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Anna Pawlik1 · Monika Słomińska‑Wojewódzka1 · Anna Herman‑Antosiewicz1 

Received: 3 February 2015 / Accepted: 14 May 2015 / Published online: 27 May 2015 
© The Author(s) 2015. This article is published with open access at Springerlink.com

Conclusion  Isothiocyanates enhance response to 
4-hydroxytamoxifen, which allows for reduction of the 
effective drug concentration. Combinatorial strategy may 
hold promise in development of therapies and chemopre-
vention strategies against ER-positive breast tumors, even 
those with acquired resistance to the drug.
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Introduction

Breast cancer is the leading cause of cancer-related deaths 
in women [27]. Estrogen receptor (ER)-positive breast 
tumors comprise approximately 75 % of the breast cancer 
cases [6]. Tamoxifen is a drug conventionally used in pre-
vention and treatment of advanced estrogen receptor-posi-
tive breast cancer in pre- and postmenopausal women [13, 
58]. Tamoxifen and its active metabolite, 4-hydroxytamox-
ifen, act as an estrogen antagonist or agonist, depending on 
tissue and organ type. The ER, a regulator of expression 
of genes involved in the ER-positive tumor progression, 
is able to stimulate cancer growth in two different ways: 
a classical way by binding to its responsive elements in a 
given gene’s promoter, and nongenomic through activation 
of growth factor receptors and cellular pro-survival kinases 
[8, 43]. 4-Hydroxytamoxifen demonstrates estrogen antag-
onist activity in breast cells. All ER antagonists display the 
same crucial mechanism of action: They bind ER and block 
its activity [17, 28]. However, many breast cancer cells 
show a primary or secondary endocrine resistance. Statis-
tics indicates that in 30–50 % of women with ER-positive 
breast cancer, de novo or intrinsic resistance to tamoxifen 
occurs and in many patients tumor recurrence is observed 
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after drug therapy. Different molecular mechanisms may 
lead to a development of cellular resistance to the hor-
mone therapy and protect cancer cells from death induced 
by drugs. Among them, the loss of ER or alteration in its 
structure and function, overactivation of serine/threonine 
protein kinase B (Akt), alteration in the ER signal trans-
duction, and crosstalk between the ER and growth factor 
receptors have been reported [50, 51]. Moreover, long-term 
administration of the selective ER modulator may lead to 
serious side effects, such as menopausal symptoms, venous 
thromboembolic events, endometrial hyperplasia, polyps 
and cancer or ovarian cysts [41, 42].

Isothiocyanates (ITC) are naturally occurring phyto-
chemicals present in cruciferous plants. Sulforaphane 
[1-isothiocyanato-4-(methylsulfinyl)-butane), SFN] and its 
reduced analog, erucin [1-isothiocyanato-4-(methylthio)-
butane, ERN], exhibit chemopreventive and antitumor 
activities against different types of cancers. The molecular 
mechanisms of SFN action include inhibition of phase I 
carcinogen-activating enzymes, induction of phase II car-
cinogen detoxification enzymes, and induction of the cell 
cycle arrest and apoptosis. Preventive activity of SFN has 
been reported in numerous in vivo models. Administration 
of SFN by oral gavage inhibited development of mam-
mary tumors in female Sprague–Dawley rats treated with 
the 9,10-dimethyl-1,2-benzanthracene (DMBA) carcinogen 
[65] or prostate carcinogenesis and pulmonary metastasis 
in TRAMP mice [57]. Feeding A/J mice with SFN and 
its N-acetylcysteine conjugate resulted in an inhibition of 
malignant progression of lung adenomas induced by the 
tobacco carcinogens [15]. Sulforaphane protected male 
Syrian hamsters treated with the pancreatic carcinogen, 
N-nitroso-bis(2-oxopropyl)amine, against the develop-
ment of a pancreatic tumor [35]. These observations were 
supported by in vitro studies, showing that SFN induces 
apoptosis, for instance, in PC-3 prostate cancer cells [56], 
MDA-MB-231, MDA-MB-468, MCF-7 and T47D human 
breast cancer cell lines [49], UM-UC-3 bladder tumor cells 
[59], A549 nonsmall lung cancer cells [40] and HT29 colon 
cancer cell lines [19]. SFN has been also shown to inhibit 
cell cycle progression of different cancer cells, including 
PC-3 prostate cancer cells [55], HT29 human colon cancer 
cells [48, 53], PaCa-2 and PANC-1 pancreatic cancer cells 
[48] or MCF-7 breast cancer cells [24]. In addition, it has 
been shown that SFN induces autophagy [22, 31]. In the 
case of cells with the defective apoptosis, autophagy may 
lead to the type II programmed cell death. In some condi-
tions, however, it may suppress or delay cell death, such as 
in the case of prostate or breast cancer cells treated with 
SFN [22, 31].

Erucin is abundant in salad rocket and can be gener-
ated by interconversion of SFN. It has been reported that 
erucin also modulates phase I enzymes [37] and phase II 

enzymes [26], induces pro-apoptotic signals and influences 
cell cycle progression, for instance, in human leukemia 
cells [25], HepG2 human hepatocellular carcinoma cells 
[36], human lung carcinoma A549 cells [39], bladder J82, 
UM-UC-3 cancer cells [1] and more recently—in MCF-7 
breast cancer cells [5].

On the basis of the data described above as well as 
recently reported results showing that SFN inhibits pro-sur-
vival Akt-mTOR-S6K pathway in phenotypically different 
breast cancer cells [45], we hypothesize that application of 
ITC may enhance anti-proliferative activity of 4-hydroxy-
tamoxifen. In the present study, we used three ER-positive 
breast cancer cell lines, T47D, MCF-7 and BT-474, as well 
as drug-resistant derivatives of T47D and MCF-7 cells, to 
compare their sensitivity to structurally related ITC (sul-
foraphane and erucin) as well as 4-hydroxytamoxifen, and 
test whether these naturally occurring phytochemicals sen-
sitize ER-positive breast cancer cells to the drug.

Materials and methods

Reagents

R,S-sulforaphane (purity  ≥  98  %) and erucin 
(purity  ≥  98  %) were obtained from LKT Laboratories 
(St. Paul, MN). They were prepared in DMSO and stored 
at a stock concentration of 10 mM at −20 °C. RPMI-1640 
medium, fetal bovine serum was purchased from Life Tech-
nologies (Grand Island, NY). (Z)-4-hydroxytamoxifen 
(purity ≥  98  %), penicillin–streptomycin solution, DMSO, 
sulforhodamine B, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphe-
nyltetrazolium bromide (MTT), anti-rabbit and anti-β-actin 
antibodies conjugated with HPR were from Sigma-Aldrich 
(St. Louis, MO). (Z)-4-hydroxytamoxifen (purity ≥  98  %) 
was dissolved in ethanol at a concentration of 10 mM and 
stored at 4 °C. Antibodies against Bcl-2, Bax, survivin and 
ADRP were from Santa Cruz Biotechnology (Santa Cruz, 
CA), antibody against PARP was from Cell Signaling Tech-
nology (Danvers, MA) and anti-LC3 antibody was pur-
chased from Medical and Biological Laboratories Co., Ltd. 
(Woburn, MA).

Cell culture and treatment

ER-positive breast cancer cell lines, MCF-7, T47D and 
BT-474, were cultured in RPMI-1640 supplemented with 
10  % fetal bovine serum and 1  % penicillin/streptomy-
cin solution. Tamoxifen-resistant derivatives of MCF-7 
and T47D cells were obtained by continuous exposure of 
parental cell lines to increasing concentrations of 4-hydrox-
ytamoxifen for over 15  months. Cells were cultured in 
RPMI medium without phenol red, with 10  % charcoal 
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stripped-fetal bovine serum. For the first 3 months, parental 
cells were continuously treated with 100 nM 4-hydroxyta-
moxifen. After this time, the concentration of the drug was 
increased to 500  nM. The medium with the appropriate 
concentration of 4-hydroxytamoxifen was changed every 
4 days. ER-negative breast cancer cell line, MDA-MB-231, 
was maintained in MEM supplemented with 10  % FBS, 
1 mM sodium pyruvate, nonessential amino acids and anti-
biotics. Each cell line was incubated at 37 °C in 5 % CO2. 
Twenty four hours after plating, cells were treated with the 
desired concentration of isothiocyanate with or without 
(Z)-4-hydroxytamoxifen or an equivalent volume of etha-
nol and/or DMSO (vehicle control) for 96 h with medium 
replacement after 48 h.

Cell viability assay

Cells were seeded at density 2 ×  103 cells per well in 
96-well plate and allowed to grow for 24  h. After that 
time cells were treated with increasing concentrations of 
ITC (2.5–50 μM), increasing concentrations of 4-hydrox-
ytamoxifen (0.05–10 μM) or combinations of both. Con-
trol samples were treated with DMSO, ethanol or DMSO 
and ethanol at appropriate concentrations. After 48  h, 
medium was replaced with the fresh medium containing 
the same supplements. After 96 h of treatment, 25 μl of 
MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetra-
zolium bromide) stock solution (4  mg/ml in PBS) was 
added to each well for 4  h. Next, the formazan crystals 
were dissolved in 100  % DMSO, and absorbance was 
measured at 570 nm with a reference filter of 660 nm in 
Victor3 microplate reader (PerkinElmer Life and Ana-
lytical Sciences, Boston, MA). To inhibit autophagy 
induction, cells were pretreated with 50 nM wortmannin 
and then treated with ITC and 4-hydroxytamoxifen as 
described above. After 96 h, 100 μl of 10 % (w/v) aque-
ous solution of ice-cold trichloroacetic acid was added 
for 1  h. Plates were washed with water, allowed to air-
dry and stained with 100 μl of 0.4 % sulforhodamine B 
solution in 1 % acetic acid for 15 min. Cells were washed 
5 times with 1  % acetic acid and dried. After addition 
of 10 mM Tris base (pH 10.5, 150 μl/well), the absorb-
ance was measured at 570  nm using Victor3 microplate 
reader. Data were obtained from at least three independ-
ent experiments, and each treatment condition assayed in 
triplicate.

Clonogenic assay

Cells were plated at density 5 ×  104 per 100  mm plate. 
After 24  h, cells were treated with 0.5 μM 4-hydroxyta-
moxifen, ITC or combinations of these chemicals. Con-
trol samples were treated with ethanol and/or DMSO at 

appropriate concentration for 8 days, and every 2 days the 
medium was changed to the fresh one with the same sup-
plements. After 8 days of treatment, cells were trypsinized 
and plated at 800 per 100 mm plate in duplicate. Colonies 
were stained with crystal violet (0.5  % w/v) and counted 
2 weeks (in case of T47D and MCF-7 cell lines) or 4 weeks 
(in case of BT-474 cells) after plating. The experiment was 
repeated twice.

Western blot analysis

MCF-7 and T47D cells were plated at density 2.5 ×  105 
and BT-474 at density 5 ×  105 per 100  mm plate. Cells 
were treated as described in the “Cell culture and treat-
ment” section. Control samples were treated with ethanol 
and/or DMSO at appropriate concentrations. After 48  h, 
medium was changed to fresh one and the compounds were 
added again. After 96 h, cells were lysed in a solution con-
taining 50 mM Tris (pH 7.5), 1 % Triton X-100, 150 mM 
NaCl, 0.5 mM EDTA, protease and phosphatase inhibitor 
cocktails (Roche Diagnostics, Germany) and centrifuged 
at 13,000 rpm at 4 °C for 30 min. Immunoblots were per-
formed as previously described [45].

Statistical analysis and analysis of synergy

Data were analyzed using GraphPad Prism software. One-
way ANOVA followed by Bonferroni’s multiple compari-
son test was used to determine statistical significance of 
differences in the measured variables. Differences were 
considered significant at p < 0.05.

Data from MTT viability assay were analyzed using the 
method of Chou and Talalay [11] and CompuSyn software 
to determine the dose that gives the median effect, linear 
correlation coefficient in case of treatment with a single 
compound, and combination index (CI) for samples treated 
with two compounds. The CI is a quantitative measure of 
the degree of interaction between drugs. CI  <  1, CI =  1 
and CI  >  1 denote synergism, additivity and antagonism, 
respectively. Variable ratios of ITC and 4-hydroxytamox-
ifen were used.

Results

Effect of ITC, 4‑hydroxytamoxifen or their 
combinations on survival of ER‑positive breast cancer 
cell lines

We investigated the effect of sulforaphane, erucin and 
4-hydroxytamoxifen alone or in combinations on viabil-
ity of three ER-positive breast cancer cell lines: MCF-7, 
T47D and BT-474. Both ITC inhibited cell growth in a 
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dose-dependent manner (Fig.  1). T47D and MCF-7 cells 
were similarly sensitive to sulforaphane (IC50 were 6.6 and 
5 μM, respectively) and to erucin (IC50 = 7.6 and 9.7 μM, 
respectively). Interestingly, marked differences in sensi-
tivity of BT-474 cell line to sulforaphane and erucin were 
observed with IC50 values of 15 or 19.7 μM, respectively 
(Fig. 1a, b). Sensitivity of T47D, MCF-7 and BT-474 cell 

lines to 4-hydroxytamoxifen was dependent of its dose, 
and IC50 values after 96 h of treatment were 4.2, 3.2 and 
5.7 μM, respectively (Fig. 1c).

Next, we assessed viability of three breast cancer cell 
lines after co-treatment with ITC at concentrations equal 
or lower than their respective IC50 value (5  μM) and 
4-hydroxytamoxifen at a concentration close to its IC20 (0.5 

Fig. 1   Dose-dependent 
effect of SFN (a), ERN (b) or 
4-hydroxytamoxifen (c) on 
survival of T47D, MCF-7 and 
BT-474 cell lines after 96 h of 
treatment. Control samples were 
treated with appropriate con-
centrations of DMSO. Viability 
was assayed by MTT method 
as described in “Materials and 
methods”. Results shown are 
mean ± SE of three independ-
ent experiments performed in 
triplicate
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or 1 μM). The results obtained showed that combination of 
ITC and 4-hydroxytamoxifen inhibited cell viability more 
efficiently than either compound used alone: It was about 
20 % lower upon combined treatment than viability of cells 
treated with ITC and about 30–50 % lower than viability of 
cells treated with 4-hydroxytamoxifen only (Figs. 2, 3). To 
elucidate whether the greater effect of combined treatment 

than mono-treatment is due to synergistic action of the 
used compounds, we calculated a combination index (CI) 
for the nonconstant ratio combinations using the method of 
Chou and Talaly and data from the MTT viability assays 
(linear correlation coefficient for each drug in the growth 
inhibition plot was >0.9). As shown in Table 1, CI values 
for tested drug combinations were below 1, which indicates 
synergism.

b

0

25

50

75

100

Vi
ab

ili
ty

(%
 o

f c
on

tr
ol

)

a T47D

5 M SFN      - - +                  +
0.5 M 4-OH-T    - +             - +     

P<0.01

P<0.05

0

25

50

75

100

Vi
ab

ili
ty

(%
 o

f c
on

tr
ol

)

5 M SFN      - - +                 +
0.5 M 4-OH-T   - +               - +     

MCF-7
P<0.001

P<0.001

0

25

50

75

100

Vi
ab

ili
ty

(%
 o

f c
on

tr
ol

)

5 M SFN        - - +           +
1 M 4-OH-T   - +                  - +     

c BT-474
P<0.01

µ
µ

µ
µ

µ
µ

Fig. 2   Effect of 96-h treatment with sulforaphane (SFN, 5  μM), 
4-hydroxytamoxifen (4-OH-T: 0.5 μM in a and b or 1 μM in c) or 
both compounds on viability of T47D (a), MCF-7 (b) and BT-474 
cells (c). Viability was assayed by MTT method as described in 
“Materials and methods”. Results shown are mean  ±  SE of three 
independent experiments performed in triplicate. p values were cal-
culated by one-way ANOVA followed by Bonferroni’s multiple com-
parison test
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Effect of isothiocyanate and 4‑hydroxytamoxifen 
co‑treatment on apoptosis induction in the analyzed 
breast cancer cell lines

To elucidate whether decreased viability of breast cancer 
cells treated with the combination of ITC and 4-hydroxyta-
moxifen results from an apoptosis induction, we compared 
caspase-dependent cleavage of PARP in control cells as well 
as in cells treated with ITC and/or the drug. The immunob-
lotting analysis showed that 4-hydroxytamoxifen at 0.5 μM 
in T47D cells had no effect on PARP status while at 0.5 μM 
in MCF-7 cells and at 1 μM concentration in BT-474 cell 
line had a minimal effect on apoptosis induction as assessed 
by PARP cleavage (Figs. 4, 5). Sulforaphane and erucin at 
5 μM concentrations induced PARP cleavage with intensity 
dependent on the cell line. However, combined treatment 
with SFN or ERN and 4-hydroxytamoxifen further elevated 
PARP cleavage (Figs. 4, 5).

It has been previously reported that ITC induce apoptosis 
mainly through the mitochondrial pathway; thus, we deter-
mined the level of anti-apoptotic Bcl-2 and pro-apoptotic 
Bax upon treatment with ITC and/or the drug. As shown in 
Figs. 4, 5, combinations of SFN or ERN with 4-hydroxy-
tamoxifen decreased the Bcl-2 level most efficiently (to 
30–50 % of the level seen in control cells), while the Bax 
level was elevated (about 50 % above the level seen in con-
trols). Thus, reduction of Bcl-2/Bax ratio in cells treated 
with combinations of compounds might lead to mitochon-
dria-mediated induction of apoptosis. As mitochondrial 
dysfunction may trigger formation of lipid droplets, we 
determined the level of adipocyte differentiation-related 
protein (ADRP) which decorates membranes of these orga-
nelles. As can be seen in Figs. 4 and 5, the ADRP level was 
elevated in cells treated with SFN or ERN and 4-hydroxy-
tamoxifen when compared with cells treated with a single 
compound. Finally, the level of survivin, which is an inhib-
itor of caspase 3, 7 and 9, and is a mitosis promoter, was 
efficiently reduced by combined treatment as compared 
to controls and a single compound treatment, excluding 
BT-474 cells, where ERN alone increased survivin level 

about 100 % above control, and although combination with 
4-hydroxytamoxifen lowered its amount, it was still higher 
than in the drug-only-treated cells (Fig. 4).

Impact of the co‑treatment of T47D, MCF‑7 
and BT‑474 cells with 4‑hydroxytamoxifen 
and isothiocyanates on induction of autophagy

Numerous studies have shown that MCF-7 and T47D 
cells undergo autophagy under adverse conditions, such as 
tamoxifen treatment. We investigated whether ITC induce 
autophagy in these cells and whether co-treatment with 
4-hydroxytamoxifen and ITC potentiates this process. We 
analyzed conversion of soluble LC3-I to the lipid-bound 
LC3-II form which is an established marker of autophagy. 
As can be seen in Fig.  6a, c, clear intensification of LC3 
processing (increased level of LC3-II and decreased level of 
LC3-I) was observed in T47D and MCF-7 cells treated with 
combination of compounds. In BT-474 cells, combination 
of ITC and 4-hydroxytamoxifen slightly increased LC3-II, 
while the LC3-I form was still abundant as compared with 
control cells or cells treated with either drug alone (Fig. 6e). 
To reconcile if autophagy induced by the investigated com-
pounds plays pro-survival or pro-death role, we applied 
wortmannin which inhibits first stages of this process and 
determined viability of cells. As shown in Fig. 6b, d, inhi-
bition of autophagy induced by combination of SFN or 
ERN and 4-hydroxytamoxifen in T47D and MCF-7 cells 
reduced their viability, which suggests that in these cell lines, 
autophagy plays a protective role. On the contrary, BT-474 
cells revealed increased survival upon treatment with combi-
nations when autophagy was inhibited (Fig. 6f), which sug-
gests that in this case, autophagy contributes to cell death.

Combined treatment decreases ability of cells 
to proliferate indefinitely

As one of the main problems in anticancer therapies 
is recurrence of the disease, effective treatment should 

Table 1   Combination indexes of sulforaphane (SFN) or erucin 
(ERN) and 4-hydroxytamoxifen (4-OH-T) in breast cancer cells. 
CI < 1 indicates synergism

Cell line Combination CI

T47D SFN (5 μM) + 4-OH-T (0.5 μM) 0.71

ERN (5 μM) + 4-OH-T (0.5 μM) 0.36

MCF-7 SFN (5 μM) + 4-OH-T (0.5 μM) 0.63

ERN (5 μM) + 4-OH-T (0.5 μM) 0.66

BT-474 SFN (5 μM) + 4-OH-T (1 μM) 0.81

ERN (5 μM) + 4-OH-T (1 μM) 0.61

Fig. 4   Effect of co-treatment of breast cancer cell lines with 
4-hydroxytamoxifen and sulforaphane on PARP cleavage and lev-
els of Bcl-2, Bax, survivin and ADRP. T47D (a) and MCF-7 (b) 
cells were treated with 5  μM sulforaphane (SFN), and/or 0.5  μM 
4-hydroxytamoxifen (4-OH-T). BT-474 (c) cells were treated with 
5 μM sulforaphane (SFN) and/or 1 μM 4-hydroxytamoxifen (4-OH-
T). Blots were stripped and reprobed with anti-β-actin antibody 
to ensure equal protein loading. Results are plotted as mean ±  SE 
from three independent experiments, *significantly different com-
pared with single agent-treated samples or **significantly different 
compared with one of the single agent-treated samples by one-way 
ANOVA followed by Bonferroni’s multiple comparison test. Data for 
PARP refer to the faster migrating band marked as * and are given 
relative to samples treated with SFN alone. Blots shown are repre-
sentative of at least three independent experiments

▸



1171Eur J Nutr (2016) 55:1165–1180	

1 3

a

survivin

T47D

Bcl-2

C SFN    4-OH-T  SFN+4-OH-T

b

Bax

ADRP
β-actin

β-actin

β-actin

β-actin

PARP 

β-actin *

MCF-7

survivin

Bcl-2

Bax

ADRP

β-actin

β-actin

β-actin

β-actin
C       SFN    4-OH-T  SFN+4-OH-T

PARP 

β-actin *

c BT-474

survivin

Bcl-2

Bax

ADRP

β-actin

β-actin

β-actin

β-actin
C       SFN    4-OH-T  SFN+4-OH-T

PARP 

β-actin *

0.0

0.5

1.0

1.5

2.0

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.0

0.5

1.0

1.5

2.0

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

R
el

at
iv

e
* P

A
R

P 
le

ve
l

R
el

at
iv

e
B

cl
-2

 le
ve

l

R
el

at
iv

e
B

ax
le

ve
l

R
el

at
iv

e
su

rv
iv

in
le

ve
l

R
el

at
iv

e
AD

R
P 

le
ve

l
0.0

0.5

1.0

1.5

2.0

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.0

0.5

1.0

1.5

2.0

0.0

0.5

1.0

1.5

0

1

2

3

4

C SFN    4-OH-T  SFN+4-OH-T

C SFN    4-OH-T  SFN+4-OH-T C SFN    4-OH-T  SFN+4-OH-T

C SFN    4-OH-T  SFN+4-OH-T C SFN    4-OH-T  SFN+4-OH-T

C SFN    4-OH-T  SFN+4-OH-T

C SFN    4-OH-T  SFN+4-OH-T C SFN    4-OH-T  SFN+4-OH-T

C SFN    4-OH-T  SFN+4-OH-T C SFN    4-OH-T  SFN+4-OH-T

R
el

at
iv

e
* P

AR
P 

le
ve

l

R
el

at
iv

e
B

cl
-2

 le
ve

l

R
el

at
iv

e
B

ax
le

ve
l

R
el

at
iv

e
su

rv
iv

in
le

ve
l

R
el

at
iv

e
AD

R
P 

le
ve

l

R
el

at
iv

e
* P

AR
P 

le
ve

l

R
el

at
iv

e
B

cl
-2

 le
ve

l

R
el

at
iv

e
B

ax
le

ve
l

R
el

at
iv

e
su

rv
iv

in
le

ve
l

R
el

at
iv

e
AD

R
P 

le
ve

l

C SFN    4-OH-T  SFN+4-OH-T

C SFN    4-OH-T  SFN+4-OH-T C SFN    4-OH-T  SFN+4-OH-T

C SFN    4-OH-T  SFN+4-OH-T C SFN    4-OH-T  SFN+4-OH-T

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

0.0

0.5

1.0

1.5

2.0

0.0

0.5

1.0

1.5

*

*

*

**  

*

*

*

*

*
*

*

**

*

**
*



1172	 Eur J Nutr (2016) 55:1165–1180

1 3

C    ERN    4-OH-T ERN+4-OH-T

C        ERN   4-OH-T  ERN+4-OH-T

C     ERN  4-OH-T  ERN+4-0H-T

survivin

Bcl-2

Bax

ADRP

β-actin

β-actin

β-actin

β-actin

PARP 

β-actin
*

survivin

Bcl-2

Bax

ADRP

β-actin

β-actin

β-actin

β-actin

PARP 

β-actin
*

survivin

Bcl-2

Bax

ADRP

β-actin

β-actin

β-actin

β-actin

PARP 

β-actin *

a T47D

b MCF-7

c BT-474

R
el

at
iv

e
* P

AR
P 

le
ve

l

C ERN    4-OH-T  ERN+4-OH-T

0.0

0.5

1.0

1.5

2.0

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.0

0.5

1.0

1.5

2.0

0.0

0.5

1.0

1.5

2.0

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.0

0.5

1.0

1.5

2.0

0.0

0.5

1.0

1.5

2.0

0.0

0.5

1.0

1.5

0

1

2

3

4

0.0

0.5

1.0

1.5

2.0

C ERN    4-OH-T  ERN+4-OH-TC ERN    4-OH-T  ERN+4-OH-T

C ERN    4-OH-T  ERN+4-OH-T C ERN    4-OH-T  ERN+4-OH-T

C ERN    4-OH-T  ERN+4-OH-T
R

el
at

iv
e

* P
AR

P 
le

ve
l

R
el

al
at

iv
eB

cl
-2

  l
ev

el
R

el
al

at
iv

eB
cl

-2
  l

ev
el

R
el

al
at

iv
eB

ax
le

ve
l

R
el

al
at

iv
eB

ax
le

ve
l

R
el

al
at

iv
eA

D
R

P
le

ve
l

R
el

al
at

iv
eA

D
R

P
le

ve
l

R
el

al
at

iv
e

su
rv

iv
in

le
ve

l
R

el
al

at
iv

e
su

rv
iv

in
le

ve
l

C ERN    4-OH-T  ERN+4-OH-T C ERN    4-OH-T  ERN+4-OH-T

C ERN    4-OH-T  ERN+4-OH-TC ERN    4-OH-T  ERN+4-OH-T

C ERN    4-OH-T  ERN+4-OH-T

C ERN    4-OH-T  ERN+4-OH-T C ERN    4-OH-T  ERN+4-OH-T

C ERN    4-OH-T  ERN+4-OH-T C ERN    4-OH-T  ERN+4-OH-T

R
el

at
iv

e
* P

AR
P 

le
ve

l

R
el

al
at

iv
eB

cl
-2

  l
ev

el
R

el
al

at
iv

e
su

rv
iv

in
le

ve
l

R
el

al
at

iv
eB

ax
le

ve
l

R
el

al
at

iv
eA

D
R

P
le

ve
l

0.0

0.5

1.0

1.5

2.0

0.0

0.5

1.0

1.5

2.0

0.0

0.5

1.0

1.5

2.0

*

*

*

*
*

*

*

*

*

*

**
**

*

*



1173Eur J Nutr (2016) 55:1165–1180	

1 3

irreversibly eliminate cancer cells. Thus, we assessed 
the clonogenic potential of breast cancer cells treated 
with 4-hydroxytamoxifen and/or ITC for 8  days and 
allowed for their recovery in a drug-free medium for 
2–4  weeks. Results presented in Fig.  7 clearly show 
that clonogenic potential of cells treated with combi-
nation of 4-hydroxytamoxifen and SFN is significantly 
lower than in the case of cells treated with each agent 
alone. Moreover, combined treatment reduces clono-
genicity compared to controls by about 60  % (MCF-7 
and BT-474 cells) or 70 % (T467D cells). Erucin per se 
is a highly cytotoxic agent (reduces clonogenic poten-
tial compared to controls to 40  % in MCF-7 cells and 
14–18  % in T47D and BT-474 cells). Its combination 
with 4-hydroxytamoxifen potentiates cytotoxicity in 
MCF-7 and T47D cell lines by about twofold (Fig. 7a, 
b), while has no further effect on clonogenicity of 
BT-474 cells (Fig. 7c).

Isothiocyanates sensitize tamoxifen‑resistant 
ER‑positive breast cancer cells to the drug

As acquired resistance to tamoxifen occurs frequently, we 
decided to verify whether ITC affect sensitivity of tamox-
ifen-resistant cells to this drug. Thus, we established T47D 
and MCF-7 derivatives (T47D tamR and MCF-7 tamR, 
respectively), which were able to grow in media containing 
500  nM of 4-hydroxytamoxifen (Fig.  8a–d) and retained 
ER expression (data not shown). T47D tamR cell line also 
appeared to be less sensitive to sulforaphane or erucin than 
parental cell line (Fig.  8a, b). Importantly, ITC sensitized 
tamoxifen-resistant cells to the drug: Combination of SFN 
or ERN with 500  nM of 4-hydroxytamoxifen caused a 
statistically significant drop in viability of the cells tested 
as compared to the treatment with any single compound 
(Fig. 8a–d).

It has been shown that sulforaphane effectively lowers 
viability of both ER-positive and ER-negative breast can-
cer cells [45, 49]. To determine whether SFN or ERN sen-
sitize cells to 4-hydroxytamoxifen in an ER-independent 

manner, we used ER-negative MDA-MB-231 cell line, 
which appeared resistant to the drug at concentrations used 
by us for ER-positive cells (0.5 and 1 μM) (Fig. 8e). Com-
bination of 5 μM sulforaphane or erucin with 500 nM of 
4-hydroxytamoxifen did not potentiate sensitivity of MDA-
MB-231 cells to any single agent. However, we observed 
enhanced activity of the combination of ITC and 4-hydrox-
ytamoxifen toward ER-negative cells when 4-hydroxy-
tamoxifen was applied at higher, cytotoxic concentra-
tion (5 μM) (Fig. 8f, g). Combination of ERN with 5 μM 
4-hydroxytamoxifen reduced viability of MDA-MB-231 
more efficiently than any compound used alone (Fig. 8g).

Discussion

Epidemiological studies indicate that frequent intake of 
cruciferous vegetables rich in ITC may reduce the risk for 
developing cancers [60]. Studies performed with labora-
tory animals and cancer cell lines confirmed this notion 
and gave insight into molecular mechanism of not only 
chemopreventive but also anticancer activities of these phy-
tochemicals (for review, see [21]). It has been previously 
documented for different breast cancer cell lines that sul-
forapahane downregulates ER-α, EGFR and HER2 proteins 
[49] as well as PI3K-Akt-mTOR signaling pathway [45] 
whose overactivity may contribute to resistance of ER-pos-
itive cancers to endocrine therapy. It has been also shown 
that sulforaphane at 10 μM concentration potentiated anti-
proliferative activity of tamoxifen used at 1 μM concentra-
tion in the ER-negative MDA-MB-231 cells, which was 
further enhanced by green tea polyphenols due to chro-
matin modification and reactivation of the ER expression 
[38]. The purpose of our study was to experimentally test 
the hypothesis that ITC at relatively low concentration may 
intensify the anti-proliferative effect of 4-hydroxytamox-
ifen on ER-positive breast cancer cell lines. We used two 
structurally related ITC and breast cancer cell lines which 
differ in the amount of ER and HER2 receptors as well as 
generation times.

We demonstrate that combinations of 4-hydroxyta-
moxifen at a low inhibitory concentration and any isothi-
ocyanate at concentrations lower than their IC50 values 
inhibit cell proliferation of ER-positive human breast 
cancer cells more efficiently than any compound used 
alone. The results of the MTT tests show that BT-474 
cell line was the least sensitive to the drug or ITC. It 
could be related to a slower growth rate of BT-474 
cells. Their doubling time exceeds 100  h, while dou-
bling rate for MCF-7 cells is about 29 and T47D—about 
32  h. Moreover, these cell lines differ in the expres-
sion levels of growth factor receptor genes. BT-474 cell 
line is characterized by comparable level of ER (11.3 

Fig. 5   Effect of co-treatment of breast cancer cell lines with 
4-hydroxytamoxifen and erucin on PARP cleavage, levels of Bcl-2, 
Bax, survivin and ADRP. T47D (a) and MCF-7 (b) cells were treated 
with 5 μM erucin (ERN) and/or 0.5 μM 4-hydroxytamoxifen (4-OH-
T). BT-474 (c) cells were treated with 5 μM erucin (ERN) and/or 
1 μM 4-hydroxytamoxifen (4-OH-T). Blots were stripped and rep-
robed with anti-β-actin antibody to ensure equal protein loading. 
Results are plotted as mean ± SE from 3 independent experiments, 
*significantly different compared with single agent-treated samples 
or **significantly different compared with one of the single agent-
treated samples by one-way ANOVA followed by Bonferroni’s mul-
tiple comparison test. Data for PARP refer to the faster migrating 
band marked as * and are given relative to samples treated with ERN 
alone. Blots shown are representative of at least three independent 
experiments

◂
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fmol/mg protein) but much higher level of HER2/neu 
(12,256  fmol/mg protein) when compared to MCF-7 
cells (ER—11.5 fmol/mg protein and HER2—297 fmol/
mg protein) or T47D (ER—16.7  fmol/mg protein and 

HER2—165 fmol/mg protein) [34]. Preclinical research 
and clinical trials have revealed that magnitude of the 
response to treatment with tamoxifen correlated with 
the ER level and its crosstalk with other growth factor 
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Fig. 6   Autophagy process in T47D (a, b), MCF-7 (c, d) and BT-474 
cells (e, f) treated with sulforaphane, erucin, 4-hydroxytamoxifen or 
combinations. T47D and MCF-7 cells were treated with 5 μM sul-
foraphane (SFN), 5  μM erucin (ER) and/or 0.5  μM 4-hydroxyta-
moxifen (4-OH-T), and BT-474 cells were treated with 5 μM SFN, 
5 μM ERN and/or 1 μM 4-OH-T. a, c, e LC3 processing (autophagy 
marker) was determined by immunoblotting. The blots were stripped 
and reprobed with anti-β-actin antibody to ensure equal protein load-

ing. Results are plotted as mean ±  SE from 3 independent experi-
ments, *significantly different compared with both single agent-
treated samples or **significantly different compared with one of 
the single agent-treated samples by one-way ANOVA followed by 
Bonferroni’s multiple comparison test. b, d, f Impact of autophagy 
on viability of cells treated with indicated compounds was assessed 
by SRB method upon autophagy inhibition by 5  nM wortmannin. 
*p < 0.001
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receptors, such as HER2 [12, 54] which may explain 
higher resistance of BT-474 cells to treatment with 
4-hydroxytamoxifen or ITC. However, despite this, 
viability of BT-474 cells was significantly decreased in 
experimental variants treated with a combination of phy-
tochemicals (sulforaphane or erucin) and 4-hydroxyta-
moxifen compared to cells treated with any compound 
alone. Moreover, combinations of 4-hydroxytamoxifen 
at a low concentration with SFN or ERN efficiently 
inhibited clonogenic potential of the breast cancer cells. 
It is worth noting that ability of cells to proliferate was 
significantly reduced after only 8  days of treatment 

with combinations and subsequent cessation of therapy. 
Longer therapy might have a more pronounced effect.

Several studies have shown that high concentrations of 
erucin and sulforaphane induce apoptosis-associated prote-
olytic cleavage of poly(ADP-ribose) polymerase in differ-
ent cancer cell lines [39, 44, 56]. Here we demonstrate that 
combinations of sulforaphane or erucin with 4-hydroxyta-
moxifen at low concentrations induce apoptosis of breast 
cancer cell lines more efficiently than any compound used 
alone. Substantial drop in Bcl-2/Bax ratio upon com-
bined treatment, as well as an increased level of ADRP, 
the marker of mitochondrial stress-mediated lipid droplet 

Fig. 7   Effect of treatment with 
sulforaphane (SFN), erucin 
(ERN), 4-hydroxytamoxifen 
(4-OH-T) or combination of 
isothiocyanate and the drug on 
clonogenic potential of T47D 
(a), MCF-7 (b) and BT-474 
cells (c). Cells were exposed 
to 5 μM SFN, 5 μM ERN 
and/or 0.5 μM (a, b) or 1 μM 
(c) 4-hydroxytamoxifen for 
8 days. After that time, cells 
were replated at lower conflu-
ences and allowed to growth 
for 2 (T47D and MCF-7) or 
4 weeks (BT-474) in drug-free 
medium. Colonies arisen from 
cells retaining proliferative 
potential were counted, and 
results are shown as mean ± SE 
of two independent experi-
ments performed in duplicate. 
Statistical significance of 
difference was determined by 
one-way ANOVA followed by 
Bonferroni’s multiple com-
parison test, and **p < 0.001 as 
compared to ITC and 4-OH-T 
alone, *p < 0.001 as compared 
to 4-OH-T only and p < 0.05 
as compared to erucin only, 
*p < 0.001 as compared to 
4-OH-T only and p > 0.05 as 
compared to erucin only
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formation, points toward involvement of mitochondrial 
pathway in apoptosis induction in each cell line; however, 
death receptor pathway cannot be excluded.

We also determined the effect of single as well as com-
bined treatment with ITC and 4-hydroxytamoksifen on sur-
vivin level in all three cell lines. Survivin inhibits apoptosis 
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and promotes cell proliferation and angiogenesis. This 
protein is undetectable in majority of normal adult tissues; 
however, it is often overexpressed in tumors, including 
breast cancers (in 70–90 % of cases) [3, 33]. High level of 
survivin correlates with progression of cancer and resist-
ance to therapies [2, 63]; thus, its targeting might improve 
efficacy of chemo- or radiotherapies [33]. We observed that 
SFN, ERN or 4-hydroxytamoxifen downregulates survivin 
to a similar extent in T47D and MCF-7 cells and combi-
nations of the drug and ITC potentiate this effect. Interest-
ingly, in BT-474 cells, ITC alone elevated the survivin level 
when compared with controls, which might explain lower 
sensitivity of this cell line to SFN or ERN. However, their 
combination with the 4-hydroxytamoxifen decreased the 
survivin level. Here, the net result of combined treatment 
on cell viability might be caused not only through survivin 
but also by Bcl-2 level modulation. The Bcl-2 level changed 
in an opposite manner to that of survivin: It was elevated by 
4-hydroxytamoxifen and reduced by ITC and their combi-
nations with the drug. Levels of anti-apoptotic proteins are 
regulated by multiple pathways; thus, the impact of chemi-
cals used by us on Bcl-2 or survivin expression might be 
related to the genetic background of the cells used.

We also observed that ITC and 4-hydroxytamoxifen 
induce processing of the LC3 protein, a specific marker of 
autophagosomes [29], especially when used in combina-
tions. Autophagy is one of the most important strategies for 
protein degradation and protein/organelle quality control 
mechanism, and during cellular stress, it provides nutrients 
to support metabolism [14]. Accumulated evidence sug-
gests that a basal or slightly increased level of autophagy 
can protect cells against apoptosis; however, prolonged 
or intensive autophagy can lead to cell death [7, 46]. For 
instance, SFN-induced autophagy in prostate as well as 
breast cancer cells played a protective role [22, 31] but 
benzyl isothiocyanate-induced autophagy in breast cancer 
cells contributed to their death [62]. The role of autophagy 
induced by tamoxifen or its metabolites in breast can-
cer cells is controversial. Initial studies documented that 

tamoxifen and 4-hydroxytamoxifen caused an autophagic 
death (also referred to as type II cell death) of MCF-7 cells 
[9, 10]. However, more recent data indicate that in response 
to 4-hydroxytamoxifen, only a small part of cell popula-
tion dies, while majority of cells are arrested in growth and 
viable. Interestingly, elevation of autophagy in living cells 
decreased drug-induced death, while autophagy inhibi-
tion resulted in a more robust caspase-dependent death of 
MCF-7 cells [52]. Moreover, the authors have shown that 
in tamoxifen-resistant MCF-7 cells, autophagy inhibition 
sensitized these cells to the antiestrogen [52]. In our study, 
the combined treatment with ITC and 4-hydroxytamoxifen 
also induced protective autophagy in MCF-7 and T47D cell 
lines, while in BT-474 cells contributed to their lower sur-
vival. The reason for the observed differences is not known 
at this moment; however, it was previously reported that 
BT-474 cells contain a high basal level of autophagosomes 
[16], which is in agreement with our observation showing 
an increased LC3-II level even in nontreated cells. Thus, it 
is possible that upon treatment with ITC and 4-hydroxyta-
moxifen autophagy reaches the threshold necessary for cell 
death.

Finally, we show that SFN or ERN efficiently sensitized 
tamoxifen-resistant variants of MCF-7 and T47D cells to 
4-hydroxytamoxifen. It seems that synergistic activity of 
ITC and the drug used at a low concentration (0.5 μM) 
is ER dependent, which is evidenced by the fact that our 
T47D tamR and MCF-7 tamR cells retained this receptor 
and are sensitive to the combined treatment, while in the 
MDA-MB-231 cells, which are devoid of ER, ITC do not 
abrogate resistance to 0.5  μM 4-hydroxytamoxifen. On 
the other hand, ITC, especially erucin, might potentiate 
the cytotoxic activity of the drug used at 5 μM concen-
tration. However, high concentrations of tamoxifen have 
been shown to have an ER-independent nongenomic effect 
in ER-negative breast and other cancer cells [18, 30, 64]. 
Thus, it is possible that the mechanism of sensitization to 
4-hydroxytamoxifen by ICT might be related to the drug 
dose.

Important question arises when coming to in vivo use 
of combined therapy: whether micromolar concentrations 
of ITC are achievable in humans. In case of SFN, it has 
been shown that in human subjects who ingested 100 g of 
broccoli as a soup, its peak plasma concentrations reached 
2.2 μM [20]. A more recent study shows that 3 h after con-
sumption of broccoli sprouts providing 200  μmol SFN, 
plasma levels of total SFN metabolites reached about 2 μM 
concentration [4]. In rats, after an oral dose of 50 μmol 
of SFN was delivered, its plasma concentration peaked 
around 20 μM at 4  h after dosing [23]. The bioavailabil-
ity of erucin is not known at this time. However, SFN and 
ERN are structurally similar and reveal similar pharma-
cokinetics. Moreover, interconversion of SFN to ERN has 

Fig. 8   Isotiocyanates sensitize to 4-hydroxytamoxifen drug-resistant 
cells. Tamoxifen-resistant T47D (T47D tamR) and MCF-7 (MCF-7 
tamR) derivatives were obtain as described in “Materials and meth-
ods”. Viability of T47D tamR (a, b) or MCF-7 tam R (c, d) after 96-h 
treatment with sulforaphane (SFN, 5 μM), erucin (ERN, 5 μM) or/
and 4-hydroxytamoxifen (4-OH-T: 0.5 μM) was assessed by MTT 
assay. e–g Viability of ER-negative MDA-MB-231 cells was deter-
mined after treatment with increasing concentrations of 4-hydroxy-
tamoxifen (4-OH-T) (e), SFN (5  μM) and/or 4-OH-T (0.5  μM 
or 5 μM) (f), ERN (5 μM) and/or 4-OH-T (0.5 μM or 5 μM) (g). 
Results shown are mean ± SE of three independent experiments per-
formed in triplicate. *Significantly different compared with both sin-
gle agent-treated samples or **significantly different compared with 
SFN-only-treated samples by one-way ANOVA followed by Bonfer-
roni’s multiple comparison test

◂
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been reported in rats and humans [32, 61]. Concentration 
of these ITC in plasma or tissue after multiple dosing of 
pure compounds can be higher than after one dose of plant 
extract; however, it has not been investigated so far. In 
case of the drug, it has been shown that clinically relevant 
steady-state plasma concentrations of tamoxifen and its 
biologically active metabolites can be as high as 5 μM in 
patient sera [47].

In conclusion, our data indicate that sulforaphane or 
erucin, used at relatively low concentrations, potentiate 
anticancer activity of 4-hydroxytamoxifen. This effect is 
mediated by downregulation of anti-apoptotic proteins such 
as Bcl-2 and survivin and in consequence by induction 
of cell death. This strategy allows for using tamoxifen at 
lower doses, hence decreasing the level of its toxicity and 
improving the risk–benefit profile of this agent. Moreo-
ver, it might protect against acquisition by cancer cells the 
drug-resistant phenotypes during therapy.
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