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Introduction

Diabetic retinopathy (DR) is the most common diabetic 
eye complication and a well-known cause of blindness 
in working-age population [1]. It has been estimated that 
roughly 34.6 % of all diabetic patients have some forms of 
DR [2]. DR represents a spectrum of disease, ranging from 
patients who have diabetes but no evidence of DR through 
mild, moderate, and severe stages of nonproliferative DR 
and progressing to proliferative DR (PDR) [3]. The patho-
physiology of DR is a multifactorial process. It involves 
complex interactions between hyperglycemia and oxida-
tive stress [4]. The retina is vulnerable to reactive oxygen 
species (ROS) and lipid peroxidation because of its rich 
content of polyunsaturated lipid membranes. The hyper-
glycemia-induced oxidative stress induces retinal basement 
membrane thickening, a hallmark of microangiopathy, and 
increased retinal vascular permeability, perhaps leading to 
macular edema which correlates with vision loss in diabetic 
patients [5, 6].

In addition to triggering oxidative stress, hyperglycemia is 
involved in the pathogenesis of DR via multiple mechanisms 
such as increased activation of protein kinase C (PKC) [7], 
aldose reductase (AR) [8], and elevated nonenzymatic glycox-
idation and glycation of proteins [9]. The β-isoform of PKC is 
considered as a major mediator of vascular endothelial growth 
factor (VEGF)-induced blood–retinal barrier (BRB) disruption 
and retinal neovascularization [10]. Intracellular accumulation 
of sorbitol resulted from increased AR activity might contrib-
ute to the breakdown of BRB in DR patients [11]. Moreover, 
accumulated advanced glycation end products (AGEs) in the 
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vascular wall have been reported to stimulate pro-inflamma-
tory reaction and BRB breakdown in diabetes [12].

Many of the hyperglycemia-induced pathways merge to 
activate nuclear factor kappa B (NF-κB), with subsequent 
release of pro-inflammatory cytokines and oxidative stress, 
and finally lead to apoptosis [13]. Tumor necrosis factor 
alpha (TNF-α) and interleukin-1 beta (IL-1β) are well-
known representative inflammatory cytokines associated 
with the pathogenesis of DR. Through NF-κB activation, 
hyperglycemia-induced production of IL-1β and TNF-α 
results in apoptosis of endothelial cells and loss of retinal 
microvascular cells [14]. Thus, modulation of hyperglyce-
mia-induced oxidative stress and inflammation might rep-
resent an important strategy for the treatment for DR.

Medicinal plants have been reported to be useful source of 
biologically active substances, including antioxidants and anti-
carcinogens [15]. White mulberry (Morus alba L., Moraceae) 
is a deciduous tree widely cultivated in subtropical, tropical, 
and moderate environments [16]. Mulberry is cultivated for 
fruit production [17], and its foliage is traditionally used as 
feed for silk worms [18]. Several recent studies have shown 
antioxidant, anti-inflammatory, antiviral, hypolipidemic, anti-
hyperglycemic, neuroprotective, anti-hypotensive, and cyto-
toxic activities of different species of Morus [19–21]. Due to 
the presence of phenols, coumarins, and flavonoids, the leaves 
of M. alba possess pharmacological importance [22]. Since 
the leaves of M. alba have been recommended in the litera-
ture as a remedy for diabetes treatment, this study was carried 
out to explore its potential in management of experimentally 
induced DR in rats. This investigation could promote an 
understanding of its protective mechanism against diabetes-
associated retinopathy, especially to the modulation of oxida-
tive stress, inflammation, and apoptosis.

Materials and methods

Chemicals

Streptozotocin (STZ), reduced glutathione (GSH), pyro-
gallol, 1,1-diphenyl-2-picrylhydrazyl hydrate (DPPH), 
Folin–Ciocalteu reagent, gallic acid, rutin, thiobarbituric 
acid (TBA), 5,5′-dithiobis-(2-nitrobenzoic acid) (DTNB), 
1,1,3,3 tetramethoxypropane, sodium dodecyl sulfate 
(SDS), and 2,2′-azino-bis-3-ethylbenzothiazoline-6-sul-
fonic acid (ABTS) were purchased from Sigma (USA). All 
other chemicals were of analytical grade and supplied by 
standard commercial sources.

Preparation of M. alba leaves extract

M. alba leaves were collected from Beni-Suef governorate 
(Egypt), during the period from March to June 2013. The 

leaves were identified and authenticated by experts from 
Botany Department, Faculty of Science, Beni-Suef Uni-
versity (Egypt), and voucher samples were deposited at the 
Department of Botany, Faculty of Science, Beni-Suef Uni-
versity. The fourth and fifth leaves were plucked from the 
apex of healthy plants, washed thoroughly under running 
tap water, shade-dried for 5  days, and eventually ground 
to a fine powder in an electric grinder. The powdered plant 
material was extracted by maceration with 90 % ethanol for 
72 h in ambient temperature. The extract was filtered with 
Whatman filter paper No 1, and filtrates were evaporated to 
dryness under reduced pressure in a rotary evaporator. The 
residual extract was used for the study.

Determination of total phenolics and flavonoids 
contents

Total phenolic content in the leaves extract of M. alba was 
determined according to the method of Waterman and Mole 
[23], using Folin–Ciocalteu reagent and gallic acid as a 
standard phenolic compound. Briefly, 200 µl of the extract 
solution was mixed with 1 ml of Folin–Ciocalteu reagent. 
After 5  min, 800  µl of sodium carbonate (75  g/L) was 
added and then incubated for 2 h at room temperature. The 
absorbance was measured at 760 nm.

Total flavonoids content was performed according 
to the method of Jia et  al. [24] after slight modifications. 
The extract solution was mixed with 200 µl of 5 % sodium 
nitrite and incubated for 5 min at room temperature. 150 µl 
of 10  % aluminum chloride was added and finally mixed 
with 1 M sodium hydroxide. The absorbance was measured 
at 510 nm, and rutin was used as a standard flavonoid.

DPPH radical scavenging activity

A methanolic solution of DPPH was prepared and mixed with 
the extract solution with the ratio of 8:1. The mixture was 
shaken and incubated for 30  min at room temperature pro-
tected from light. The absorbance was measured at 517 nm 
[25]. Ascorbic acid was used as a standard antioxidant.

ABTS•+ radical scavenging activity

ABTS•+ radical scavenging capacity was determined 
according to the method of Re et  al. [26]. ABTS•+ was 
prepared by reacting 2 mM ABTS in water with 2.45 mM 
potassium persulfate and was stored in the dark for 2  h 
at room temperature. The ABTS•+ was diluted in 0.1  M 
sodium phosphate buffer (pH 7.4) and mixed with the 
extract solution at the ratio of 1:3. The reaction mixture 
was incubated for 30 min at room temperature, and absorb-
ance was measured at 730 nm. Ascorbic acid was used as a 
standard antioxidant.
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Experimental animals

Adult male Wistar rats (Rattus norvegicus) weighing 
between 130 and 180 g were obtained from animal house 
of the National Institute of Opthalmology, El-Giza, Egypt. 
Rats were housed in standard cages at normal atmospheric 
temperature (25 ± 2 °C) and normal 12-h light/dark cycle. 
They were given access of water ad  libitum and sup-
plied daily with standard pellet diet of known composi-
tion (8.0  % moisture, 20.8  % crude protein, 4.8  % crude 
fat, 5.0 % crude ash, 37.2 % nonfiber carbohydrate, 3.2 % 
crude fiber, and vitamins and minerals adequate to meet 
the nutritional needs of rat). All animals were kept under 
observation before the onset of the experiment to exclude 
any intercurrent infection. All animal procedures were 
approved by the Institutional Ethics Committee of Beni-
Suef University (Egypt).

Induction of experimental diabetes and animal 
grouping

Experimental diabetes mellitus was induced by a single 
intraperitoneal injection of freshly prepared solution of 
STZ (45  mg/kg body weight) in 0.1  M citrate buffer, pH 
4.5 [27]. After 7  days of STZ administration, hypergly-
cemia was verified and rats having blood glucose levels 
≥200 mg/dl were selected for the experiment.

Twenty-four rats were randomly divided into four equal 
groups, each consisting of six (N = 6) animals as follows:

Group 1: Normal control rats.
Group 2: Normal rats received 100 mg/kg/day M. alba 
extract dissolved in distilled water [28] by oral gavage 
for 16 weeks.
Group 3: Diabetic control rats.
Group 4: Diabetic rats received 100 mg/kg/day M. alba 
extract dissolved in distilled water [28] by oral gavage 
for 16 weeks.

Morus alba dose was balanced consistently as indicated 
by any change in the body weight to keep up comparable 
dosage over the entire period of study.

Samples collection and preparation

At the end of the experiment, overnight-fasted rats were 
euthanized by decapitation under mild ether anesthesia. 
Blood samples were collected to separate serum, and 
collected sera were stored at −20  °C until analyzed. 
The eye globes were quickly excised, and retinas were 
dissected and rinsed with ice-cold saline. Retina sam-
ples were homogenized in prechilled 0.2  M potassium 

phosphate buffer, pH 7.0, and used for assaying lipid 
peroxidation and antioxidant defenses. Some samples 
were kept frozen at −80 °C for Western blotting analy-
sis. Other samples of the retina homogenized in 6 % (wt/
vol) ice-cold perchloric acid, neutralized with potassium 
carbonate, were used to determine sorbitol and fructose 
concentrations.

Biochemical assays

Oral glucose tolerance test (OGTT)

On the day before killing, blood samples were obtained 
from lateral tail vein of control and diabetic rats deprived 
of food overnight. Successive blood samples were then col-
lected at 30, 60, 90, and 120 min following the administra-
tion of 3 g/kg body weight glucose solution. Blood samples 
were left to coagulate and centrifuged for serum separation. 
Serum glucose concentration was determined according 
to the method of Trinder [29], using reagent kit purchased 
from bioMerieux chemicals (France).

Determination of insulin, fructosamine, and glycosylated 
hemoglobin (HBA1c)

Serum levels of insulin were determined using specific 
ELISA kits purchased from R&D systems (USA) following 
the manufacturer’s instructions. Serum fructosamine levels 
were determined according to the method of Baker et  al. 
[30] using reagent kit purchased from Spinreact Company 
(Spain). A blood sample from each rat was collected on 
ethylenediaminetetraacetic acid solution and used for the 
estimation of HBA1c % according to the method of Abra-
ham et al. [31] using reagent kits purchased from Stanbio 
Company (Texas, USA).

Determination of sorbitol and fructose

Sorbitol and fructose concentrations were determined in 
the retinal homogenates following the method of Clements 
et al. [32] and Foreman et al. [33], respectively.

Determination of oxidative stress and antioxidant status

Lipid peroxidation was determined in retinal homogen-
ates by measuring malondialdehyde (MDA) following the 
method of Preuss et  al. [34]. GSH content and the activ-
ity of the antioxidant enzymes catalase (CAT), superoxide 
dismutase (SOD), and glutathione peroxidase (GPx) were 
assayed according to the methods of Beutler et  al. [35], 
Cohen et al. [36], Marklund and Marklund [37], and Mat-
kovics et al. [38], respectively.
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Determination of TNF‑α, IL‑1β, and PKCβ

The levels of TNF-α, IL-1β, and PKCβ1 were determined 
in retina homogenates using specific ELISA kits (R&D 
systems) following the manufacturer’s instructions. The 
concentrations of assayed parameters were measured spec-
trophotometrically at 450  nm. Standard curves were con-
structed by using standard TNF-α, IL-1β, and PKCβ1, and 
concentrations of the unknown samples were determined 
from the standard plots.

Western blotting analysis

The frozen retinas were homogenized in ice-cold lysis 
buffer. The samples were centrifuged at 10,000  g for 
10  min to remove the insoluble material. Protein concen-
trations were determined according to the method of Brad-
ford. Equal amounts of proteins were electrophoresed 
using 10  % SDS polyacrylamide gel electrophoresis and 
electro-transferred to nitrocellulose membrane. The mem-
branes were blocked in 5 % w/v skimmed milk powder in 
phosphate-buffered saline (PBS)/Tween 20 (PBST) for 1 h 
at room temperature. The membranes were incubated with 
antibodies for VEGF, Bax, Bcl2, activated  caspase-3, and 
β-actin (Santa Cruz Biotechnology, USA) diluted 1:1000 
in blocking buffer. After washing, the membranes were 
incubated with the corresponding secondary antibodies for 
1 h at room temperature, washed, and then developed. The 
optical densities were quantified with ImageJ analysis soft-
ware, normalized to β-actin and presented as % of control.

Statistical analysis

Data were analyzed using GraphPad Prism 5 software, 
and all statistical comparisons were made by means of the 
one-way ANOVA test followed by Tukey’s test post hoc 
analysis. Results were articulated as mean ± standard error 
(SEM), and a P value <0.05 was considered significant.

Results

Total phenolic and flavonoid contents and antioxidant 
activity of M. alba

The amount of total phenolics in M. alba leaves 90  % 
(v/v) ethanol extract was 67.66 ±  2.92  mg gallic acid 
equivalent/g dry extract, and the recorded total flavo-
noids were 39.24  ±  1.18  mg rutin equivalent/g dry 
extract.

Results for the radical scavenging and antioxidant activ-
ity of M. alba leaves extract are represented in Fig. 1. The 
extract showed radical scavenging activity against DPPH 
and ABTS•+.

Morus alba represses body weight loss 
and hyperglycemia in diabetic rats

Data represented in Fig.  2a show the body weight 
changes after 16  weeks of treatment. STZ-induced dia-
betic rats exhibited significant (P  <  0.001) body weight 
loss (−40.21 ±  7.91  g) when compared with the control 
rats (56.65 ± 10.02 g). Treatment of the diabetic rats with 
M. alba significantly (P  <  0.001) prevented body weight 
loss and the rats recorded positively changed body weight 
(50.88 ± 6.03 g).

OGTT of STZ-induced diabetic rats showed signifi-
cant elevation in blood glucose levels at fasting and at 
30, 60, 90, and 120 min after oral glucose loading when 
compared with the control rats (Fig.  2b). Oral supple-
mentation of M. alba extract to STZ-induced diabetic 
rats significantly ameliorated the blood glucose lev-
els at all points of the OGTT. The OGTT areas under 
curve (AUCs) analysis showed a significant (P < 0.001) 
increase in STZ diabetic rats when compared with the 
control group. Treatment of the diabetic rats with M. 
alba potentially (P  <  0.001) decreased OGTT AUC 
when compared with the diabetic control rats. Healthy 

Fig. 1   DPPH (a) and ABTS (b) 
radical scavenging activity of 
M. alba. Data are the mean val-
ues of triplicate and expressed 
as mean ± SEM
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rats received 100  mg/kg/day  M. alba leaves extract for 
16  weeks showed nonsignificant (P  >  0.05) changes in 
body weight and glucose tolerance.

Morus alba ameliorates insulin release and attenuates 
protein glycation

Data summarized in Table  1 show the effect of M. alba 
on serum insulin and fructosamine levels, and HbA1c  %. 
Serum insulin level was significantly (P < 0.001) decreased 
in STZ-induced diabetic rats compared to the control 
rats. Oral treatment of the STZ-induced diabetic rats with 
M. alba markedly ameliorated serum insulin levels. Con-
versely, diabetic rats exhibited significant (P  <  0.001) 
increase in serum fructosamine levels and blood HbA1c % 
when compared with either the control or M. alba-treated 
diabetic rats. Oral supplementation of M. alba produced a 
significant (P < 0.001) decrease in serum fructosamine and 
blood HbA1c % in diabetic rats, with no recorded effect on 
normal rats.

Morus alba decreases the activity of the polyol pathway 
in retina of diabetic rats

To test the effect of M. alba on hyperglycemia-induced 
activation of the polyol pathway, sorbitol and fruc-
tose levels were determined in the retinal homogen-
ates. Fructose levels showed a significant (P  <  0.001) 
increase in retina of the STZ-induced diabetic rats 
(4746.86  ±  442.23  nmol/100  mg) when compared with 
the control group (591.23 ±  59.38  nmol/100  mg), as rep-
resented in Fig.  3a. Oral supplementation of M. alba leaf 
extract significantly (P < 0.01) decreased fructose level in 
the retina of diabetic rats (2979.40 ± 96.73 nmol/100 mg). 
Similarly, retinal content of sorbitol was significantly 
(P < 0.001) elevated in diabetic rats (90.61 ± 4.51 nmol/g) 
compared to the control group (29.97  ±  0.47  nmol/g). 
Treatment of the STZ-induced diabetic rats with M. alba 
produced a significant (P < 0.01) decrease in retinal sorbitol 
(69.22 ± 6.74 nmol/g) concentration (Fig. 3b). Fructose and 
sorbitol levels were nonsignificantly (P > 0.05) affected in 

Fig. 2   Effect of M. alba 
administration on a body weight 
changes and b glucose toler-
ance in control and diabetic 
rats. Results are mean ± SEM 
(N = 6). ***P < 0.001. OGTT 
oral glucose tolerance test, AUC 
area under curve

Table 1   Effect of M. alba on 
serum insulin and fructosamine, 
and blood glycated hemoglobin 
levels

Data are M ± SEM, (N = 6)

*** P < 0.001 versus control, and # P < 0.05 and ### P < 0.001 versus diabetic

Insulin (µIU/ml) Fructosamine (μmol/L) HbA1c (%)

Control 23.28 ± 2.52 173.55 ± 19.33 5.76 ± 0.57

Control + M. alba 23.50 ± 2.01 184.58 ± 10.05 5.17 ± 0.73

Diabetic 6.537 ± 0.226*** 502.12 ± 49.39*** 20.23 ± 1.41***

Diabetic + M. alba 14.990 ± 1.105# 145.17 ± 15.11### 10.30 ± 0.51###

F-prob. P < 0.001 P < 0.001 P < 0.001
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M. alba-supplemented rats when compared with the control 
group.

Morus alba reduces inflammation and PKCβ in retina 
of diabetic rats

The levels of TNF-α (Fig.  4a) and IL-1β (Fig.  4b) in the 
retina of STZ-induced diabetic rats showed significant 
(P < 0.001) increase when compared with the corresponding 
normal control group. Oral supplementation of the diabetic 
rats with M. alba produced significant (P < 0.001) decrease 
in the levels of both TNF-α and IL-1β in the retina.

More or less similar, the levels of PKCβ were signifi-
cantly (P < 0.001) increased in the retina of STZ-induced 
diabetic rats compared to the control group. Treatment 
of the diabetic rats with M. alba leaf extract significantly 
(P  <  0.01) ameliorated retinal content of PKCβ, as rep-
resented in Fig.  4c. Of note, M. alba supplementation 

produced a nonsignificant (P  >  0.05) effect on TNF-α, 
IL-1β, and PKCβ levels in retina of the normal rats.

Morus alba attenuates hyperglycemia‑induced oxidative 
stress in retina of diabetic rats

Concerning lipid peroxidation, STZ-induced diabetic rats 
exhibited significantly (P  <  0.001) increased MDA levels 
in retina (84.07 ± 1.49 nmol/100 mg) as compared to their 
respective normal controls (40.81 ± 1.01 nmol/100 mg), as 
shown in Fig.  5a. Treatment of the STZ-induced diabetic 
rats with M. alba extract markedly (P < 0.001) decreased 
retinal MDA content (64.08 ± 2.63 nmol/100 mg).

On the contrary, STZ administration produced a sig-
nificant (P  <  0.01) decrease in GSH content in retina of 
diabetic rats (1.95 ±  0.51  nmol/100  mg) when compared 
with the normal control group (6.09 ± 0.64 nmol/100 mg). 
Oral treatment of the diabetic rats with M. alba extract 

Fig. 3   Effect of M. alba on a 
fructose and b sorbitol levels 
in retina of control and STZ-
induced diabetic rats. Results 
are mean ± SEM (N = 6). 
**P < 0.01; ***P < 0.001

Fig. 4   Effect of M. alba on a 
TNF-α, b IL-1β, and c PKCβ 
levels in retina of control and 
STZ-induced diabetic rats. 
Results are mean ± SEM 
(N = 6). **P < 0.01; 
***P < 0.001. TNF-α tumor 
necrosis factor alpha, IL-1β 
interleukin 1 beta, PKCβ pro-
tein kinase C beta
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significantly (P  <  0.05) ameliorated retinal GSH content 
(4.90 ± 0.58 nmol/100 mg), as depicted in Fig. 5b.

GPx activity showed a similar pattern where it was signif-
icantly (P < 0.01) declined in the retina of STZ-induced dia-
betic rats (15.17 ± 1.32 U/100 mg) compared to the control 
group (22.22 ± 0.97 U/100 mg), as represented in Fig. 5c. 
Similarly, the activities of retinal SOD and CAT showed a 
significant decrease in STZ-induced diabetic rats (Fig.  5d, 
e). On the other hand, treatment of the diabetic rats with M. 
alba markedly increased the activities of GPx (P < 0.001), 
SOD (P < 0.05), and CAT (P < 0.05) in the retina. Retina 
of M. alba-supplemented normal rats showed nonsignificant 
changes in lipid peroxidation and antioxidant defenses.

Morus alba prevents apoptosis and angiogenesis 
in retina of diabetic rats

Western blotting analysis of the apoptosis proteins 
showed significant (P < 0.001) increase in protein levels 

of activated caspase-3 (Fig. 6a) and Bax (Fig. 6b) in reti-
nas of STZ-induced diabetic rats. M. alba oral supple-
mentation produced significant (P  <  0.001) decrease in 
protein levels of activated caspase-3 and Bax in retina of 
the diabetic rats. In opposite, protein levels of the anti-
apoptotic protein Bcl-2 showed a significant (P < 0.001) 
decrease in retina of STZ-induced diabetic rats and mark-
edly (P  <  0.001) increased following treatment with M. 
alba leaf extract (Fig. 6c).

Data represented in Fig.  6d show the effect of STZ-
induced diabetes and treatment with M. alba on the protein 
expression levels of the angiogenesis marker VEGF in ret-
ina of rats. Diabetic rats exhibited significant (P < 0.001) 
increase in retinal protein levels of VEGF. On the other 
hand, treatment with M. alba leaf extract significantly 
(P  <  0.001) attenuated diabetes-induced VEGF expres-
sion in retina of rats. M. alba exerted no effect on retinal 
activated  caspase-3, Bax, Bcl-2, and VEGF when supple-
mented to normal rats.

Fig. 5   Effect of M. alba on 
oxidative stress and antioxi-
dant defense system param-
eters in retina of control and 
STZ-induced diabetic rats. 
Results are mean ± SEM 
(N = 6). *P < 0.05; **P < 0.01; 
***P < 0.001. MDA malondial-
dehyde, GSH glutathione, GPx 
glutathione peroxidase, SOD 
superoxide dismutase, CAT 
catalase
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Discussion

DR is a common diabetes complication and is a leading 
cause of blindness in working-age population. Since clini-
cal trials with pharmacologic agents that inhibited one of 
the specific pathways of DR showed disappointing results 
[39], inhibition of various pathways might represent an 
important strategy for the prevention of DR. Therefore, 
the current study was undertaken to evaluate the possible 
effectiveness of a polyphenol-rich M. alba leaves extract on 
hyperglycemia-induced oxidative stress, apoptosis, inflam-
mation, and VEGF expression in retina of STZ-induced 
diabetic rats.

Under insulin deficiency and hyperglycemic conditions, 
the body provides itself energy by degrading proteins and 
lipids, which ultimately accounts for body weight loss 
[40]. Accordingly, STZ-induced diabetic rats in the pre-
sent study showed significant hypoinsulinemia and weight 

loss. Treatment with M. alba leaves extract for 16  weeks 
attenuated hyperglycemia and its associated body weight 
loss, suggesting possible improvement in energy metabo-
lism. These findings could be explained, at least in part, 
due to the insulinotropic effect of M. alba. In this context, 
Mohammadi and Naik [41] reported that M. alba increased 
serum insulin levels in diabetic rats through its ability to 
stimulate the spontaneous recovery of β-cells of the islets 
of Langerhans. In addition, the ameliorative effect of M. 
alba extract on blood glucose level seems to be mediated 
through other mechanisms. M. alba and some of its constit-
uents have demonstrated an ability to inhibit hepatic gluco-
neogenesis by suppressing glucose 6-phosphatase activity 
[42], increase hexokinase, and glucose-6-phosphate dehy-
drogenase activity [43], and enhance hepatic glycogen syn-
thesis secondary to β-glucosidase inhibitory activity [44]. 
The present findings are in agreement with several previous 
studies [28, 45, 46].

Fig. 6   Effect of M. alba on the expression of a activated caspase-3, b Bax, c Bcl-2, and d VEGF in retina of control and STZ-induced diabetic 
rats. Results are mean ± SEM (N = 6). ***P < 0.001
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Oxidation of glucose is one of the mechanisms involved 
in the pathogenesis of diabetes complications [47]. It 
enhances glycation of hemoglobin and produces HbA1c 
[48]. The concentration of HbA1c is a good marker for 
diagnosis and prognosis of diabetes complications, and is 
strongly related to the risk of DR [49]. Hyperglycemia-
triggered elevated HbA1c leads to red blood cell stiffening 
and decreased deformation capacity. As a result, both blood 
viscosity and shear stress at the endothelium of retinal ves-
sel increase, leading to damage of the blood vessel integ-
rity and pericytes loss [50]. Subsequently, the developed 
hypoxia results in compensatory expansion of retinal blood 
vessels to increase perfusion [51]. Reduction in HbA1c % 
in diabetic rats after 16-week M. alba supplementation 
indicates that M. alba has beneficial effects in attenuation 
of DR. In this context, the study conducted by Kowluru and 
Chan [52] reported that reduction of only one unit (~7 %) 
of HBA1c can reduce the risk of DR by over 30 %. Since 
insulin treatment of STZ diabetic rats significantly low-
ered the level of HbA1c [53], the insulinogenic effect of 
M. alba extract and the subsequently improved glycemic 
state account for its improved levels. The ability of M. alba 
to control the glycemic state was further evidenced by the 
lowered serum fructosamine level. Fructosamine is an early 
glycation end product results from the nonenzymatic reac-
tion between glucose and amino acids [54]. It can be used 
to predict the concentration of AGEs and is an indicator of 
glycemic control over a 3 weeks or longer period [55]. In 
addition, the polyphenolic compounds, especially flavo-
noids, have the ability to interfere with protein glycation 
through scavenging free radicals. Here, we confirmed the 
presence of phenolics and flavonoids as well as the radical 
scavenging activity of M. alba leaves extract.

Many hyperglycemia-induced metabolic abnormali-
ties such as increased oxidative stress are implicated in the 
pathogenesis of DR [52]. Chronic hyperglycemia has been 
reported to trigger oxidative stress either by direct genera-
tion of ROS or by altering the redox balance [48]. ROS is 
produced by multiple pathways including xanthine oxidase, 
the mitochondrial electron transport chain, and uncoupled 
nitric oxide synthases [56]. PKC activation, formation of 
AGEs, and polyol pathway can also contribute to oxidative 
stress by diminishing the activities of antioxidant enzymes 
[57]. Because of the highest uptake of oxygen and its high 
concentration of polyunsaturated fatty acids, retina is vul-
nerable to lipid peroxidative damage [6]. Several animal 
studies have demonstrated that hyperglycemia-induced 
oxidative stress is linked to the retinal capillary basement 
membrane thickening, which is an early abnormality of the 
microangiopathy seen in DR [6]. In addition, increased oxi-
dative stress in diabetes mellitus is proposed to play central 
role in capillary cell apoptosis [58]. Thus, oxidative stress 
is a major contributor in the development of DR, and this 

makes it an important target for therapeutic strategies for 
this disease.

In the current study, retina of diabetic rats showed a sig-
nificant increase in the lipid peroxidation marker, MDA, 
with concomitant declined GSH content and activity of 
SOD, CAT, and GPx. Our data are in agreement with the 
study of Soufi et al. [59] in which diabetic rats experienced 
chronic hyperglycemia with an increase in oxidative stress 
markers. M. alba supplementation markedly attenuated 
hyperglycemia-induced oxidative stress through prevent-
ing GSH depletion and enhancement of the enzymatic anti-
oxidants. The antioxidant effects of M. alba were further 
confirmed by the in vitro DPPH and ABTS•+ radical scav-
enging assays. These effects could be directly linked to the 
rich polyphenolic constituents especially the flavonoids in 
M. alba. The leaves of mulberry contain high amounts of 
quercetin, quercetin 3-(6-malonylglucoside), rutin, oxyres-
veratrol, and 5,7-dihydroxycoumarin 7-methyl ether which 
are responsible for their antioxidant potential [60, 61].

Activation of PKC is another pathway implicated in the 
development of DR. In diabetes, elevated levels of diacylg-
lycerol induced by hyperglycemia activate PKCβ [62]. PKC 
activation contributes to ROS production by increasing the 
activity of NADPH oxidase [63], increases the expression 
of VEGF [64], and decreases nitric oxide production in 
smooth muscle cells [65]. PKC is also implicated in NF-κB 
activation and thus connects hyperglycemia-induced oxida-
tive stress to inflammation [66]. Because of the multiple 
effects of elevated PKC activation, it may be considered 
as a promising therapeutic target for DR. Increased acti-
vation of PKCβ occurs in retinas of diabetic animals and 
in endothelial cells exposed to high glucose (reviewed in 
Frank [67]). The elevated levels of PKCβ in retina of the 
diabetic rats in the present investigation provide additional 
evidence. Interestingly, retina of the diabetic rats received 
M. alba for 16  weeks showed decreased levels of PKCβ. 
Inhibition of PKC using general and specific inhibitors 
prevented retinal vascular permeability [62]. Therefore, 
attenuation of PKCβ seems to have a role in the protective 
mechanism of M. alba against DR.

Polyol pathway is one of the major pathways impli-
cated in the development of DR. In this pathway, glucose 
is converted to sorbitol by the enzyme AR using NADPH 
as a cofactor. Sorbitol is further processed to fructose by 
the action of sorbitol dehydrogenase using NAD+ as a 
hydrogen donor [68]. Diabetic rats in the present inves-
tigation showed significant increase in retinal levels of 
sorbitol and fructose, indicating activated polyol pathway. 
Increased sorbitol level during hyperglycemia occurs due 
to the flux of glucose through the polyol pathway [69]. AR 
is the rate-limiting enzyme in the polyol pathway [70] and 
could be considered as an attractive therapeutic target for 
DR. Therefore, the protective effects of pharmacological 
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inhibition and genetic deletion of AR have been exam-
ined in several studies. The specific AR inhibitor zoloper-
stat prevented ROS generation and retinal endothelial cell 
death [71]. Genetic deletion of AR protected diabetic mice 
against ROS production and retinal acellular capillaries 
[72]. The present data showed that treatment of the diabetic 
rats with M. alba attenuated hyperglycemia-induced sorbi-
tol and fructose production, possibly through inhibition of 
AR. Recently, the AR inhibitory activity of M. alba and its 
flavonoid morusin was demonstrated by Rao et al. [73].

It is now increasingly appreciated that the pathogen-
esis of DR involves low-grade inflammation [74]. Several 
inflammatory cytokines are known to participate in the 
breakdown of BRB in diabetes. IL-1β and TNF-α are the 
representative inflammatory cytokines associated with the 
pathogenesis of DR. Their level is increased in both the 
vitreous humor and serum of patients with PDR [75]. In 
the present study, the levels of IL-1β and TNF-α showed a 
significant increase in retina of diabetic rats, reflecting the 
degree of inflammation. In agreement with our findings, 
the levels of IL-1β were found to be increased in retinas 
from diabetic rats [76]. Also, the activity of caspase-1, a 
proteolytic enzyme involved in the production of IL-1β, is 
up-regulated in the retinas of diabetic patients [77]. TNF-α 
as well is involved in the loss of retinal microvascular cells 
in diabetic retina [14]. Oral supplementation of the diabetic 
rats with M. alba for 16  weeks potentially attenuated the 
production of IL-1β and TNF-α in the retina, confirming a 
potent anti-inflammatory activity.

In addition, M. alba proved a potent anti-apoptotic activ-
ity as evident by down-regulation of Bax and caspase-3 and 
up-regulation of Bcl-2 protein expression in the retina of 
diabetic rats. The induced apoptosis in retina of diabetic 
rats could be directly connected to the hyperglycemia-
induced inflammation. Endothelial IL-1β overexpression, 
stimulated by high concentration of glucose, induces apop-
tosis of endothelial cells through NF-κB activation in vitro. 
In addition, IL-1β has been reported to accelerate apoptosis 
in retinal pericytes under high glucose conditions through 
activation of NF-κB [78]. Likewise, TNF-α is involved in 
the loss of microvascular cells in diabetic retina [14]. It 
disturbs expression and subcellular localization of the tight 
junction proteins, claudin-5 and ZO-1, in bovine retinal 
endothelial cells [79]. The pro-inflammatory and pro-apop-
totic effects of IL-1β and TNF-α were further confirmed 
through knockout studies and pharmacological inhibition. 
In the IL-1β receptor knockout mice, diabetes-induced 
retinopathy was markedly attenuated at 7-month duration 
of diabetes [80]. In addition, inhibition of caspase-1 using 
minocycline decreased the degeneration of retinal capillar-
ies in the treated animals [80]. Similarly, TNF-α knockout 
protected rat against diabetes-associated retinal apoptosis, 
leukostasis, and breakdown of BRB [81].

The anti-inflammatory effect of M. alba in the present 
study is in agreement with several investigations. Choi and 
Hwang [82] reported the anti-inflammatory effects of M. 
alba leaf extract in RAW264.7 macrophages. Oxyresvera-
trol, an active ingredient of M. alba, has been previously 
demonstrated to exert anti-inflammatory activity through 
inhibition of NF-κB activation, iNOS/NO production, 
and PGE2 synthesis [83]. More recently, Chen et  al. [84] 
reported the anti-inflammatory effects of both M. alba and 
the active compound oxyresveratrol. Moreover, prenylated 
flavonoids from M. alba prevented the lipopolysaccha-
ride-induced inflammatory response in macrophages [85]. 
Quercetin and rutin, a flavonol and its glycoside present in 
M. alba [60], have been reported to exert anti-inflamma-
tory, antioxidant, and anti-apoptotic effects in STZ-induced 
diabetic rat retina [86, 87].

Oxidative stress and pro-inflammatory cytokine are 
implicated in VEGF up-regulation in the diabetic retina 
[57]. In addition to induction of apoptosis, IL-1β is known 
to increase the expression of VEGF in retinal endothelial 
cells [77]. VEGF is a potent vascular permeability factor, 
and studies demonstrated its up-regulation in neovascu-
lar eye diseases including DR [88]. In addition, increased 
levels of VEGF have been identified in ocular fluids of 
patients with PDR [89]. Accordingly, diabetic rats in the 
present investigation showed significant up-regulation of 
retinal VEGF protein levels. M. alba supplementation for 
16  weeks alleviated VEGF expression levels in retina of 
the diabetic rats. These findings could be attributed to the 
anti-inflammatory and anti-angiogenic effects of M. alba 
leaves extract. A recent study conducted by Hong et  al. 
[90] reported the anti-angiogenic effect of a herbal com-
position containing M. alba. More or less similar, admin-
istration of anti-VEGF antibodies to experimental animals 
attenuated high glucose-induced vascular hyperpermeabil-
ity [91]. In addition, clinical trials using anti-VEGF therapy 
are displaying promising results against stages of DR [92]. 
Therefore, down-regulation of VEGF seems to participate 
in the protective mechanism of M. alba against hypergly-
cemia-induced DR. For achieving better results, additional 
research is required to elucidate the effect of M. alba 
extract on histopathological alterations of retina in diabetic 
animals.

In conclusion, the present study depicts that M. alba 
administration proved a potent anti-hyperglycemic effect. 
Since DR is triggered by a persistent increase in blood glu-
cose levels, good glycemic control can reduce its develop-
ment. M. alba has protective effect on DR with possible 
mechanisms of inhibiting hyperglycemia-induced oxidative 
stress, apoptosis, inflammation, polyol pathway activation, 
and VEGF expression in the retina of diabetic rats (summa-
rized mechanistic pathways are presented in Fig. 7). Given 
the key role of oxidative stress in the progression of DR, 
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the observed antioxidant and anti-diabetic properties of 
M. alba make it candidate as a therapeutic supplement to 
reduce DR.
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