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Conclusions  Since mitochondria are the main produc-
ers of both cellular energy and free radicals, dysfunctional 
mitochondria could play an important role in the develop-
ment of insulin resistance and ectopic fat storage in the 
liver, thus supporting the emerging idea that mitochondrial 
dysfunction is closely related to the development of obesity, 
type 2 diabetes mellitus and non-alcoholic steatohepatitis.
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Introduction

Hyperlipidic–hypercaloric diets are now frequently con-
sumed in modern societies, coupled with low levels of 
physical activity. These factors contribute importantly to 
the development of pathological conditions, which include 
obesity, hypertension, insulin resistance, dyslipidemia, and 
liver diseases. The liver is a central player in the physi-
ological regulation of whole-body energy homeostasis as 
well as in the pathogenesis of the epidemiologically rele-
vant metabolic disorders, such as obesity and diabetes. In 
particular, chronic dietary overload with fructose and satu-
rated fatty acids, typical of western societies, will enhance 
accumulation of lipid metabolites and oxidative stress in 
liver [1–3]. The ectopic fat accumulation in liver is tightly 
associated with the development of insulin resistance [4, 
5]. In fact, hepatic accumulation of diacylglycerol (DAG) 
and ceramide, as well as DAG-induced activation of protein 
kinase C, can impair insulin signaling, most notably at the 
level of the insulin receptor substrates [6–9].

The rate at which fat accumulates in tissues is deter-
mined by several factors, such as the rate of lipid uptake 
from the circulation and the utilization of lipids within 
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the tissues [10]. Mitochondria are the main cellular sites 
devoted to fatty acid oxidation. For these reasons, a role 
for mitochondrial dysfunction in the onset of insulin resist-
ance has been proposed and a number of studies have 
dealt with possible alteration in mitochondrial function in 
obesity and diabetes, both in humans and animal models, 
using different experimental paradigms and with different 
approaches. In particular, it should be taken into account 
that the mitochondrial oxidation of metabolic fuels depends 
on organelle number, organelle activity, and energetic effi-
ciency of the mitochondrial machinery in synthesizing ATP 
from the oxidation of fuels. Therefore, the main goal of this 
review was to collect and analyze the available data on liver 
mitochondria and diet-induced obesity with the focus on 
all the three above parameters. Search in PubMed of rel-
evant articles from 2003 to 2014 was conducted, by using 
query “liver mitochondria and obesity” “hepatic mitochon-
dria and obesity” “liver mitochondria and high fat diet” and 
“hepatic mitochondria and high fat diet” with the inclusion 
of related articles by the same groups. A summary of the 
obtained results is presented in Tables 1 and 2.

Mitochondrial functionality and insulin resistance

Mitochondria are key organelles in energy metabolism, espe-
cially in tissues with high metabolic activity, such as liver. 
Therefore, mitochondrial dysfunction could play an impor-
tant role in the pathogenesis of the metabolic disorders.

Mitochondrial production of reactive oxygen species 
(ROS) is frequently reported to be increased in the physi-
opathology of insulin resistance and could cause damage to 
cellular macromolecules, thus causing damage to cellular 
structures, including mitochondria. Mitochondrial impair-
ment would lead to a decreased oxidative capacity, thus 
favoring intracellular lipid storage that is considered a key 
player in the development of insulin resistance.

An alternative pathway leading to hepatic insulin resist-
ance could involve an elevated β-oxidation [11–14], that 
is viewed as an adaptive mechanism, but provides large 
amounts of reduced equivalents (NADH, H+ and FADH2) 
and electrons to the respiratory chain regardless of the ATP 
demand. Thus, oxidative phosphorylation would be unbal-
anced, promoting successively increasing ROS production, 
mitochondrial and cellular damages, and reduction of insu-
lin signal transduction.

Several works, by using different physiological 
approaches, have investigated the relationship between 
onset of insulin resistance and mitochondrial functioning 
in liver, that exerts a deep impact on glucose homeostasis. 
These studies have included measurements of mitochondrial 
mass and function and are based on assessment of mito-
chondrial membrane potential, proton leak kinetics, mito-
chondrial content by ultrastructural observations, citrate 
synthase activity, ratio of mitochondrial relative to nuclear 
DNA, polarographic determination of oxygen consump-
tion rates, enzyme activities of mitochondrial respiratory 
complexes I–V, markers of oxidative stress such as lipid 

Table 1   Summary of data on 
mitochondrial function and 
insulin resistance/high-fat diet

Parameter Observed variation

Increased Unchanged Decreased

β-oxidation [11–14]

Respiratory chain activity [13] [30–32] [15, 19, 20]

State 3 respiration [21, 26, 33, 34] [25, 28, 30–32] [17, 18, 29, 35–37, 47]

Citrate synthase activity [22]

Cytochrome oxidase activity [27] [25, 28] [29]

Efficiency of oxidative phosphorylation [28] [19, 25, 33, 38]

Inner membrane integrity [23, 24]

Table 2   Summary of diet-
induced changes in liver 
mitochondrial compartment, 
oxidative stress, and insulin 
sensitivity

? = effect unknown

High-fat diet High-fructose diet

Short-term [45, 46] Long-term [39] Short-term [65–67] Long-term 
[64]

Mitochondrial protein mass ↑ ↑ ? ↑
Mitochondrial capacity ↓ ↓ = =
Mitochondrial efficiency ? ↑ ? ↑
Oxidative stress ↑ ↑ ↑ ↑
Insulin sensitivity = ↓ ↓ ↓
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peroxidation products, and antioxidant capacity such as 
superoxide dismutase specific activity [15–22]. The results 
that have been obtained report either decreased, unchanged 
or even increased hepatic mitochondrial function and oxida-
tive phosphorylation capacity in insulin resistant states.

Mitochondrial functionality and high‑fat diet

In rats fed a high-fat diet, a loss of cristae in hepatic mito-
chondria has been shown, as well as swollen mitochondria 
and decreased matrix density [23, 24]. When considering 
mitochondrial respiration and ATP production, the activity 
assessed in isolated liver mitochondria from rats exposed 
to a high-fat diet has been found either decreased [19], 
unchanged [25] or even increased [26] when compared 
with controls. Several discrepancies exist regarding pos-
sible high-fat diet-induced changes in mitochondrial res-
piratory chain activity and respiration. Cytochrome oxidase 
activity has been found increased [27], unchanged [25, 28] 
or reduced [18, 29]. State 3 oxygen consumption in iso-
lated liver mitochondria with different substrates was either 
reported as unchanged [25, 28, 30–32], increased [33, 34] 
or significantly reduced [18, 29, 35–37].

Mitochondria generate most of the energy used by 
cells, and the efficiency with which ATP is synthesized 
by mitochondrial oxidative phosphorylation is depend-
ent on mitochondrial coupling. Excess in energy intake 
and/or high degree of mitochondrial coupling cause an 
increase in proton motive force to a maximum, with res-
piratory complexes that become highly reduced and may 
release electrons directly to oxygen resulting in a higher 
ROS production, thus altering cell functioning and lead-
ing to several pathologies. Therefore, it appears important 
to study the link between mitochondria and insulin resist-
ance with a focus on the degree of mitochondrial coupling. 
Again, when examining the results obtained in literature, 
the efficiency of oxidative phosphorylation and the mito-
chondrial membrane potential were either increased [28] or 
unchanged [19, 25, 33, 38].

To gain more insight into this link, we have used a 
rat model that displays several correlates human obe-
sity [39]. In these high-fat fed rats, the combination of 
slight increases in metabolisable energy intake and slight 
decreases in energy expenditure resulted in positive energy 
balance that cumulated over the 7-week study period to 
result in marked increases in body energy gain and lipid 
gain; the latter resulting in part from an increase in meta-
bolic efficiency [39]. Other metabolic characteristics that 
resembles human obesity in the above rats fed a high-fat 
diet for 7 weeks are insulin resistance and hepatic steatosis 
[39], a common complication of diet-induced obesity [40]. 
Since mitochondria are the major cellular site involved in 

fatty acid metabolism and the main source of ROS, they 
could play a key role in ectopic fat storage and related 
complications. An increase in mitochondrial protein mass 
together with a significant decrease in State 3 respiratory 
capacities were found in rats fed high-fat diet [39]. These 
modifications of mitochondrial compartment are similar to 
those found in response to aging [41] and oxidative stress 
[42]. The results strongly suggest that high-fat feeding 
causes an early onset of mitochondrial decay in adult rats. 
An additional mechanism that can regulate mitochondrial 
energy production is the degree of coupling of oxidative 
phosphorylation, which in turn depends on mitochondrial 
inner membrane permeability to protons (proton leak). The 
significant decrease in proton leak exhibited by mitochon-
dria from rats fed a high-fat diet suggests an increase in 
mitochondrial coupling in this condition. When mitochon-
drial coupling is higher, less substrates need to be burned to 
obtain a given amount of ATP, with a following decrease in 
liver ability to fatty acids delivered from the blood. In addi-
tion, in coupled mitochondria, an increase in the production 
of ROS by the respiratory chain could take place, since one 
of the postulated roles for mitochondrial proton leak is to 
maintain membrane potential below the critical threshold 
for ROS production [43]. The results showed an increased 
oxidative damage in rats fed a high-fat diet, with no com-
pensatory increase in antioxidant by SOD activity [39], a 
condition that contributes to the development of insulin 
resistance and hepatic disease [44].

Similar alterations in hepatic mitochondrial protein 
mass, capacity and degree of oxidative stress were found 
when rats fed a high-fat diet for only 2 weeks [45, 46], at 
a time point when no alteration of insulin signaling could 
be detected [45, 46]. Accordingly, in hyperphagic obese 
OLETF rats it has been found that hepatic mitochondrial 
dysfunction precedes the development of insulin resistance 
and hepatic steatosis [47]. Taken together, these results sug-
gest that the above modifications of mitochondrial com-
partment in liver precede and can contribute to the subse-
quent development of insulin resistance.

Mitochondrial functionality and fructose‑rich diet

Diet-induced obesity and insulin resistance can also be elic-
ited by fructose-rich diets. In fact, dietary fructose intake 
has risen considerably in the last decades due to increase 
in the consumption of pre-packaged foods, soft drinks and 
juice beverages containing sucrose or high-fructose corn 
syrup [48–50]. In addition, the 25  % increase in fructose 
consumption over the past 30 years coincides closely with 
the increase in the prevalence of obesity [48–50] and in the 
risk of diabetes, cardiometabolic disease and gout, as well 
as with lipid disturbances [51]. In humans it is difficult to 
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assess the contribution of fructose intake alone to the devel-
opment of the above metabolic disorders, since, in every-
day life, additional factors are involved, such as hyperca-
loric diet rich in saturated fat and low physical activity. For 
these reasons, animal models could help to shed light on 
the role of dietary fructose on excessive lipid depots and 
correlated metabolic diseases. Following long-term intake 
of a fructose-rich low fat diet in adult, sedentary rats we 
have found several metabolic derangements typical of 
human obesity, such as increased body lipids [52], ectopic 
lipid deposition and altered insulin sensitivity [53]. In addi-
tion, a stimulation of whole-body and hepatic net de novo 
lipogenesis contributes to excess lipid accumulation in our 
fructose-fed rats. This latter result fits well with literature 
data showing an increased de novo lipogenesis in humans 
after long-term fructose feeding [54, 55] as well as with 
several animal studies reporting that hepatic de novo lipo-
genesis is stimulated by fructose intake, alone [56, 57] or in 
combination with high dietary fat [46]. On the other hand, 
the effect of fat feeding on hepatic de novo lipogenesis is 
less clear, since this metabolic pathway has been found 
reduced [56–60] or even increased [61–63].

Using our animal model to study the metabolic effects 
of fructose, we have also found alteration in hepatic mito-
chondrial energetics [64]. Respiratory capacities evalu-
ated in isolated liver mitochondria were found unchanged, 
while ATP needed for biosynthetic pathways is obtained at 
a lower cost, since hepatic mitochondria display increased 
degree of coupling and are less responsive to the uncou-
pling effect of fatty acids. Higher coupling efficiency 
implies lower fuel burning that could partly explain the 
higher body lipids found in fructose-fed rats. Another 
unwanted consequence of the increased degree of coupling 
is higher ROS production, and in fact, hepatic mitochondria 
showed signs of oxidative damage, both in the lipid and in 
the protein component, together with decreased activity of 
SOD, one of the enzymatic component of the antioxidant 
system. After short-term feeding with a fructose-rich diet, 
at variance with the results obtained with high-fat diet [45, 
46], other groups have found reduced insulin sensitivity 
[65], together with increased oxidative stress in liver [66], 
in face of unchanged mitochondrial capacity [67]. Interest-
ingly, higher hepatic mitochondrial efficiency and oxidative 
damage have also been found in rats fed high-fat diet [39], 
indicating similar effects of fructose-rich or high-fat diet, 
while the two diets exhibit a different effect on mitochon-
drial oxidative capacity (Table 2).

Conclusions

It is clear that hepatic mitochondrial function is impaired 
by high-fat or high-fructose feeding. Since mitochondria 

are the main producers of both cellular energy and free 
radicals, dysfunctional mitochondria can play an important 
role in the development of insulin resistance and ectopic fat 
storage in the liver, thus supporting the emerging idea that 
mitochondrial dysfunction could be closely related to the 
development of metabolic diseases, such as obesity, type 2 
diabetes mellitus and non-alcoholic steatohepatitis.
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