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resembles the MD (high loadings of vegetables, fruit, leg-
umes and fish), was previously derived with principal com-
ponent analysis and was used as our dietary variable.
Results GSTT1 null genotype increased BC risk com-
pared with the homozygous non-null GSTT1 genotype 
(OR 1.21, 95 % CI 1.01–1.45). Increasing adherence to the 
MD reduced BC risk in women with at least one GSTP1 
Ile allele (OR for Ile/Ile = 0.84, 95 % CI 0.74–0.95, for 
Ile/Val = 0.73, 95 % CI 0.62–0.85) or one NAT2 590G 
allele (OR for 590 GG = 0.73, 95 % CI 0.63–0.83, for 590 
GA = 0.81, 95 % CI 0.70–0.94). p interaction values were 
not, however, statistically significant.
Conclusion The homozygous null GSTT1 genotype could 
be a risk allele for BC among Greek-Cypriot women. 
The anticarcinogenic effects of the high adherence to 
MD against BC risk could also be further enhanced when 
combined with the wild-type alleles of the detoxification 
GSTP1 or NAT2 SNPs.

Keywords Mediterranean diet · GSTP1 · GSTM1 · 
GSTT1 · NAT2 · Breast cancer

Introduction

The protective role of the Mediterranean diet (MD) against 
breast cancer (BC) risk has previously been evidenced in 
various epidemiological studies [1, 2]. The MD is charac-
terised by a high intake of fruit, vegetables and legumes, 
which make it a rich source of carotenoids, phenolic com-
pounds, terpenes, glutathione and glucosinolates [3–5]. 
These micronutrients are well known for their chemopre-
ventive effect on BC [6]. The MD is also characterised 
by moderate amounts of fish intake that contain adequate 
n-3 long-chain polyunsaturated fatty acids (PUFAs) [5], 
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shown to inhibit breast tumour growth (in vivo and in vitro) 
through the lipid peroxidation products of the marine n-3 
PUFAs [7]. We have previously shown that a dietary pat-
tern rich in vegetables, fruit, legumes and fish reduces the 
risk of post-menopausal BC in the Greek-Cypriot female 
population of the study with the acronym MASTOS (Greek 
word for breast) [8].

Xenobiotic metabolism is one of the pathways that 
is related to the interplay between diet and BC risk. It 
involves key phase II detoxification enzymes, such as glu-
tathione S-transferases (GSTs) and N-acetyltransferases 
(NATs). These enzymes play an important role in the 
metabolism and detoxification of xenobiotics, which are 
released from the activity of phase I enzymes [9]. Phase 
I enzymes, such as cytochrome P450 family of enzymes, 
catalyse the activation of procarcinogens to carcinogens 
[10]. The main function of the xenobiotic pathway is to 
convert carcinogens into water-soluble and readily excreta-
ble forms, through their conjugation with polar moieties. 
This conversion results from the action of the families of 
GST and NAT enzymes [10]. GSTs conjugate with the 
antioxidant glutathione to metabolise compounds that are 
either mutagenic (e.g. heterocyclic aromatic amines) or 
anticarcinogenic (e.g. glucosinolates) [11]. NAT enzymes 
use acetyl-CoA as a co-factor and can detoxify active 
mutagens via acetylation [12, 13]. In addition, micronutri-
ents derived from fruit and vegetables, such as isothiocy-
anates, indoles and allylic compounds, have been shown to 
reduce cellular carcinogenicity by inducing the expression 
of these detoxification enzymes [10]. Therefore, isothio-
cyanates have a dual role as substrates and as inducers of 
these detoxifying enzymes.

GST and NAT enzymes have a number of isoenzymes, 
and many of the coding genes for these isoenzymes are 
polymorphic. Genetic variants (single nucleotide poly-
morphisms-SNPs) present in GST and NAT genes might 
be associated with functional changes, ranging from a 
complete loss to a reduction in enzymatic activity [9]. 
GSTP1, GSTM1, GSTT1 and NAT2 isoenzymes are com-
monly investigated in nutrigenetics studies. GSTM1 and 
GSTT1 deletion polymorphisms result in complete loss 
of enzymatic activity [14], whereas other SNPs such as 
the GSTP1 p.Ile105Val (c.313A>G) (rs1695) have been 
shown to reduce enzymatic activity [11, 15]. The NAT2 
c.590G>A (p.Arg197Gln) (rs1799930) SNP causes the 
enzyme to be a slow metaboliser of active mutagens. 
Thus, reduced activity of GST and NAT isoenzymes 
would result in an inefficient elimination of carcinogens, 
which could in turn increase susceptibility to cancer [9]. 
In this study, we focused on those aforementioned SNPs 
of the GST and NAT isoenzymes, which have been shown 
to be functional [16].

There are also studies investigating SNPs in other iso-
enzymes of the GST and NAT families, such as the GSTA1 
and 2, GSTO1 and 2, GSTM2 and 3, GSTZ1 and NAT1 
and their role in BC risk. However, these studies are few 
and they have mostly presented non-statistically significant 
results. When examining the relationship between poly-
morphisms, nutrition and cancer risk, the GSTP1, GSTM1, 
GSTT1 and NAT2 polymorphisms are the most commonly 
studied genetic variants of the phase II detoxification 
metabolism in cancer nutrigenetics [9, 10]. Based on their 
functional role, it has been evidenced that the association 
between BC risk and diet can be modified by the SNP gen-
otypes [17, 18]. This may in part explain the inconclusive 
results obtained when studying the associations between 
diet and BC risk, without considering the SNP genotypes of 
the participants [19, 20]. The aim of the current study was 
to investigate whether the effect of a dietary pattern, which 
combines more than one food group, on BC risk, could be 
modified by GST and NAT2 SNPs. To our knowledge, such 
as an aspect has not been examined previously. A dietary 
pattern, such as the MD, has a number of advantages when 
used as the dietary variable in nutrigenetics studies as we 
reported elsewhere [21, 22]. Here, we examined the asso-
ciation between four polymorphisms and BC risk, using 
the population of the MASTOS study. The four polymor-
phisms examined were the GSTP1 p.Ile105Val, NAT2 
590G>A SNPs and GSTM1 and GSTT1 deletion polymor-
phisms. Furthermore, we assessed the interactions between 
the aforementioned polymorphisms and a Mediterranean 
dietary pattern (MDP), which was obtained previously [8], 
with respect to BC risk. Moreover, we assessed the associa-
tions between BC risk and the MDP, when stratified by the 
genotypes of the four polymorphisms.

Participants and methods

Participants

MASTOS was a population-based case–control study of 
BC in Cyprus, which recruited 1109 female BC cases, aged 
40–70 years, and 1177 controls of the same age range. All 
participants were recruited between the years 2004 and 
2006. Cases were women with a histologically confirmed 
diagnosis of BC (diagnosed between January 1999 and 
December 2006). Controls were women with no prior his-
tory of BC, who participated in the national mammogra-
phy population screening programme and had a negative 
result. Blood samples were collected from both cases and 
controls. More information on the purpose, design of the 
study, data collection and study population was described 
elsewhere [23, 24].
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Dietary intake assessment

Standardised interviews were performed with each partici-
pant in order to answer an interviewer-administered ques-
tionnaire, especially designed to collect extensive demo-
graphic and risk factor data [8, 23]. Dietary intake data 
were collected using an interviewer-administered food-
frequency questionnaire (FFQ) comprising 32 food and 
beverage items, through a standardised diet interview. This 
FFQ aimed to record the routine consumption of foods of 
the participants over the preceding year (for cases, this was 
the past 12 months prior to diagnosis). More details about 
the design and structure of the FFQ can be found in Dem-
etriou et al. [8]. Principal component analysis (PCA) was 
previously used to investigate the dietary consumption of 
food items (in g/month) included in the FFQ and also to 
derive the dietary pattern that best applies to the Greek-
Cypriot female population. This analysis was performed 
on the control subjects. Diagonal (direct oblimin) rotation 
was used to extract principal components. Orthogonal rota-
tions failed to generate interpretable results as they assume 
independence of components, an assumption that does 
not hold for dietary patterns. The adherence of subjects 
to each dietary pattern was estimated using a component 
score for each subject, based on all factor loadings and 
the respective monthly consumption of each food. Eleven 
components were originally found based on an eigenvalue 
criterion of >1.0 and scree plot analysis. After interpret-
ability of the factors of the various components, the reten-
tion of only four components was justified, as components 
five to eleven revealed high factor loadings on single vari-
ables. Only these four factors were thus retained to repeat 
the PCA. Each of the four retained components corre-
sponded to a different dietary pattern: pattern 1—meat/
potatoes, pattern 2—cereals/milk/dairy, pattern 3—cakes/
sweets/nuts/crackers/pasta/rice and pattern 4—vegetables/
fruit/legumes/fish. Among the 32 food items, 23.6 % of 
the total variance was explained by the four factors (8.05, 
5.92, 5.10 and 4.55 % for the four patterns, respectively). 
It was concluded that the dietary pattern 4 included high 
loadings of vegetables, fruit, legumes and fish, closely 
resembled the MDP. Consequently, pattern 4 was selected 
as being the most appropriate to be used in the subsequent 
association analysis with BC and in the analysis with the 
SNPs in this study. Quartile values for adherence to this 
dietary pattern were determined, according to score values 
of the controls [8]. Subjects in quartile 1 had the lowest 
consumption of vegetables, fruit, legumes and fish and 
thus lowest adherence to the PCA-derived dietary pattern. 
In contrast, subjects in quartile 4 had the highest consump-
tion of the same four food groups and therefore the highest 
adherence to this dietary pattern.

Genotyping

Genotyping of the GSTP1 c.313A>C (p.Ile105Val) and 
NAT2 c.590G>A SNPs was carried out in all study partici-
pants (1109 cases and 1177 controls) with TaqMan SNP 
genotyping assays and the ABI PRISM 7900HT real-time 
PCR instrument (Applied Biosystems Inc.). TaqMan Uni-
versal PCR Master Mix and 30 ng of genomic DNA were 
used in a final reaction volume of 5 μl for each assay. 
Genotyping was performed using 384-well plates as 
described in Kakkoura et al. [21, 22]. The order of DNA 
samples from cases and controls on the 384-well plate was 
randomised, in order to ensure that samples from cases 
and controls were subjected to the same study conditions. 
Genotyping of the deletion GSTM1 and GSTT1 polymor-
phisms was carried out in all study participants using the 
multiplex PCR method as described elsewhere with the 
only modification that part of exon 11 of the BRCA1 gene 
was used as an internal control [25]. To ensure good quality 
control practices, 20 % of the samples were genotyped in 
duplicate. These samples had exactly the same genotyping 
results. Genotyping call rates for the four polymorphisms 
under study (GSTP1, GSTM1, GSTT1 and NAT2) ranged 
between 95 and 99 % (2256, 2215, 2170 and 2267 partici-
pants were successfully genotyped for the GSTP1, GSTM1, 
GSTT1 and NAT2 polymorphisms, respectively, and were 
included in the subsequent statistical analysis). Duplicate 
concordance rates were higher than 99 %.

Statistical analysis

Differences in categorical sociodemographic character-
istics, potential risk factors and PCA-derived dietary pat-
terns among cases and controls were assessed using the 
Chi-square test. A Chi-square test was also carried out 
to examine Hardy–Weinberg equilibrium (HWE) in the 
controls. P values, which were smaller than 0.05 (<0.05), 
were considered to be statistically significant. Associa-
tions between each SNP and BC were investigated with 
the use of logistic regression. These associations were 
adjusted for menopausal status (pre- or post-menopausal) 
and age. Logistic regression was also used to assess: (a) 
the interactions between each SNP genotype and each 
quartile (1–4) of the PCA-derived MDP on BC risk within 
a multiplicative model and (b) the associations between 
PCA-derived MDP quartiles and BC stratified by each 
SNP genotype. Additionally, associations between SNP 
genotypes and BC risk stratified by the quartiles of the 
PCA-derived MDP were investigated. However, there 
were no additional significant associations, and thus, they 
will not be discussed further (Supplementary Table 1). 
Regarding interaction analyses, multiplicative interaction 
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terms included products of scores for SNP genotypes (0, 
for homozygous wild-type genotype; 1, for homozygous 
variant genotype and 2, for heterozygous genotype) and 
dietary pattern quartiles (1, for quartile 1; 2, for quartile 
2; 3, for quartile 3; and 4, for quartile 4). The odds ratios 
(ORs) and 95 % confidence intervals (CIs) of BC risk for 
all associations were adjusted for menopausal status and 
age as well as for the other three dietary patterns of the 
PCA (patterns 1, 2 and 3) that were derived previously 
[8]. Age was treated as a continuous variable, and meno-
pausal status, PCA-derived dietary pattern data and SNP 
data were treated as categorical variables in the statistical 
model of logistic regression. In addition to age, menopau-
sal status and PCA-derived dietary pattern data (patterns 1, 
2 and 3), ORs were adjusted for other potential confound-
ing factors that best predict BC risk in this study popula-
tion (family history of BC, age at menarche, hormone 
replacement therapy use, breastfeeding and age at the first 
full-term pregnancy) [23]. Nevertheless, further adjusting 
for these five potential confounders did not change any of 
the ORs by greater than 10 %. Hence, those factors are not 
included in the adjustments of the ORs presented here. A 
likelihood ratio test was used to compare regression mod-
els with and without SNPs–PCA-derived MDP interaction 
terms, in order to derive overall p interaction values for 
assessing the significance of interactions between SNPs 
and dietary pattern in relation to BC risk. These regression 
models were also adjusted for menopausal status, age and 
for the other three dietary patterns of the PCA (patterns 
1, 2 and 3). PCA-derived MDP was also treated as a con-
tinuous variable to assess association between this PCA-
derived dietary pattern and BC, stratified by genotypes of 
the SNPs. These associations were adjusted further for the 
categorical variable of the menopausal status and for the 
continuous variables of age and PCA-derived dietary pat-
terns 1, 2 and 3. Outliers were removed from this analy-
sis. Statistical analysis was performed using SPSS version 
21 (SPSS, PASW Inc., Chicago, Illinois), STATA version 
11 (StatCorp.2007. College Station, TX) and SNPStats, 
which is a web-based software, designed for the analysis 
of genetic association studies [26].

Results

Characteristics and frequencies of GSTP1, GSTM1, 
GSTT1 and NAT2 polymorphisms

The genotype frequencies of the GSTP1 p.Ile105Val and 
NAT2 590G>A SNPs among the control group did not 
deviate from HWE (Table 1). GSTM1 and GSTT1 dele-
tion polymorphisms could not be tested for HWE since 

there were only two categories of genotypes. Genotype and 
allele frequencies of the four polymorphisms in cases and 
controls are given in Table 1. Characteristics of the 1109 
BC cases and 1177 controls of the MASTOS study, includ-
ing the four PCA-derived dietary patterns, are presented in 
Supplementary Table 2. Differences in the distribution of 
the variables between cases and controls were discussed 
previously [23].

GSTP1, GSTM1, GSTT1 and NAT2 polymorphisms 
and risk of breast cancer

The associations between GSTP1 p.Ile105Val, NAT2 
590G>A, GSTM1 and GSTT1 deletion polymorphisms and 
BC risk are given in Table 2. Women homozygous for the 
GSTT1 null allele demonstrated a statistically significant 
increased BC risk, when compared to women homozygous 
for the wild-type GSTT1 allele. Associations between the 
other three polymorphisms studied and BC risk were not 
statistically significant (Table 2).

Table 1  Genotype and minor allele frequencies for the GSTP1, 
GSTM1, GSTT1 and NAT2 polymorphisms in the MASTOS study

a MAF minor allele frequency
b p value from Chi-square test performed for Hardy–Weinberg equi-
librium (HWE) evaluation

Gene/SNP Cases Controls

N % N %

GSTP1 p.Ile105Val (rs1695)

 Ile/Ile 637 58.0 668 57.7

 Ile/Val 395 35.9 414 35.8

 Val/Val 67 6.1 75 6.5

Total 1099 1157

MAFa 0.24 0.24

Hardy–Weinberg (p value)b 0.34

GSTM1

 Non-null 441 41.8 530 45.7

 Null 613 58.2 631 54.3

Total 1054 1161

GSTT1

 Non-null 620 59.0 731 64.7

 Null 420 40.4 399 35.3

Total 1040 1130

NAT2 590G>A (rs1799930)

 G/G 542 49.0 573 49.3

 G/A 470 42.5 486 41.9

 A/A 94 8.5 102 8.8

Total 1106 1161

MAFa 0.30 0.30

Hardy–Weinberg (p value)b 1.00
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Interaction analyses between principal component 
analysis‑derived Mediterranean dietary pattern, 
GSTP1, GSTM1, GSTT1 and NAT2 polymorphisms 
and breast cancer

None of the four polymorphisms studied (GSTP1 
p.Ile105Val, NAT2 590G>A, GSTM1 and GSTT1 deletion 
polymorphisms) interacted significantly with the PCA-
derived MDP, since the overall p interaction values were 
not statistically significant (Table 3).

Associations between principal component 
analysis‑derived Mediterranean dietary pattern 
and breast cancer risk, stratified by the GSTP1, 
GSTM1, GSTT1 and NAT2 genotypes

A statistically significant decreased BC risk was evidenced 
in GSTP1 Ile/Ile and Ile/Val women with increasing adher-
ence to the PCA-derived dietary pattern (continuous vari-
able) (Table 4). High adherence to the PCA-derived dietary 
pattern also decreased significantly BC risk of the NAT2 
590GG and 590GA women. Thus, it is likely that the pro-
tective effect of the MDP becomes stronger as the number 

of wild-type NAT2 590G alleles increases. Additionally, 
increasing adherence to the PCA-derived MDP resulted in 
a significantly lower risk for BC in both genotypes (non-
null and null) of both GSTM1 and GSTT1 genes. No sta-
tistically significant associations were observed between 
the PCA-derived pattern and BC risk for the carriers of the 
variant alleles of the GSTP1 (Val/Val) and NAT2 (590AA) 
SNPs (Table 4).

Discussion

In this nutrigenetics study, we examined the associations 
between four polymorphisms in phase II detoxification 
enzymes (GSTP1 p.Ile105Val, NAT2 590G>A, GSTM1 
and GSTT1 deletion polymorphisms) and BC risk, as well 
as the interactions between each of these SNPs and the 
MDP on BC risk. When examining the adjusted associa-
tions between BC risk and the four polymorphisms under 
study, it was shown that the null genotype of the GSTT1 
polymorphism statistically significantly increased BC risk 
in Greek-Cypriot women, which is in agreement with the 
results of two recent meta-analyses [27, 28]. This finding 
might be biologically significant since the null GSTT1 gen-
otype has been shown to result in the loss of the enzyme 
and thus in the loss of the enzymatic detoxification activity, 
which protects against reactive carcinogenic metabolites. 
Many of these cytotoxic products can cause DNA dam-
age, and hence, individuals with the null GSTT1 genotype 
might have an increased BC risk [28, 29]. No associations 
between BC risk and the remaining three polymorphisms 
(GSTP1 p.Ile105Val, NAT2 590G>A and GSTM1 deletion 
polymorphism) were found, which is also in line with pre-
vious meta-analyses [30–34].

In the interaction analyses, non-statistically significant 
overall p interaction values were obtained, i.e. the asso-
ciation between MDP and BC does not depend on SNPs 
genotypes and vice versa. Even though there was no statis-
tically significant interaction between MDP and SNPs with 
respect to BC risk, the investigation of the association anal-
yses between the MDP and BC risk stratified by genotypes 
of the SNPs showed statistically significant results. A high 
adherence to the PCA-derived dietary pattern significantly 
reduced BC risk in women with at least one GSTP1 Ile 
allele. Increasing adherence to the PCA-derived MDP also 
decreased BC risk in women with at least one NAT2 590G 
allele. The effect was stronger in the homozygous wild-type 
NAT2 590GG genotype. These statistically significant asso-
ciations suggest that the GSTP1 p.Ile105Val and the NAT2 
590G>A SNPs could modulate the association between the 
MDP and BC risk, acting as effect modifiers on this associ-
ation. Thus, the wild-type GSTP1 Ile or NAT2 590G alleles 
could enhance the beneficial and protective effect of the 

Table 2  Odds ratios (ORs) for the associations between GSTP1, 
GSTM1, GSTT1 and NAT2 polymorphisms and breast cancer risk in 
the MASTOS study

The p values (<0.05), which are statistically significant, are presented 
in bold. The odds ratios (ORs) [95 % confidence interval (CI)] which 
correspond to the statistically significant p values are also presented 
in bold
a The number of cases and controls may differ from those of Table 1 
due to confounder missing values
b Adjusted for menopausal status and age
c 95 % CI 95 % confidence interval

Gene/SNP Cases/controlsa Adjustedb OR (95 % CI)c p value

GSTP1 p.Ile105Val (rs1695)

 Ile/Ile 637/665 1.00 –

 Ile/Val 395/414 1.00 (0.84–1.20) 0.98

 Val/Val 67/75 0.97 (0.68–1.38) 0.87

Ptrend 0.99

GSTM1

 Non-null 441/528 1.00 –

 Null 613/630 1.17 (0.98–1.38) 0.08

GSTT1

 Non-null 620/728 1.00 –

 Null 420/399 1.21 (1.01–1.45) 0.03

NAT2 590G>A (rs1799930)

 G/G 542/572 1.00 –

 G/A 470/484 1.00 (0.84–1.20) 0.97

 A/A 94/102 0.99 (0.72–1.35) 0.94

Ptrend 0.97
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high adherence to the PCA-derived MDP, against BC risk 
in Greek-Cypriot women, resulting in a synergistic effect. 
Furthermore, high adherence to the MDP reduced signifi-
cantly BC risk in both homozygous non-null and null geno-
types of the GSTM1 and GSTT1 genes. These statistically 
significant associations suggest that the observed decreased 
BC risk is due to the effect of the MDP, irrespective of 
the modifying effect of the GSTM1 and GSTT1 deletion 
polymorphisms.

The interplay between bioactive phytochemicals and 
phase II metabolising enzymes might be important in BC 
development, as shown by our results and those of previous 
studies [35–37]. In our study, the statistically significant 
decreased BC risk associated with a high adherence to the 
PCA-derived MDP is more evident in the wild-type GSTP1 
Ile/Ile and NAT2 590GG women. These findings could be 
explained by the fact that in the wild-type genotypes of the 
GSTP1 and NAT2 SNPs, the enzymes maintain their nor-
mal detoxification activity, and thus, they are more efficient 
in detoxifying carcinogens compared with the variant SNP 
genotypes (GSTP1 Val/Val and NAT2 590AA) (Fig. 1). 
Additionally, the high intake of MD plant-based foods and 
thus of isothiocyanates, indoles [4, 38] and other antioxi-
dants would induce the expression of the wild-type GSTP1 
and NAT2 enzymes, and consequently, the detoxification 
enzymatic activity would be further enhanced [3, 10, 14]. 
These phase II enzymes detoxify toxic electrophiles and 

reactive species (e.g. diols, nitrosamines, organic epoxides, 
hydroperoxides and unsaturated aldehydes) produced from 
the activity of phase I enzymes [12, 39]. Increased enzy-
matic detoxification would result in an increased excretion 
and clearance of carcinogens and in a reduced exposure of 
the target tissue to carcinogen-induced DNA damage. Evi-
dence by previous studies also suggests that isothiocyanates 
inhibit phase I activating enzymes, leading to reduced acti-
vation of procarcinogens [40, 41]. Therefore, initiation and 
promotion of carcinogenesis are inhibited by these events 
[29], resulting in a decreased BC risk (Fig. 1).

In addition, phase II enzymes catalyse the conjugation 
of either glutathione in the case of GSTs or acetyl-CoA in 
the case of NATs to electrophilic compounds converting 
them into water-soluble species. Therefore, dietary metabo-
lites such as the isothiocyanates are not only inducers but 
also substrates of GSTs, the action of which leads to their 
elimination from the body [14] (Fig. 1). In the case of 
N-acetylation, aromatic and heterocyclic amines act as sub-
strates and are inactivated by the NAT2 enzyme [12]. Previ-
ous studies showed that individuals with GSTM1 or GSTT1 
null genotypes or GSTP1 Val/Val alleles, who exhibit no or 
decreased enzymatic activity, are less efficient in the elimi-
nation of phytochemicals, leading to a prolonged accumu-
lation of chemopreventive micronutrients in the body. The 
presence of prolonged and high levels of bioactive phy-
tochemicals in these carriers induces the activity of the 

Table 4  Associations between 
breast cancer risk and principal 
component analysis (PCA)-
derived Mediterranean dietary 
pattern (MDPa), stratified 
by genotypes of GSTP1, 
GSTM1, GSTT1 and NAT2 
polymorphisms in the MASTOS 
study

The odds ratios (ORs) [95 % confidence interval (CI)] which correspond to the statistically significant p 
values are presented in bold
a PCA-derived dietary pattern with high loadings of vegetables, fruit, legumes and fish (continuous val-
ues), which closely resembles the MDP [8]
b Adjusted for menopausal status, age and for the other PCA-derived dietary components (patterns 1, 2 and 
3) [8]. The data of the PCA-derived dietary patterns 1, 2 and 3 were treated as continuous variables

Gene/SNP PCA-derived MDP (continuous variable)a: 
vegetables, fruit, legumes and fish

Adjustedb OR (95 % CI)

GSTP1 p.Ile105Val (rs1695)

 Ile/Ile 0.84 (0.74–0.95)

 Ile/Val 0.73 (0.62–0.85)

 Val/Val 0.72 (0.48–1.09)

GSTM1

 Non-null 0.81 (0.70–0.93)

 Null 0.76 (0.66–0.86)

GSTT1

 Non-null 0.77 (0.68–0.87)

 Null 0.81 (0.70–0.94)

NAT2 590G>A (rs1799930)

 G/G 0.73 (0.63–0.83)

 G/A 0.81 (0.70–0.94)

 A/A 1.04 (0.77–1.40)
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detoxification GST enzymes and thus increases protection 
against cancer [12, 14, 37]. Another study on bladder can-
cer risk showed that individuals with a NAT2 slow acetyla-
tor genotype might benefit from the high intake of crucif-
erous vegetables [12]. Nevertheless, in the Greek-Cypriot 
population we did not observe any statistically significant 
associations between the MDP and the variant GSTP1 Val/
Val and NAT2 590AA genotypes on cancer risk, results 
that are in agreement with earlier studies [29, 36, 42]. This 
inconsistency between various studies may be due to differ-
ent dietary exposures and population differences [14, 43]. 
Based on our significant findings on the wild-type GSTP1 
Ile/Ile and NAT2 590GG SNPs, we hypothesise that the 
inducing effects of the MD nutrients on the expression of 
the enzymes might play a more important role in protection 
against cancer, compared with the eliminating effects of the 

nutrients themselves, as explained above and supported by 
others [35, 37, 43–46].

Moreover, the PCA-derived MDP used in our study is 
rich in fish, besides plant-based food groups. The anticar-
cinogenic effect of fish could be exerted through the cel-
lular action of marine n-3 PUFAs [39]. N-3 PUFAs can 
modulate tumour growth and decrease BC risk by reacting 
with the endogenous free radicals to form lipid peroxida-
tion products, which in turn cause apoptosis of cancerous 
cells [7, 47]. The lipid hydroperoxides act as substrates for 
the metabolising GST and NAT enzymes, which detoxify 
them [7]. As aforementioned, the high adherence to the 
PCA-derived MDP significantly decreased BC risk in the 
Greek-Cypriot carriers of the GSTP1 Ile/Ile and NAT2 
590GG alleles. The high adherence to the MDP could 
ensure the presence of adequate levels of fish n-3 PUFAs 

Fig. 1  Schematic diagrams showing a balance in order to explain the 
relationship between the MD micronutrients, the GSTP1 p.Ile105Val 
(rs1695) and NAT2 590G>A (rs1799930) SNPs, carcinogens, phase I 
and phase II enzymes and cancer risk in the xenobiotic metabolism. 
a The synergistic effect between the high intake of the MD micronu-
trients (high adherence to the plant-based foods of the MD) and the 
wild-type GSTP1 Ile/Ile and NAT2 590GG SNPs decreases BC risk. b 

The synergistic effect between the low intake of the MD micronutri-
ents and the variant GSTP1 Val/Val and NAT2 590AA SNPs increases 
BC risk. Microconstituents such as the isothiocyanates and indoles, 
which are obtained through the MD, can inhibit phase I enzymes that 
activate procarcinogens to carcinogens and induce phase II enzymes 
that detoxify carcinogens. MD micronutrients can also act as sub-
strates for GST enzymes (up arrow increase, down arrow decrease)
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(Supplementary Table 3) and hence of lipid peroxida-
tion. This appears to enhance the triggering of apoptosis of 
tumour cells [39], even if the GSTP1 and NAT2 enzymes 
at the wild-type genotypes of the SNPs (GSTP1 Ile/Ile and 
NAT2 590GG) would eliminate the peroxidation products 
efficiently. Hence, we hypothesise that the high intake of 
marine n-3 PUFAs might be able to compensate for the lipid 
peroxidation products detoxified by the GSTP1 Ile/Ile and 
NAT2 590GG enzymes. In contrast to our results, a study 
on women with the combined GSTM1 null and GSTP1 low 
activity genotypes and marine n-3 fatty acid intake revealed 
a reduced BC risk and no associations with the high activ-
ity GST genotypes [7]. The sample size of this study was 
smaller compared to our study’s sample size, and this might 
be the reason behind this inconsistency. Further studies are 
needed in order to explain these contrasting observations.

To the best of our knowledge, this is the first study which 
examined the effects of these particular SNPs on the GST 
and NAT detoxification enzymes and on cancer risk, in 
association with a dietary pattern that includes a combina-
tion of more than two food groups (not only vegetables and 
fruit but also legumes and fish). A dietary intake combining 
those four food groups included in the PCA-derived dietary 
pattern could contain ample quantities of anticarcinogenic 
micronutrients and marine n-3 PUFAs, as opposed to a 
single nutrient intake (Supplementary Table 3). Hence, the 
PCA-derived dietary pattern has the advantage of closely 
resembling the MD and thus of representing a more com-
prehensive dietary variable to study, rather than examining 
the effect of single isolated micronutrients. Further strengths 
of this study are the large sample size and the homogeneous 
sample of subjects in terms of ethnic background [8, 48]. 
Selection and survival biases could be possible limitations 
of the study, as discussed previously [8, 48]. An additional 
limitation is the fact that the FFQ used in our study exam-
ined only 32 food and beverage items, which is a limited 
number for a typical FFQ. In addition, information about the 
means of consumption or preparation for each dietary item 
and about the intake of dietary supplements was not taken 
into account. Therefore, some of the food items that could 
contribute significantly to the dietary habits of the Greek-
Cypriot population might be missing. Furthermore, the 
methods of processing and cooking of vegetables, legumes 
and fish complicate more the assessment of the exposure to 
the specific anticarcinogenic MD nutrients under study [29]. 
A further limitation of the FFQ is possible misclassifica-
tion in the assessment of dietary intake, due to recall bias, 
an unfortunate but inevitable caveat of case control studies. 
However, it is not expected to be a big issue in the examina-
tion of gene–environment interactions, as the relevant risk 
of bias with respect to genotype is minimal [37, 49, 50]. 
Moreover, the relative quantitative range of anticarcinogenic 
nutrients included in the foods most heavily weighted in the 

PCA-derived MDP was based on information reported in 
the literature and in a food database [3–5, 38, 51] without 
being measured in the serum. Additionally, how bioavaila-
ble are the phytochemical compounds (e.g. isothiocyanates) 
and how they are distributed upon ingestion in vivo is still 
unclear [14, 29]. PCA has some subjective limitations, 
including the derived variables used in the analysis, the 
number of the extracted factors, the type of the rotation used 
and the labelling of the retained factors. A small amount of 
variance (4.55 % of the total variance in the 32 FFQ items) 
was also explained by the component derived from the PCA 
used in the current study [8]. Nonetheless, this low variance 
amount is typical in dietary studies analysed by PCA, as 
shown by the limitations of reducing the highly interrelated 
dietary variables [52].

In conclusion, our statistically significant association 
results show that the GSTT1 null genotype increases BC 
risk and that a high adherence to the PCA-derived MDP 
reduces BC risk in women with at least one GSTP1 Ile 
allele or with at least one NAT2 590 G allele. These results 
suggest that the GSTT1 null genotype could be a risk allele 
for developing BC and that both the GSTP1 p.Ile105Val 
and the NAT2 590G>A SNPs may act as effect modifiers on 
the association between the PCA-derived MDP and BC risk 
in the Greek-Cypriot female population. The high intake of 
the anticarcinogenic components of the MD in combination 
with the wild-type GSTP1 Ile or NAT2 590 G alleles seems 
to play a synergistic role in the prevention of BC develop-
ment through the detoxification pathway, with the GSTP1 
Ile or NAT2 590G alleles enhancing this protective MD 
effect. Further studies should include quantification of the 
levels of anticarcinogenic, antioxidant and oxidative stress-
related metabolites in the serum of these subjects, in order 
to further assess the associations observed and clarify their 
role in breast carcinogenesis. Also, studying GST and NAT2 
SNPs with the tag SNPs approach will allow us to capture 
a more complete genetic coverage for the genetic variants 
assessed in the association analyses between the MD and 
BC risk. Additionally, as the detoxification enzymes of the 
xenobiotic metabolism have been shown to be involved in 
the regulation of DNA damage [9], it would be interesting 
to assess the combined effects of the GST, NAT and DNA 
repair SNPs (studied previously in the MASTOS partici-
pants [24, 48]), on BC risk as well as to assess these effects 
on the MD and BC risk association. This kind of informa-
tion generated through the nutrigenomics studies might 
help to further investigate the mechanism(s) of action of the 
protective components of the MD in vivo.
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