intake and gut 
microbiota, specifically in NASH patients, is lacking. The 
excess protein has been linked with potentially damaging 
effects on the gut microbiota and health. Hoodia et al. [163] 
have verified that a high-protein diet reducts Faecalibac‑
terium prausnitzii and increases colon permeability and 
secretion of cytokines. Other evidence has reported high 
levels of Clostridium spp. and Bacteroides spp., with con-
current reductions in Bifidobacterium spp., Roseburia spp., 
and Eubacterium spp., in subjects who consumed a high-
protein diet [161, 164, 165]. Reductions in Bifidobacterium 
spp., Roseburia spp., and Eubacterium may increase the risk 
of NASH, as these bacterial species are usually associated 
with butyrate production and control of endotoxemia [166]. 
It is important to mention that, generally, the highest pro-
portion of dietary protein is accompanied by a reduction in 
the amount of carbohydrates. Therefore, it is possible that 
the impact of the consumption of high-protein diets on the 
gut microbiota is related not only to the production of toxic 
substances derived from protein fermentation, but also to the 
reduction of dietary carbohydrate consumption, especially of 
non-digestible carbohydrates [162]. Besides that, the source 
of protein varies between studies. For example, populations 
that consume meat-rich diets have higher fecal Bacteroides, 
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Bifidobacterium, Peptococcus, and anaerobic Lactobacillus 
species [167]. A vegetarian diet is associated with higher 
rates of Bacteroides thetaiotaomicron, Clostridium clostridi‑
oforme, and F. prausnitzii compared to an omnivorous diet 
[168].

Although the studies use different methods and varying 
manipulations of diets, which make comparability and gen-
eralization of the outcomes difficult, it seems clear that the 
various diets are important environmental factors that regu-
late and modify the gut microbiota.

Conclusions

The development and progression of NASH is a complex 
and multifactorial process, which cannot be completely 
explained by the “two hits” hypothesis. It is increasingly 
recognized that the gut microbiota is implicated in the 
pathogenesis and progression of NASH. There are evi-
dences suggesting that NASH patients have a higher prev-
alence of bacterial overgrowth of the small intestine and 
changes in the composition of gut microbiota, but there 
is controversy regarding the profile of resident bacteria in 
the gut. An abundance of the Bacteroidetes phylum may 
be increased, decreased, or unaltered in NASH patients. 
There is an increase in the Enterobacteriaceae family (phy-
lum Proteobacteria), especially Escherichia. Moreover, the 
Bacteroides genus (phylum Bacteroidetes) is also increased. 
There is depletion of certain taxa, such as Prevotella, Fecali‑
bacterium, Anaerosporobacter, Oscillospira, Ruminococcus, 
Blautia, and Dorea. Although few studies have evaluated the 
gut microbiota in NASH patients, it was observed that these 
subjects have a distinct gut microbiota compared to the con-
trol groups, which explains, at least in part, the genesis and 
progression of the disease through multiple mechanisms.

Changes in the gut microbiota have consequences on 
energy homeostasis, resulting in hepatic steatosis. Dysbiosis 
is also responsible for increased intestinal permeability and 
metabolic endotoxemia, which correlate with inflammation 
and liver fibrosis. In addition, it is observed that the metabo-
lism of other related pathways is affected by the gut micro-
biome in NASH, such as choline and bile acid metabolism 
and the endogenous production of ethanol. The role of LPS 
and bile acids in NASH pathogenesis has been discussed 
in several studies and they appear to be the most relevant 
factors in humans.

It is essential to identify strategies to modulate the gut 
microbiota and probably minimize the development and pro-
gression of NASH. Modulation of gut microbiota by diet 
control offers new challenges for future studies.
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