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Moreover, it abolished hyperalgesia and allodynia by nor-
malizing NO plasma concentration and increasing plasma 
agmatine concentration.
Conclusions  l-Arginine supplementation prevented the 
development of mechanical hyperalgesia, tactile, and ther-
mal allodynia in painful diabetic neuropathy with concomi-
tant reduction of NO and increased agmatine production, 
offering new therapeutic opportunities for the management 
of diabetic neuropathic pain.

Keywords  l-Arginine · Nitric oxide · Agmatine ·  
STZ-D rats · Hyperalgesia · Allodynia · Neuropathic pain

Introduction

Diabetic neuropathy (DN) is a common complication of both 
type 1 (T1DM) and type 2 diabetes mellitus (T2DM) [1]. 
Indeed, over 246 million of diabetic patients, between 20 and 
30 million are affected by symptomatic diabetic neuropathy 
[2]. The most frequent clinical form of diabetic neuropathy 
is by far the diabetic distal sensory or sensorimotor poly-
neuropathy sometimes asymptomatic but usually causing 
abnormal sensations (paresthesia and dysesthesia) and/or 
pain. Spontaneous or evoked pain and abnormal sensations 
are associated with neuropathy. The estimated prevalence 
of painful polyneuropathy varies between 8% [3] and 65% 
[4] with an overall prevalence around 15% [5]. The first-line 
drugs based on Grading of Recommendations Assessment, 
Development, and Evaluation (GRADE) recommended 
for neuropathic pain are noradrenaline serotonin reuptake 
inhibitor antidepressants (duloxetine and venlafaxine), tri-
cyclic antidepressants, pregabalin, gabapentin, or gabapentin 
enacarbil [6, 7].

Abstract 
Purpose  Neuropathic pain is a common diabetic compli-
cation. It is characterized by symptoms of spontaneous and 
stimulus-evoked pain including hyperalgesia and allodynia. 
l-Arginine is a common precursor of many metabolites of 
biological interest, in particular, nitric oxide (NO), ornith-
ine, and hence polyamines. In central nervous system, NO, 
glutamate, and polyamines share an N-methyl-d-aspartate 
(NMDA) receptor-mediated effect. We hypothesized that a 
variation in arginine metabolism caused by diabetes may 
contribute to development and maintenance of neuropathic 
pain and to the worsening of clinical and biological signs 
of diabetes.
Methods  We examined whether oral l-arginine supplemen-
tation (2.58 ± 0.13 g/l in drinking water for 3 weeks) could 
improve the development of neuropathic pain and the clini-
cal, biological, and metabolic complications of diabetes in 
streptozocin (STZ)-induced diabetic (D) rats.
Results  STZ administration induced classical symptoms 
of type 1 diabetes. Diabetic rats also displayed mechani-
cal hypersensitivity, tactile, and thermal allodynia. Plasma 
citrulline and NO levels were increased in diabetic hyper-
algesic/allodynic rats. l-Arginine supplementation failed 
to reduce hyperglycaemia, polyphagia, and weight loss. 
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However, a substantial percentage of patients do not 
respond favourably to these treatments. The estimated 
Number Needed to Treat (corresponding to the number of 
patients who must be treated for one patient to demonstrate 
a >50% reduction of pain from baseline) ranges from 3.6 
for amitriptyline, 7.7–7.2 for pregabalin and gabapentin [8] 
and 6.4 for SNRI [7]. Therefore, there is a need for efficient 
additional therapies [9], including non-pharmacological 
modalities.

Arginine deficiency has been reported in streptozo-
cin (STZ)-induced experimental diabetes in rats [10]. 
Although l-arginine can be endogenously synthesized 
from citrulline or protein breakdown, it is considered as 
a semi-essential amino acid in some situations [11]. It is 
involved in multiple biological and metabolic effects [12] 
such as muscle and protein metabolism, vasorelaxation, 
immune responses, growth hormone, prolactin, and gluca-
gon release [13, 14]. l-Arginine also stimulates in vitro and 
in vivo insulin release [12, 15]. l-Arginine is a common 
precursor for nitric oxide (NO), agmatine, ornithine and 
hence polyamines, glutamate, and glutamine, i.e., mol-
ecules involved in cellular signalization [16]. In central 
nervous system (CNS), NO, agmatine, glutamate, and pol-
yamines share a common N-methyl-d-aspartate (NMDA) 
receptor-mediated effect [12, 17]. NMDA receptor plays a 
major role in chronic pain processing particularly in central 
sensitization resulting from peripheral nerve injury. In such 
pathological condition, sustained release of glutamate from 
primary afferent fibres activates post-synaptic α-amino-
3-hydroxy-5-methylisoxazole-propionic acid (AMPA) 
receptors resulting in sodium entry and membrane depo-
larization. This relieves the magnesium voltage-dependant 
blockade [18] allowing NMDA receptor activation and 
calcium influx. High intracellular calcium concentration 
stimulates neuronal nitric oxide synthase (nNOS) and other 
signaling pathways [19] resulting an increase of neuronal 
excitability, hyperalgesia, and allodynia. In STZ-diabetic 
hyperalgesic rats, NMDA receptor phosphorylation as well 
as hyperalgesia and allodynia can be suppressed pharma-
cologically with an NMDA receptor antagonist [20] and 
by an oral magnesium supplementation [21]. The main 
disadvantages of such pharmacological and nutritional 
approaches are the lack of benefit effect on hyperglycemia 
and the onset of side effects (cognitive, sedative, and dis-
sociative effects), respectively.

We previously reported that agmatine suppressed tac-
tile and thermal allodynia and mechanical hyperalgesia in 
STZ-induced diabetic rats. This effect involved the inhibi-
tion of NOS activity [22]. Given that l-arginine metabo-
lites (NO and polyamines) can modulate NMDA channel 
currents (and hence contribute to neuropathic pain) and 
that arginine may influence insulin release and sensitivity, 
we examined whether oral l-arginine supplementation can 

improve biological and metabolic (blood glucose, urine 
nitrogen, plasma insulin, arginine, ornithine, glutamate, 
glutamine, citrulline, agmatine, and NO), as well as clini-
cal parameters (body weight, food, and water intakes) and 
hence pain-related behavior (mechanical hypersensitivity, 
tactile, and thermal allodynia) in STZ-induced diabetic 
(STZ-D) rats.

Materials and methods

Animals and diets

Male Sprague–Dawley rats weighting 226–250 g were pur-
chased from Charles River (Cléon, France). Rats were fed a 
normal chow diet: Rat/Souris Entretien AO4 (Safe, Epinay-
sur-Orge, France) containing protein 16 g/kg and arginine 
9.8 g/kg. Animals were housed three per cage under the 
standard laboratory conditions and a 12–12 h light–dark 
cycle and liter was changed every day. Water and food were 
available ad libitum. The animals were maintained and han-
dled according to the recommendations of the International 
Association for the Study of Pain (IASP) guidelines for ani-
mal experiments [23] and approved by the local Ethics Com-
mittee (C2EA, approval no. CE3-06). Great care was taken, 
particularly with regard to housing conditions, to avoid or 
minimize discomfort for animals.

Induction of diabetes and l‑arginine supplementation

Animals were rendered diabetic by a single intraperitoneal 
(i.p.) injection of STZ (72 mg/kg) (Sigma-Aldrich, St Quen-
tin Fallavier, France) dissolved in distilled water. Diabetes 
was confirmed 1 week after by measuring tail vein blood 
glucose level on an ACCU-CHEK glucose meter (Roche 
Diagnostics, Paris, France). Animals with blood glucose 
level ≥2 g/l were considered diabetic (D) and included in 
the study. For the control group, ten male Sprague–Dawley 
rats i.p. injected with 5 ml/kg of distilled water and were 
used as control for STZ-D rats.

One week after STZ (STZ-D rats) or distilled water (con-
trol non-diabetic rats) injection, and immediately after blood 
glucose level measurement, the animals were assigned to the 
following experimental groups:

•	 l-Arginine (l-Arg)-supplemented STZ-D group: STZ-D 
rats receiving l-arginine (2.58 ± 0.13 g/l) in drinking 
water for 3 weeks (n = 10);

•	 Non-supplemented STZ-D group: STZ-D rats given tap 
water for 3 weeks (n = 10);

•	 Control non-diabetic group: rats given tap water for 
3 weeks (n = 10).
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Three separate experimental groups (n = 6 per group) 
were added to measure agmatine plasma concentrations.

Measurement of clinical, biological, and metabolic 
parameters

Body weight, expressed as an average of two repeated meas-
ures, was determined weekly using an automated balance S/
SI-2002 (Fisher Scientific, New York, USA).

Glycaemia was determined once a week for 4 weeks by 
measuring tail vein blood glucose level using an ACCU-
CHEK glucose-meter (Roche Diagnostics, Paris, France). 
For determination of metabolic parameters, rats were housed 
individually in metabolic cages for 24 h with free access 
to food and water. Food and water intakes as well as urine 
excretion were measured for each rat daily. Urine was col-
lected in tubes containing 200 µl of antiseptics (Amukine, 
0.06%, Gifrer Barbezat, Décines, France) and freezed at 
−20 °C until analysis.

Urine nitrogen excretion was measured after adequate 
dilution (1/800). The nitrogen content was determined by 
gas-phase chemiluminescence (Antek Instruments Inc. 
7000, Houston, TX, USA) as previously described [24]. The 
instrument converts all chemically bound nitrogen to NO at 
1100 °C in the pyroreactor. NO is read by a photomultiplier 
tube attached to the instrument, at a wavelength between 
650 and 900 nm.

Blood was collected under halothane (3.5%) anesthesia by 
cardiac puncture and immediately centrifuged (3500×g for 
10 min, 4 °C). Plasma was separated and stored at −20 °C 
until analysis. Plasma insulin concentration was measured 
using an enzyme-linked immunosorbent assay kit (Insulin 
ELISA, Ultrasensitive Rat Insulin Elit, Mercodia, Uppsala, 
Sweden).

Measurement of l‑arginine and its metabolites

Nitric oxide concentration was determined by its degrada-
tion products in plasma [NO(x)]: nitrites (NO2) plus nitrates 
(NO3

−). Nitrites were determined using a colorimetric assay 
based on the Griess reaction [25]: 100 µl of plasma was 
combined to 100 µl of Griess reagent (1 vol of 0.5% sulphali-
namide in 6-phosphoric acid plus 1 volume of 0.05% natph-
thylethylene-diamine dihydrochloride in distilled water) and 
incubated 10 min at room temperature. Nitrates were meas-
ured as nitrite after enzymatic conversion by nitrate reduc-
tase as described by Schmidt et al. [26]. The absorbance 
was measured at 540 nm in a microplate reader (Dynatech 
Laboratories, El Paso, TX, USA) and NO2

− concentrations 
were determined with reference to a sodium-nitrite stand-
ard. Values obtained represent the sum of nitrite plus nitrate 
concentrations.

Arginine, glutamate, glutamine, citrulline, and ornithine 
concentrations were determined by ion-exchange column 
chromatography (IEC) with post-column ninhydrin derivati-
zation as described previously [27, 28] on a amino-acid ana-
lyzer (model 6300, Beckmann Instruments, Palo Alto, CA, 
USA). Before amino-acid analysis, plasma were treated for 
deproteinization with sulfosalicylic acid (50 mg/ml plasma). 
After 5 min, the samples were centrifuged (750×g, 10 min, 
4 °C) and amino-acid content of the supernatants was quan-
tified. Chromatographic peaks were recorded. The Labora-
tory participates in the European Control Quality Scheme 
(ERNDIM, Brussels, Bergium) and the results indicate the 
accuracy and reproducibility of the measurements with a 
between batch reproductibility ranging from 2 to 5% for vari-
ous amino acids.

Thin-layer chromatography (TLC) method was used 
to separate and determine agmatine plasma concentra-
tion. Agmatine sulfate was prepared at a concentration of 
2.0 mg/ml (free base) in 5% trichloroacetic acid (TCA). The 
serum was adjusted at 5% TCA on ice. The homogenate 
was centrifuged (12,000×g, 15 min, 4 °C). The precipitate 
was discarded and supernatant was used for dansylation of 
agmatine. Aliquots of 1 ml of the supernatant of the serum 
or of agmatine (100 µg/ml in 5% TCA), i.e., 100 µg were 
placed in test tubes and NaHCO3 was added until satura-
tion. Then, 1 ml of dansyl chloride (5 mg/ml in acetone) 
was added, using a Vortex mixer while adding the reagent. 
The tubes were closed and incubated at 40 °C for 1 h. After 
dansylation, 0.5 ml of 0.1 g/ml glycine solution was added 
to react with residual dansyl chloride. The content of tubes 
was mixed and tubes were heated at 40 °C for 30 min. Water 
(3 ml) was added and dansyl amines were extracted with 3× 
2 ml diethyl ether, leaving the dansyl-glycine behind. The 
combined diethyl ether extracts were evaporated to dryness 
and the residue was dissolved in 250 µl ethyl acetate. Dur-
ing this procedure, exposure to light was minimized. The 
dansyl amines were separated by TLC: high-performance 
thin-layer chromatography plates (HPTLC, 20 × 10 cm; 
Merck) were used. Samples were applied under a flow of 
nitrogen on the HPTLC plate using Linomat IV (CAMAG, 
Muttenz, Switzerland) and separated using the following 
sequential development system: development either to half 
final distance in methyl acetate followed by full develop-
ment in cyclohexane–ethylacetate (50:50, v/v). The quanti-
fication was performed after photographing the plates under 
UV and measuring density with the Image.Lab 5.1 (Biorad) 
software.

Measurement of mechanical sensitivity

Rats underwent the paw pressure test as described by Ran-
dall and Selitto [29]. Nociceptive thresholds, expressed in 
grams (g), were measured using an analgesimeter (Ugo 
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Basile, Bioseb, France) by applying increasing pressure to 
the left hind-paw until vocalization was elicited. The maxi-
mal pressure applied (cutoff) was 450 g. As this test involves 
animal handling, the experimenter got the rat used to being 
handled. The vocalization threshold (VT) was measured 
three or four times to obtain two consecutive values that dif-
fered no more than 10%, and respecting an interval of at least 
10 min between two measures. The results are expressed as 
VT variations using the formula: VT pre-STZ or distilled 
water—VT post-STZ or distilled water (g).

Measurement of tactile sensitivity

Rats were placed individually on an elevated plastic mesh 
(1 cm2 perforations) in a clear plastic cage and allowed 
at least 15 min to adapt to the testing environment. Von 
Frey hairs (Semmes–Weinstein monofilaments, Stoelting, 
IL, USA) with calibrated bending forces (from 1.479 to 
15.136 g) were used to deliver punctuated mechanical stim-
uli of varying intensity. Starting with the lowest filament 
force, von Frey hairs were applied from below the mesh 
floor to the plantar surface of the hind-paw with sufficient 
force to cause slight bending against the paw, and held for 
1 s. Each stimulus was applied five times at inter stimu-
lus intervals of 4–5 s. Care was taken to stimulate random 
locations on the plantar surface. A positive response was 
recorded if the paw was robustly and immediately with-
drawn. Paw-withdrawal threshold was defined as the mini-
mum pressure required eliciting a paw-withdrawal reflex at 
least once out of the five trials. If no response was recorded 
in any trial, the process was repeated with the next-highest 
force hair. Tactile allodynia was defined as a significant 
decrease in withdrawal thresholds to von Frey hair appli-
cation. The 15.136 g hair was selected as the upper limit 
cutoff for testing.

Measurement of thermal sensitivity

The rat’s tail was immersed in a water bath maintained at 
42 °C, i.e., a temperature normally innocuous in normal 
rats [30], until tail withdrawal or signs of struggle were 
observed (cut-off time 15 s). As this test involves handling 
of the animals, the experimenter got the rat used to being 
handled. The reaction latency (i.e., time before withdrawal 
of the tail from the bath) was measured two-to-three times 
to obtain two consecutive values that differed by no more 
than 10%, and respecting an interval of at least 15 min 
between two measures. The rat’s tail was immediately dried 
with soft cellulose paper to avoid tail cooling between two 
measures. A shortened duration of immersion indicated 
allodynia.

Statistical analysis

Values are expressed as mean ± standard error of the mean 
(SEM). Differences among experimental groups were deter-
mined by one-way analysis of variance (ANOVA) followed 
by a Tukey test. Qualitative analysis was determined by a 
Chi-square test. For correlation analysis, Pearson correla-
tion test was used. Differences were considered significant 
at P < 0.05. The software used was GraphPad Prism, version 
5.01 (GraphPad Software, Inc., La Jolla, CA, USA).

Results

Effect of diabetes and l‑arginine supplementation 
on biological and clinical parameters

STZ-induced diabetes induced disturbances in biological and 
clinical parameters. By the first week after STZ treatment, 50% 
(20/40) of STZ-treated rats were hyperglycemic, and blood 
glucose concentration had increased more than fourfold in 
non-supplemented (5.12 ± 0.22 g/l) and future l-Arg-supple-
mented STZ-D rats (5.14 ± 0.14 g/l), compared with pre-STZ 
injection glycaemia values (Fig. 1). Despite a mild decrease 
in glucose levels on week 2 in l-Arg-supplemented STZ-D 
rats, high blood glucose levels were maintained throughout the 
experiment (week 4: 5.71 ± 0.14 and 5.67 ± 0.14 g/l in non-
supplemented and l-Arg-supplemented STZ-D rats, respec-
tively). Over 4 weeks of study, control rats maintained glucose 
levels in a normal range (mean 1.22 ± 0.02 and 1.18 ± 0.02 g/l, 
weeks 0 and 4, respectively) (Fig. 1).
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Fig. 1   Time course of glycaemia in non-diabetic (non-D), non-
supplemented STZ-diabetic (non-suppl STZ-D), and l-Arg-supple-
mented diabetic (l-Arg-suppl STZ-D) rats. Values are expressed as 
mean ± SEM (n = 10 for each group). Statistical analysis was per-
formed by one-way ANOVA followed by a Tukey test. ***P < 0.001 
vs. non-D rats; †P < 0.05 vs. non-suppl STZ-D rats
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A significant decrease in plasma insulin concentration 
was observed in non-supplemented STZ-D rats when com-
pared to control rats (−0.32 ± 0.02 µg/l), whereas no signifi-
cant variation was reported when l-arginine rats were com-
pared to controls and non-supplemented STZ-D rats (Fig. 2).

Water intake in non-supplemented and l-Arg-supple-
mented STZ-D rats was ten and sevenfold higher, respec-
tively, when compared to control rats. Concerning l-Arg-
supplemented STZ-D rats, water intake was significantly 
lower (−27 ± 5%) than in non-supplemented STZ-D rats 
(Table 1). This was related with a high urine excretion in 
non-supplemented (r  =  0.89) and l-Arg-supplemented 
STZ-D rats (r  =  0.97). A significant increase of food 
intake was observed in non-supplemented and l-Arg-sup-
plemented STZ-D rats (+78 ± 12 and +52 ± 8%, respec-
tively) compared with control rats (Table 1). Hence, non-
supplemented STZ-D rats presented a significantly higher 
protein and arginine intakes compared with non-diabetic rats 
(+148 ± 22% in both variables). In addition, protein intake 

in l-Arg-supplemented STZ-D rats was significantly higher 
than in control rats (+154  ±  8%). l-Arg-supplemented 
STZ-D rats received an additional oral l-arginine supple-
mentation of 3.6 ± 0.3 g/kg/24 h in drinking water and 
2.0 ± 0.1 g/kg/24 h in food, for a total dose (food and water 
content) of 5.6 ± 0.1 g/kg/24 h. The total l-Arg intake cor-
responds to an increase of 547 ± 15 and 162 ± 6%, respec-
tively, when compared with control rats and non-supple-
mented STZ-D rats (Table 1).

The kinetic curve of the body weight gain (Fig. 3) shows 
that the three groups progressed differently over the time 
of experiment. A sustained weight gain was observed in 
control rats corresponding to body weight increase of 
+37 ± 4% at week 4 vs. week 0. In contrast, non-supple-
mented STZ-D rats did not gain weight which remained 
the same until the end of treatment (Fig. 3). Supplementa-
tion with l-arginine did not prevent body weight arrest, but 
slightly increased body weight loss from week 2 to week 
4, compared to non-supplemented STZ-D rats (−14 ± 3%, 
at week 4).

In non-supplemented STZ-D rats, the urine nitrogen 
excretion was significantly higher than in control rats 
(+60 ± 11%). l-Arginine supplementation lowered nitro-
gen excretion (−16 ± 4% compared to non-supplemented 
STZ-D rats) (Fig. 4).

Comparison of nitrogen balance of control and non-
supplemented STZ-D rats revealed that there was a greater 
nitrogen loss in STZ-D rats (2.0 ± 0.1 g/kg) than in non-D 
rats (0.9 ± 0.1 g/kg), but levels of total amino-acid nitrogen 
intake were significantly higher in non-supplemented STZ-D 
than in control rats (5.0 ± 0.5 vs. 2.0 ± 0.1 g/kg) (Table 1). 
Consequently, the nitrogen balance was found significantly 
more positive in STZ-D rats (5.0 ± 0.2 g/kg) than in con-
trol rats (1.1 ± 0.2 g/kg). Whereas total nitrogen intake of 
l-Arg-supplemented group increased up to 6.9 ± 0.2 g/kg, 
nitrogen loss (2.0 ± 0.1 g/kg) did not change and caused a 
statistical increase in the positive nitrogen balance of l-Arg 
supplemented STZ-D rats (5.0 ± 0.2 g/kg) compared with 
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Fig. 2   Insulin plasma concentrations in non-diabetic (non-D), non-
supplemented STZ-diabetic (non-suppl STZ-D), and l-Arg-supple-
mented diabetic (l-Arg-suppl STZ-D) rats. Values are expressed as 
mean ± SEM (n = 6–8/group). Statistical analysis was performed by 
one-way ANOVA followed by a Tukey test. *P < 0.05 vs. non-D rats

Table 1   Effect of streptozocin-
induced diabetes (STZ-D) and 
l-arginine supplementation 
to diabetic rats on water, 
food, protein, arginine and 
total nitrogen intakes, urine 
excretion, and nitrogen balance 
at week 4 of the experiment

Non-diabetic (non-D) rats. Values are expressed as mean ± SEM (n = 8–10/group). Statistical analysis was 
performed by one-way ANOVA followed by a Tukey test
*** P < 0.001 vs. non-diabetic rats
†††  P < 0.001, ††P < 0.01, †P < 0.05 vs. non-suppl STZ-D rats

Parameter Non-D Non-suppl STZ-D l-Arg-suppl STZ-D

Water intake (ml/24 h) 35.2 ± 2.4 376.6 ± 32.8*** 275.5 ± 18.2***, ††

Urine excretion (ml/24 h) 12.5 ± 1.5 300.1 ± 24.2*** 228.5 ± 17.2***, †

Food intake (g/24 h) 30.7 ± 1.8 54.7 ± 3.7*** 46.6 ± 2.3***
Protein intake (g/kg/24 h) 1.3 ± 0.1 3.1 ± 0.3*** 3.2 ± 0.1***
Arginine intake (g/kg/24 h) 0.8 ± 0.0 1.9 ± 0.2*** 5.6 ± 0.1***, †††

Nitrogen intake (g/kg/24 h) 2.0 ± 0.1 5.0 ± 0.5*** 6.9 ± 0.2***, †††

Nitrogen balance (g/kg/24 h) 1.1 ± 0.2 2.9 ± 0.4*** 5.0 ± 0.2***, †††
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non-supplemented STZ-D and control rats (2.9 ± 0.4 and 
1.1 ± 0.2 g/kg, respectively).

Effect of diabetes and l‑arginine supplementation 
on plasma NO, arginine, agmatine, and its related 
amino‑acid concentrations

Nitric oxide plasma concentration was significantly 
increased in non-supplemented STZ-D rats (+69 ± 20%) 

compared to control rats (Table  2). l-Arginine sup-
plementation normalized plasma NO concentration 
(Table 2). Agmatine plasma concentration was not differ-
ent in STZ-D rats (1.11 ± 0.24 µM) compared to non-D 
rat (0.94 ± 0.20 µM), but was significantly increased 
in l-arginine supplemented STZ rats (+389  ±  72%, 
4.58 ± 0.68 µM) compared to non-D rats. Unexpectedly, 
plasma arginine concentration was unaffected by diabe-
tes; moreover, lower plasma arginine concentration was 
observed in l-Arg-supplemented STZ-D rats (−59 ± 4%) 
when compared to controls. Glutamate plasma con-
centration was significantly reduced by 57 ± 14%, in 
non-supplemented STZ-D rats compared to non-dia-
betic rats (Table  2). Glutamine plasma concentration 
was significantly lowered in non-supplemented STZ-D 
rats (−46 ± 2%) and l-Arg-supplemented STZ-D rats 
(−72 ± 3%). Citrulline plasma concentration was signifi-
cantly increased in both non-supplemented and l-Arg-
supplemented STZ-D rats by 65 ± 19 and 70 ± 18%, 
respectively, compared to control rats. l-Arginine sup-
plementation was associated with a lowered ornithine 
plasma concentration compared to control rats (−9 ± 9%), 
whereas no difference was observed when compared to 
non-supplemented STZ-D rats (Table 2).

Effect of diabetes and l‑arginine supplementation 
on mechanical thresholds

Mechanical nociceptive thresholds did not vary during the 
4 week study in non-diabetic rats (Fig. 5). At the second 
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Fig. 4   Urine nitrogen concentrations in non-diabetic (non-D), non-
supplemented STZ-diabetic (non-suppl STZ-D), and l-Arg-supple-
mented diabetic (l-Arg-suppl STZ-D) rats. Values are expressed as 
mean ± SEM (n = 9–10 for each group). Statistical analysis was per-
formed by one-way ANOVA followed by a Tukey test. ***P < 0.001, 
*P < 0.05 vs. non-D rats; ††P < 0.01 vs. non-suppl. STZ-D rats

Table 2   Arginine, ornithine, glutamate, glutamine, citrulline, 
NO(x)n and agmatine plasma concentrations in non-diabetic (Non-
D), non-supplemented STZ-diabetic (Non-suppl STZ-D)n and l-Arg-
supplemented diabetic (l-Arg-suppl STZ-D) rats at week 4 of the 
experiment

Non-diabetic (Non-D) rats. Values are expressed as mean  ±  SEM 
(n  =  4–7). Statistical analysis was performed by one-way ANOVA 
followed by a Tukey test
*** P < 0.001, **P < 0.01, *P < 0.05 vs. Non-diabetic rats
†††  P < 0.001, †P < 0.05 vs. Non-suppl STZ-D rats

Plasma concentration (μM l−1)

Parameter Non-D Non-suppl STZ-D l-Arg-suppl STZ-D

Nitric oxide 3.7 ± 0.6 6.2 ± 0.7* 3.1 ± 0.8†

Agmatine 0.94 ± 0.2 1.1 ± 0.2 4.58 ± 0.7***, †††

Arginine 196.7 ± 3.8 192.5 ± 26.0 87.0 ± 4.1***, †††

Glutamate 55.7 ± 7.9 24.0 ± 7.5** 38.8 ± 3.9
Glutamine 774.5 ± 8.8 419.8 ± 16.5*** 219.0 ± 19.4***, †††

Citrulline 86.8 ± 5.7 143.3 ± 16.8* 147.3 ± 15.3**
Ornithine 54.0 ± 2.9 45.3 ± 7.2 49.2 ± 4.7*
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Fig. 3   Time course of body weight gain in non-diabetic (non-D), 
non-supplemented STZ-diabetic (non-suppl STZ-D), and l-Arg-sup-
plemented diabetic (l-Arg-suppl STZ-D) rats. Values are expressed as 
mean ± SEM (n = 10 for each group). Statistical analysis was per-
formed by one-way ANOVA followed by a Tukey test. ***P < 0.001, 
**P < 0.01 vs. non-D rats; †P < 0.05 vs. non-suppl STZ-D rats
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week of study, mechanical hyperalgesia was evident in 
all the non-supplemented STZ-D rats (−125.1 ± 12.6 g 
reduction in paw pressure-induced vocalization thresholds) 
which worsened at week 4 (−209.3 ± 13.4 g). l-Arginine 
supplementation prevented mechanical hypersensitivity 
over 4 weeks of study in 80% of rats and only 20% of rats 
presented a reduction in paw pressure-induced vocalization 
thresholds (−143.1 ± 26.9 and −163.1 ± 6.9 g at weeks 2 
and 4, respectively).

Effect of diabetes and l‑arginine supplementation 
on tactile allodynia

Before the administration of STZ or its vehicle, no painful 
reaction to the application of a non-noxious stimulation 
of 15.136 g von Frey hair application was observed in any 
of the three groups studied (Table 3). Four weeks after 
STZ injection, 60% of the non-supplemented STZ-D rats 
showed painful reaction characterized by a paw-withdrawal 
threshold of 8.5 ± 2.3 g. Half of these rats already pre-
sented a painful reaction at 2 weeks after STZ injection 
(mean paw-withdrawal threshold 11.8 ± 1.9 g). When 
evaluating l-arginine supplementation in STZ-D rats, no 
withdrawal response to the strongest von Frey filament was 
observed in all STZ-D supplemented rats during 4 weeks of 
study. This later indicates that tactile allodynia was totally 
prevented.

Effect of diabetes and l‑arginine supplementation 
on thermal allodynia

Before the injection of STZ or distilled water, no response 
occurred during the 15 s application of a non-noxious stimu-
lation (tail immersion in a 42 °C water bath) in the three 
groups of rats (Table 3). At week 2, a reaction appeared in 
60% of the non-supplemented STZ-D rats before the cut-
off time (7.3 ± 1.1 s) indicating allodynia. This reaction 
latency remained the same until the end of the experiment 
(8.1 ± 0.4 s, at week 4). l-Arginine supplementation totally 
prevented thermal allodynia in all l-Arg-supplemented 
STZ-D rats, as demonstrated by the lack of any responses 
to the warm stimulus throughout the study (reaction latency 
>15 s at weeks 2 and 4).

Discussion

In the current study, we show that l-arginine supplemen-
tation prevents mechanical hyperalgesia, tactile, and ther-
mal allodynia in STZ-induced diabetic neuropathic rats 
by normalizing NO(x) plasma concentration and increas-
ing agmatine plasma concentration. Oral l-arginine supply 
also reduced polydipsia, polyuria, urine nitrogen excretion, 
and slightly limited hypoinsulinemia, but failed to reduce 
hyperglycemia.

As previously reported [21, 30, 31], the administration 
of STZ in rats induced an experimental T1DM, with severe 
hyperglycemia and hypoinsulinemia, polydipsia, polyuria 
and polyphagia, a blockade in body weight gain, and high 
urine nitrogen excretion.

No significant variation on plasma insulin concentration 
in l-Arg-supplemented STZ-D rats compared to STZ-D 
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Fig. 5   Time course of mechanical sensitivity measured by paw pres-
sure-induced vocalization threshold (VT) variations in non-diabetic 
(non-D), non-supplemented STZ-diabetic (non-suppl STZ-D), and 
l-Arg-supplemented diabetic (l-Arg-suppl STZ-D) rats. Results are 
expressed as mean ± SEM (n = 8–10 for each group). Statistical anal-
ysis was performed by one-way ANOVA followed by a Tukey test. 
***P < 0.001 vs. non-D rats; †††P < 0.001, ††P < 0.01 vs. non-suppl. 
STZ-D rats

Table 3   Occurrence of tactile (von Frey hair application) and ther-
mal (tail immersion in a 42 °C water bath) hypersensitivity at weeks 
2 and 4 of the experiment in non-diabetic, Non-supplemented STZ-
diabetic (Non-suppl STZ-D), and l-Arg-supplemented diabetic 
(l-Arg-suppl STZ-D) rats

Non-diabetic (Non-D) rats. Values are expressed as number of 
responder animals/number of rats in the studied group. Statistical 
analysis was performed by Chi-square test
** P < 0.01 vs. Non-diabetic rats
††  P < 0.05 vs. Non-suppl STZ-D rats

Parameter Non-D Non-suppl STZ-D l-Arg-
suppl 
STZ-D

Tactile hypersensitivity
 Week 2 0/10 3/10 0/10
 Week 4 0/10 6/10** 0/10††

Thermal hypersensitivity
 Week 2 0/10 6/10** 0/10††

 Week 4 0/10 6/10** 0/10††
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and controls was observed. This is in concordance with 
high blood glucose levels observed in l-Arg-supplemented 
STZ-D rats. Studies have observed that l-arginine supple-
mentation improves insulin sensitivity but not blood glu-
cose levels in patients with T2DM [32]. Other studies have 
shown a preventive effect of l-arginine supplementation 
on hyperglygemia in diabetes by improvement of plasma 
insulin levels and insulin sensitivity [15, 32]. Poor glyce-
mic control, increased glomerular flow rate, and decreased 
fluid reabsorption may be responsible for polyuria, poly-
dipsia, and polyphagia observed in diabetes [33, 34]. In our 
study, l-arginine supplementation in STZ-D rats reduced 
polydipsia and hence polyuria. Despite an anorectic activity 
reported by nitric oxide synthase inhibitors, such as NG-
nitro-l-arginine (l-NO Arg) [35], polyphagia was not pre-
vented but only reduced in l-arginine supplemented STZ-D 
rats. It resulted in high protein and l-arginine intakes with-
out preventing body weight growth halt. This latter may be 
related to insulin deficiency, reduced glucose uptake, and 
altered protein turn over [36, 37]. The reduction of nitrogen 
excretion resulting from l-arginine supplementation could 
be related to a reduced body protein catabolism. Accord-
ingly, l-arginine supplementation or infusion was shown to 
improve protein anabolism and to attenuate muscle protein 
catabolism [38]. Supporting this, nitrogen balance was more 
positive in supplemented STZ-D rats than in non-supple-
mented STZ-D or non-D rats. Performing pair fed studies 
in rats receiving an isonitrogenous and isocaloric mixture 
of non-essential amino acids could have allowed to compare 
more specifically the effect of l-Arg independently of calorie 
and nitrogen intakes.

Surprisingly, contrary to previous studies reporting a 
decrease of plasmatic level of l-arginine in diabetic rats 
[39, 40] and humans [41], we found that l-arginine plasma 
concentration in non-supplemented STZ-D rats was simi-
lar to that of control rats and that of l-Arg supplemented 
rats was reduced by half. In addition, the plasma level 
of citrulline, the immediate precursor of l-arginine, was 
increased by almost twofold in both non-supplemented and 
l-Arg supplemented diabetic rats. Consequently, the ratio 
l-arginine/citrulline was 2.3, 1.3, and 0.5 in control rats, 
non-supplemented and l-Arg supplemented STZ-D rats, 
respectively. This later suggest that, in such conditions 
of diabetes and arginine supplementation, either enzyme 
activities involved in l-arginine synthesis are altered or 
that l-arginine is over metabolized and enters in another 
metabolic pathways.

In the present study, plasma citrulline concentration was 
higher in non-supplemented STZ-D rats than in controls 
as recently reported [42], as well as plasma NO(x) levels, 
previously found to be either increased [43] or decreased 
[44, 45] in diabetic patients and diabetic animals. In addi-
tion, the plasma level of l-ornithine remained unchanged, 

suggesting that l-arginine metabolism in non-supplemented 
STZ-D rats is directed principally to activation of the NOS 
pathway resulting in an increased citrulline and NO produc-
tion. Indeed, it is known that many cell types utilize arginine 
to generate NO.

In l-Arg-supplemented STZ-D rats, plasma levels of 
l-arginine as well as the ratio l-arginine/citrulline are lower 
than in control or non-supplemented STZ-D rats. This was 
accompanied by changes in arginine metabolites: low glu-
tamine and ornithine and high citrulline plasma concentra-
tions without variations in glutamate plasma level. Results 
from pharmacokinetic studies in healthy or hypercholester-
olemic subjects indicate that arginine, administered either 
i.v. or orally, is cleared rapidly from the circulation [46, 47]. 
Low plasma arginine levels may indicate, among other, that 
arginine-dependent pathways and metabolism can be dis-
turbed in both pathological (diabetes) and increased argi-
nine intake condition [48]. We hypothesize that in diabetic 
rats under arginine supplementation, arginine metabolism 
is directed to agmatine synthesis via arginine decarboxy-
lase activation, since other metabolites derived from arginine 
are increased (agmatine), reduced (ornithine), or normalized 
(NO). Indeed, we found that l-arginine supplementation not 
only normalized NO(x) plasma concentrations as previously 
reported [40], but also increased by almost fivefold plasma 
levels of agmatine in STZ-diabetic rats. Consequently, we 
assume that agmatine resulting from arginine decarboxyla-
tion is able to compete with NO synthesis, as previously 
reported [49, 50].

Diabetes-induced neuropathic pain is due to primary dys-
function of peripheral nociceptive, as well as non-nocicep-
tive nerves, associated with neuroplastic changes responsible 
for sensitization of spinal processing (central pain), thereby 
causing persistent hyperalgesia and/or allodynia [51]. In the 
present study, diabetic rats developed mechanical hyperal-
gesia, tactile, and thermal allodynia with some variabil-
ity in the kinetics of onset and the proportion of painful 
animals. First, the sensitization of small (C)- and medium 
(delta)-diameter fibres which are responsible for mechani-
cal hyperalgesia and thermal allodynia occurs more rapidly 
[52–54] than mechanisms responsible for tactile allodynia. 
Second, STZ-induced diabetes resulted in variability in tac-
tile allodynia onset between subjects. Only 30% of diabetic 
rats presented an aversive reaction to non-painful tactile 
stimulation at the second week of diabetes and 60% at the 
fourth week of diabetes suggesting different mechanisms 
than those underlying mechanical hyperalgesia and thermal 
allodynia. Indeed, more than the frequency firing of C-fibres 
to stimulus application, it is the reduction of conduction fail-
ure of high-fire-frequency polymodal C-fibres (an intrinsic 
self-inhibition mechanism known to modulate pain process-
ing) that may underlie tactile allodynia [55]. Development 
and maintenance of thermal hyperalgesia [56] as well as 
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mechanical hyperalgesia [57] have been previously related 
to NO synthesis. Here, non-supplemented STZ-D rats pre-
sented high citrulline and NO(x) plasma concentrations 
which may indicate high activity of NOS and consequently 
NO synthesis, coinciding with pronounced signs of mechani-
cal hyperalgesia, thermal, and tactile allodynia.

Arginine is a common precursor, of NO and agmatine, 
displaying pronociceptive and antinociceptive effects, 
respectively. In this study, l-arginine supplementation 
normalized NO plasma concentration and rescued normal 
pain sensation in 100 and 80% of diabetic rats. This sug-
gests that arginine supplementation in diabetes may be 
directed to the synthesis of agmatine, impairing NO pro-
duction. Decarboxylated arginine has shown to reduce pain 
associated behaviors in rodent models of neuropathic and 
inflammatory pain [22, 58, 59]. Similarly, it was shown 
that intravenous administration of l-arginine induced a 
dose-dependent analgesic effect in patients with persis-
tent pain [60].

In conclusion, our data indicate that l-arginine supple-
mentation prevents mechanical hyperalgesia, tactile, and 
thermal allodynia in painful diabetic neuropathy. The lack 
of effect of oral l-arginine supplementation on glycemia 
and weight loss suggests that prevention of allodynia and 
hyperalgesia is more likely due to the normalization of 
plasma NO(x) concentration which may modulate spinal 
pain processing than to peripheral metabolic effects. Thus, 
in diabetes, l-arginine oral supplementation may be an 
original therapeutic alternative, free of major side effects 
to prevent the onset of neuropathic pain.
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