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more than 8 trials. Compared with control diets, low-GI 
diets significantly reduced FBG (weight mean differences 
(WMD) = −0.18 mmol/L, 95 % CI: −0.33, −0.02), 2-h 
postprandial glucose level (WMD = −0.33 mmol/L, 
95 % CI: −0.54, −0.12), and the proportion of LGA 
(RR = 0.52, 95 % CI: 0.31, 0.89). A lower GWG 
(WMD = −0.69 kg, 95 % CI: −1.74, 0.36) and birth 
weight (WMD = −0.10 kg, 95 % CI: −0.23, 0.03) were 
also observed without significant differences. Heterogene-
ity was observed in the GWG, FBG, and birth weight anal-
yses. Low-GI diets did not affect other maternal and new-
born outcomes. In subgroup and sensitivity analyses, the 
intervention effects of low GI on GWG and FBG varied.
Conclusions Low-GI diets may have beneficial effects on 
maternal outcomes for those at risk of developing high glu-
cose levels, without causing adverse effects on newborn 
outcomes. However, results should be interpreted with cau-
tion because of the evidence of heterogeneity and limited 
number of studies.

Keywords Low glycemic index · Pregnancy outcomes · 
Randomized controlled trials · Meta-analysis

Introduction

The nutritional status of the mother during pregnancy plays 
a vital role in fetal growth and development, with glucose 
as the main energy substrate [1]. However, different carbo-
hydrate foods produce varied glycemic responses, which 
influence maternal blood glucose concentrations [2]. In 
1981, Jenkins [3] proposed the use of glycemic index (GI) 
to rank postprandial glycemic responses to the equivalent 
portions of carbohydrates in different foods. Carbohydrates 
are then classified according to their induced glycemic 
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Methods PubMed, Clinical Trials, and Cochrane Library 
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and large for gestational age (LGA) were investigated in 

Electronic supplementary material The online version of this 
article (doi:10.1007/s00394-016-1306-x) contains supplementary 
material, which is available to authorized users.

 * Yi Wang 
 yi.wang@rd.nestle.com

 * Li-Qiang Qin 
 qinliqiang@suda.edu.cn

1 Department of Nutrition and Food Hygiene, School of Public 
Health, Soochow University, 199 Renai Road, Dushu Lake 
Higher Education Town, Suzhou 215123, China

2 Department of Nutrition, First Hospital of Hebei Medical 
University, Shijiazhuang 050031, China

3 Nutrition and Health Research, Nestlé Research Center, 
Lausanne, Switzerland

4 Nestlé Research Center, Beijing 100095, China

http://crossmark.crossref.org/dialog/?doi=10.1007/s00394-016-1306-x&domain=pdf
https://doi.org/10.1007/s00394-016-1306-x


168 Eur J Nutr (2018) 57:167–177

1 3

responses as either high or low GI. Among these two types 
of carbohydrates, those with low GI produce low glyce-
mic response, e.g., whole grain breads, cereals, and nuts, 
whereas high-GI foods produce a high glycemic response, 
e.g., refined grains, desserts, and soft drinks. Alterations in 
maternal metabolism provide nutrients in excess of those 
required for normal fetal growth and for maternal and fetal 
energy requirements. In this context, the presence of any 
degree of abnormal glucose tolerance represents an altered 
environment for the growth of the fetus [4]. A dietary 
intake of carbohydrates with low GI induces individuals to 
obtain normal gestational weight gain (GWG) and normal 
infant birth weight, whereas carbohydrates with high GI 
results in feto-placental overgrowth and predisposition to 
fetal macrosomia [5].

Previous systematic reviews and meta-analyses dem-
onstrated that low-GI diets may reduce insulin require-
ments and birth weight without adverse effects on preg-
nant women with gestational diabetes mellitus (GDM), 
suggesting that low-GI diets are an appropriate dietary 
intervention for GDM when glucose load is controlled 
[6, 7]. As the research in this field is active and fast-
moving, a number of recent randomized controlled tri-
als (RCTs) have been published to assess the effects of 
dietary GI on maternal and newborn outcomes in preg-
nant women with or without GDM. However, these tri-
als yielded varied results because of the differences in 
the study design and participant characteristics [8–18]. 
Thus, the feasibility of using low-GI diets to replace cur-
rent recommended pregnant diets remains inconclusive. 
The present study aims to analyze the overall effects 
of low-GI diets on maternal and newborn outcomes in 
pregnant women regardless of their health status by con-
ducting a meta-analysis of RCTs.

Materials and methods

Literature search

This study was performed in accordance with Preferred 
Reporting Items for Systematic Reviews and Meta-Analy-
ses (PRISMA) [19]. A systematic literature search for Eng-
lish publications was conducted in the databases of Pub-
Med, Clinical Trials, and the Cochrane Central Register of 
controlled Trials up to January 2016. Search terms included 
glycemic index, glycemic load, carbohydrates combining 
with pregnancy, and gravidas. The search was limited to 
human clinical trials. A manual search was also performed 
using the reference lists of original articles and recent 
reviews. Authors of the original studies were not contacted 
for additional information.

Study selection

Studies were selected based on the following criteria: (1) 
The study design was a RCT; (2) the study was conducted 
in pregnant women (≥18 years old, with a singleton preg-
nancy); (3) the study comprised a control or a comparison 
group, and the intervention was low-GI diet with dietary GI 
level; (4) the dietary intervention was more than 4 weeks; and 
(5) pregnancy outcomes included maternal or newborn out-
comes providing data for statistical analysis. Maternal out-
comes included the following: GWG, fasting blood glucose 
(FBG), 2-h postprandial glucose (2-h PG), glycated Hb A1c 
(HbA1c), gestational age at delivery, proportion of pregnant 
women who use insulin, and proportion of cesarean delivery. 
Newborn outcomes included the following: birth weight, pon-
deral index (PI), head circumference, body length, abdominal 
circumference, proportion of large for gestational age (LGA; 
birth weight >90th centile), small for gestational age (SGA; 
birth weight <10th centile), macrosomia (birth weight >4 kg), 
prematurity, birth centile, and birthweight centile.

Data extraction and quality assessment

The following characteristics of each study were recorded: 
the first author’s name, publication year, country of origin, 
sample size, study design details, participant characteristics 
(mean age, body weight, body mass index (BMI), health 
status, and gestation age at recruitment), dietary GI level, 
and maternal or newborn outcomes mentioned above. If 
more than one time point for the follow-up was reported, 
data from the longest period were used. The Jadad scale 
was used to assess the methodological quality of each 
included trial by assigning scores ranging from 0 to 5 for 
reported randomization, blinding, and withdrawal [20]. 
Two authors (R-Z and LQ-Q) independently conducted the 
literature search, study selection, and data extraction. Any 
divergence was resolved by discussion.

Statistical analysis

For binary data, combined relative risk (RR) with 95 % 
confidence interval (CI) was evaluated. For continuous 
data, weighted mean difference (WMD) with 95 % CIs was 
calculated. Standard deviations (SDs) for net changes were 
obtained from the baseline in each group. If not reported, 
they were derived from standard errors, median and inter-
quartile ranges by using a standard formula [21]. If SDs for 
the baseline and final values were only provided, SDs were 
imputed according to the method of Follmann et al. [22] 
with an assumed correlation coefficient of 0.5.

The heterogeneity of the effect size among studies was 
tested using the Cochran’s Q test at the P < 0.10 level of 



169Eur J Nutr (2018) 57:167–177 

1 3

significance. We calculated I2 values, a quantitative meas-
ure of inconsistency across studies [23]. A random-effects 
model was used when P < 0.10 at the Q test; otherwise, a 
fixed-effects model was applied [24]. To explore the pos-
sible influences of study designs and participant character-
istics on the combined effect sizes, we further conducted 
pre-specified subgroup analyses using stratified outcomes 
from ≥8 trials. In addition, we investigated the influence 
of a single study on the overall risk estimate by omitting 
one study in each turn. Potential publication bias was 
assessed using Begg’s funnel plots and the Egger’s regres-
sion test [25]. All analyses were performed using STATA 
version 12.0 (StataCorp, College Station, TX, USA). 
P < 0.05 was considered statistically significant, except 
otherwise specified.

Results

Literature search

We initially identified 339 potentially eligible publications, 
most of which were excluded after browsing titles and 

abstracts because they were animal studies and reviews, 
and did not follow a randomized design. After reviewing 
the full text of the remaining 27 articles, 16 were excluded. 
The main reasons for which were as follows: Diet was not 
the primary intervention, the dietary GI levels were not 
reported, and pregnancy outcomes were not of our inter-
est. Walsh et al. [12] and Macgowan et al. [26] reported the 
results from the same trial (the ROLO study), and the study 
of Walsh et al. was included because of the larger popula-
tion size. Clapp et al. [5, 27] provided additional informa-
tion for the previous article [18]. To obtain sufficient data, 
we used supplementary data in one systematic review [7], 
which were not reported in the original study [17], instead 
of contacting authors for additional information. Eleven 
RCTs were selected for the final analysis [8–18]. The flow-
chart of literature search is presented in Fig. 1.

Study characteristics

The characteristics of the selected trials are presented in 
Table 1. Of the 11 trials published from 1997 to 2016, 5 
were conducted in Australia, 2 in the USA, and 1 each in 
Ireland, Mexico, Canada, and China. Only 1 trial followed 

Fig. 1  Flowchart for selection 
of eligible studies
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a double-blind design and 2 applied a single-blind design. 
Sample sizes varied from 20 to 576, with a total of 1985 
pregnant women. The mean age of pregnant women 
ranged from 29.9 to 34.7 years, and mean BMI from 21.5 
to 32.4 kg/m2. Five trials were conducted in pregnant 
women with GDM, pregestational type 2 diabetes mellitus 
(T2DM), or impaired glucose tolerance during pregnancy. 
The other trials studied healthy pregnant women (n = 3), 
overweight/obese pregnant women (n = 1), women who 
previously delivered a macrosomic infant (n = 1), and 
women who were at high risk of GDM (n = 1). Die-
tary intervention was initially conducted from 12.9 to 
30.1 weeks of gestation, and five trials continued the inter-
vention until delivery. The dietary GI ranged from 47 to 71 
(median 50.4) in the intervention groups and from 48.6 to 
84 (median 57.7) in the control groups. Nine trials meas-
ured the dietary intake by using 3-day diet records, and 
other two used 24-h dietary recalls. Most participants in 
the control group received healthy eating diet advice. The 
Jadad scale of these trials ranged from 1 to 4. The charac-
teristics of maternal and newborn outcomes in the included 
trials are given in Table 2.

Effects of low‑GI diets on maternal outcomes

Low-GI diet significantly reduced FBG (WMD =  
−0.18 mmol/L, 95 % CI: −0.33, −0.02, n = 8) (Fig. 2) 
and 2-h PG (n = −0.33 mmol/L, 95 % CI: −0.54, −0.12, 
n = 4), but did not affect HbA1c levels (WMD = 0.02 %, 
95 % CI: −0.03, 0.08, n = 3). Low-GI diets produced 
somewhat lower GWG (WMD = −0.69 kg, 95 % CI: 
−1.74, 0.36, n = 9) than control diets without significant 
difference (Fig. 3). In contrast, no significant change was 
observed in gestational age at delivery (MWD = 0.03, 
95 % CI: −0.14, 0.20, n = 5), proportion of cesarean deliv-
ery (RR = 1.07, 95 % CI: 0.75, 1.53, n = 5), and insulin 
use (RR = 1.01, 95 % CI: 0.77, 1.33, n = 3) (Supplemen-
tary Fig. 1). GWG (P = 0.027, I2 = 53.8 %) and FBG anal-
yses (P < 0.001, I2 = 73.7 %) showed heterogeneity across 
studies.

Effects of low‑GI diets on newborn outcomes

The meta-analysis results showed a borderline significant 
reduction in birth weight (WMD = −0.10 kg, 95 % CI: 
−0.23, 0.03, n = 11) (Fig. 4) and a significant reduction 
in the proportion of LGA (RR = 0.52, 95 % CI: 0.31, 0.89, 
n = 8) (Fig. 5). No differences were observed in other new-
born outcomes, including PI (MWD = −0.07 kg/m3, 95 % 
CI: −0.71, 0.57, n = 8), body length (MWD = −0.05 cm, 
95 % CI: −0.66, 0.55, n = 6), head circumference 
(MWD = −0.13 cm, 95 % CI: −0.68, 0.41, n = 5), 

abdominal circumference (MWD = −0.65 cm, 95 % CI: 
−2.23, 0.92, n = 3), SGA(RR = 1.33, 95 % CI: 0.71, 
2.50, n = 6), macrosomia (RR = 0.95, 95 % CI: 0.83, 
1.09, n = 8), prematurity (RR = 0.70, 95 % CI: 0.39, 1.28, 
n = 5), birth centile (MWD = −7.87, 95 % CI: −21.92, 
6.19, n = 3), and birthweight centile (MWD = −1.22, 
95 % CI: −4.46, 2.02, n = 3) (Supplementary Fig. 2). 
Significant heterogeneity was observed for the analysis 
of birth weight (P < 0.001, I2 = 80.7 %), PI (P = 0.009, 
I2 = 62.6 %), body length (P = 0.002, I2 = 73.5 %), head 
circumference (P = 0.005, I2 = 73.3 %), abdominal cir-
cumference (P < 0.001, I2 = 91.9 %), and birth centile 
(P = 0.005, I2 = 81.1 %).

Subgroup and sensitivity analyses

GWG, FBG, birth weight, LGA, macrosomia, and PI were 
investigated in 9, 8, 11, 8, 8, and 8 trials, respectively. Sub-
group analysis was performed on these six outcomes. The 
significant decrease in maternal FBG was diminished when 
trials were limited to blind design, BMI ≥25 kg/m2, and GI 
difference <7. Low-GI diets did not affect FBG when trials 
were stratified by GDM condition. The significant decrease 
in GWG by low-GI diets was observed when the analysis 
was limited to trials with a GI difference ≥7. On the other 
hand, the results of birth weight, LGA, macrosomia, and PI 
by any stratification were consistent with the overall esti-
mates (Table 2).

Sensitivity analyses were performed to examine the 
effect of a single trial on the overall results by omit-
ting one trial in each turn. When the study of Walsh et al. 
[12] was excluded, maternal FBG reduction became 
more pronounced (WMD = −0.28 mmol/L, 95 % CI: 
−0.36, −0.20) without heterogeneity across the stud-
ies (P = 0.190, I2 = 31.2 %). In addition, omitting the 
trial by Ma et al. [9] resulted in less reduction in FBG by 
0.13 mmol/L (95 % CI: −0.29, 0.02) and in 2-h PG by 
0.21 mmol/L (95 % CI: −0.49, 0.07). When the study of 
Moses et al. [17] was excluded, reduced GWG became 
significant (WMD = −0.99 kg, 95 % CI: −1.95, −0.03) 
without heterogeneity across the studies (P = 0.122, 
I2 = 38.6 %). When the trial by Perichart-Perera et al. [11] 
was excluded, low-GI diet significantly decreased prematu-
rity (RR = 0.45, 95 % CI: 0.20, 0.99).

Publication bias

No publication bias was found as assessed by Begg’s fun-
nel plot and Egger’s test, except a possible publication bias 
for analyses 2-h PG (Egger’s test, P = 0.004), LGA (Egg-
er’s test, P = 0.014), SGA (Egger’s test, P = 0.044), and 
macrosomia (Egger’s test, P = 0.033).
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Fig. 2  Meta-analysis of the 
effect of low-glycemic-index 
(GI) diets on gestational weight 
gain (GWG) as compared to the 
control. WMD weighted mean 
difference (kg)

Overall  (I-squared = 73.7%, p = 0.000)
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Fig. 3  Meta-analysis of the 
effect of low-glycemic-index 
(GI) diets on maternal fast-
ing blood glucose (FBG) as 
compared to the control. WMD 
weighted mean difference 
(mmol/L)

Overall  (I-squared = 53.8%, p = 0.027)
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Fig. 4  Meta-analysis of the 
effect of low-glycemic-index 
(GI) diets on newborn birth 
weight as compared to the 
control. WMD weighted mean 
difference (kg)

Overall  (I-squared = 80.7%, p = 0.000)
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Discussion

Maternal dietary macronutrient intake throughout preg-
nancy affects maternal metabolism and in utero envi-
ronment. As glucose is a major energy substrate for fetal 
growth, varying degrees of glucose intolerance, even if 
less than that conventionally required for the diagnosis of 
gestational diabetes, will result in alterations in utero envi-
ronment and thus will influence fetal growth and adiposity 
[28]. Oostdam et al. [29] evaluated six types of intervention 
during pregnancy in the prevention of GDM using meta-
analysis; the results showed that dietary intervention, such 
as low-GI diet advice, may reduce GDM incidence com-
pared with the standard care. A previous systemic review 
also reported that low-GI diets may reduce the need for 
insulin in pregnant women with GDM [6]; this finding was 
confirmed by a recent meta-analysis [7].

So far, both reviews excluded trials conducted among 
healthy women and the number of selected trials was less 
than five. In fact, women with even a mildly elevated blood 
glucose level have a higher risk of giving birth to a LGA 
infant [29]. Beneficial effects on birth weight were already 
observed in pregnant women without GDM after low-GI 
diets [18]. Thus, in the present updated meta-analysis, we 
have included participants of healthy pregnant women, 
women with gestational hyperglycemia, and women with 
pregestational T2DM. Moreover, the pregnancy outcomes 
in the present meta-analysis included 7 maternal and 11 
newborn outcomes, which were more comprehensive than 
the previous relevant studies.

Maternal hyperglycemia and hyperglycemic excursions 
(during fasting, after a glucose load, and postprandial) 
could lead to adverse pregnancy and offspring outcomes 
[30–32]. By definition, a low-GI diet is expected to lower 
postprandial glucose when glucose load is controlled. A 
recent trial found that glucose levels after breakfast, lunch, 

and dinner in pregnant women with GDM were signifi-
cantly lower after administering low-GI staple diets than 
those after providing normal diabetic control diet. This trial 
was not included in the present study because it is a short-
term intervention with no other outcomes evaluated [33]. 
The present meta-analysis showed a significant reduction in 
FBG by 0.18 mmol/L and 2 h PG by 0.33 mmol/L, which 
suggested the beneficial effects of low-GI diets beyond 
postprandial glucose. The current results updated the pre-
vious meta-analysis including only 3 trials, in which the 
lowering effect of low-GI diet on maternal FBG was not 
observed [29]. However, the subgroup analysis revealed 
that the effects of low-GI diets on FBG diminished when 
trials were stratified by GDM condition and gestation week 
at recruitment. This observation may be explained by a low 
statistical power resulting from the limited number of tri-
als in each subgroup (n = 4). It is important to note that 
the intervention in GDM group usually started after GDM 
diagnosis around 24–28 weeks, which leaves a very short 
time window for any intervention. Nevertheless, the minor 
improvement in circulating blood glucose is effective to 
reduce excessive newborn weight.

Excessive GWG is considered a risk factor not only for 
GDM but also for excessive fetal growth [34, 35]. High 
GWG was related to long-term adverse health outcomes 
for the mother–newborn pair [36]. Mourtakos et al. [37] 
found that excessive GWG was associated with a higher 
risk of greater infant size at birth and a higher BMI status 
at the ages of 2 and 8 years. Sridhar et al. [38] also demon-
strated that GWG outside the recommendations increased 
the odds of childhood overweight and obesity, independ-
ent of several potential confounders, such as birth weight. 
Thus, gestational weight must be controlled in a rational 
range. A recent meta-analysis has shown that a low-GI 
diet promoted weight loss in overweight or obese people 
[39]. Therefore, a low-GI diet may also provide benefits 

Fig. 5  Meta-analysis of the 
effect of low-glycemic-index 
(GI) diets on proportion of large 
for gestational age (LGA) as 
compared to the control. RR 
relative risk

Overall  (I-squared = 44.4%, p = 0.083)
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to weight management during pregnancy. Dietary inter-
ventions have shown the greatest reduction in gestational 
weight gain compared to other methods. Although reduced 
GWG did not reach significant in the present meta-anal-
ysis, the low-GI diets significantly decreased GWG by 
0.99 kg compared with the control group when the study 
of Moses et al. [17] was excluded. Moses study was the 
source of heterogeneity in GWG analysis, and low-GI diet 
caused higher GWG compared with the control group. 
However, that result may be wrested by the significant 
lower BMI in the low-GI diet group than in the control 
group (24.4 vs. 26.6 kg/m2, P = 0.04). A recent 6-month 
randomized trial conducted on women with previous 
GDM found that subjects in the low-GI group lost an aver-
age of 1.3 kg compared with the 0.1 kg in the conventional 
healthy dietary recommendation [40]. The present analy-
sis revealed inconsistent results on GWG and FBG, sug-
gesting that the effects of low-GI diets on GWG and FBG 
appeared to be related to study design and characteristics 
of participants. This result was consistent with previous 
meta-analysis on patients with GDM [7].

In theory, reduced FBG by low-GI diet in the present 
meta-analysis could decrease newborn birth weight. Horan 
et al. [28] found that low-GI dietary intervention in preg-
nancy had a beneficial effect on neonatal central adiposity 
as determined using the ratio of waist to length. The mater-
nal dietary GI even affects childhood health. Okubo et al. 
[41] found that maternal dietary GI in early pregnancy was 
positively associated with fat mass at 4 and 6 years of age. 
In the present meta-analysis, a borderline significant reduc-
tion in birth weight of 0.12 kg was observed. In a previous 
meta-analysis on 4 trials, low-GI diets reduced the newborn 
birth weight (WMD −0.16 kg, 95 % CI: −0.25, −0.08) 
compared with control diets in pregnant women with 
GDM [7]. However, in the present subgroup for women 
with GDM with recent trials added, the reduction in new-
born weight was still retained in borderline significance. In 
fact, the disadvantage of birth weight reduction should be 
considered, particularly in pregnant women who are under-
weight, at nutritional risk, or from a low-income country. 
Participants in the included trials did not suffer from appar-
ent malnutrition. Thus, the issue of low birth weight did not 
fall within the scope of this study. Besides, women exhib-
ited reduced risk of having an LGA infant after administer-
ing with low-GI diets in the present meta-analysis, which is 
consistent with Oostdam et al. [29]. In addition to the bor-
derline significant reduction in birth weight and LGA, low-
GI diets minimally affected the other 9 newborn outcomes. 
The current results were generally consistent with these of 
previous studies, in which no effects were observed in the 
majority of outcomes. However, Viana et al. [7] found that 
pregnant women with GDM used insulin less frequently. 
The partial discrepancy among these meta-analysis results 

could be related to a relative small number of trials and low 
quality of evidence.

Some observational epidemiological studies also sup-
ported the present findings. A prospective cohort study 
on 13,110 eligible women in the Nurses’ Health Study II 
found that women whose dietary GI was higher than 57 
units had a 30 % increased risk of developing GDM com-
pared with participants whose dietary GI was lower than 51 
units [42]. A cohort including 1082 gravidas in the Camden 
Study found that GI was positively and significantly related 
to maternal plasma glucose, HbA1c, and infant birth weight 
[43]. A recent prospective cohort study during the 10 years 
of follow-up has shown that higher intake of nuts, which 
are typical low-GI food sources [44], was associated with 
a significantly lower risk of GDM by 27 % as a result of 
improved insulin sensitivity [45]. These results highlighted 
the clinical importance of dietary sources in assessing the 
health effects of low-GI diets.

The current meta-analysis was primarily limited by con-
siderable heterogeneity across studies, such as the main 
outcomes of GWG and FBG and birth weight, which com-
plicated the interpretation of the findings. The heteroge-
neity can be attributed to study design and characteristics 
of participants. Most included RCTs used an open-label 
design. As such, blinding of the treatment to the par-
ticipants or investigator is difficult, perhaps impossible, 
because of the nature of dietary intervention/advice design. 
More importantly, the methods of intervention and control 
may be the source of heterogeneity. Regarding interven-
tion, these RCTs differed in values of dietary GI and some-
times in co-interventions. For example, all participants in 
the Clapp study participated in an exercise program before 
and after pregnancy, which may reinforce the effect of the 
dietary intervention [18]. On the other hand, three studies 
declared that low-GI diets for intervention were supported 
or supplied by relevant companies [13, 15, 16]. Regarding 
control, high-GI dietary advice [14, 16–18] or low-fat die-
tary advice [15] was used in some trials. In general, high-
GI diets, rather than normal diets, are the dominant diet in 
individuals living in the Western industrialized societies 
[27]. Other limitations, which also resulted in heterogene-
ity, included different criteria for screening and diagno-
sis of GDM, start of counseling in first or second trimes-
ter, and frequency of counseling that varied from twice 
only to weekly during pregnancy. Finally, the SDs of the 
net changes were not available in some trials. SDs were 
derived from the standard errors, median and interquartile 
ranges, or standard deviations for the initial and final val-
ues. These methods employed may not be ideal and result 
in some inaccuracies.

Based on the current available evidence, we concluded 
that low-GI diets may have beneficial effects on mater-
nal outcomes without causing adverse effects on newborn 
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outcomes in general pregnant women. The risk of adverse 
pregnancy outcomes can be reduced by low-GI dietary 
intervention because of the controlled maternal blood glu-
cose level. However, the results should be interpreted with 
caution because of the evidence of heterogeneity across 
studies, possible publication bias, and limited number of 
studies. Hence, large, well-designed, intervention RCTs 
must be conducted on pregnant women to address the 
effects of low-GI diets on pregnancy outcomes.
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