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Abstract
Background Referral of patients with heart failure (HF) who are at high mortality risk for specialist evaluation is recom-
mended. Yet, most tools for identifying such patients are difficult to implement in electronic health record (EHR) systems.
Objective To assess the performance and ease of implementation of Machine learning Assessment of RisK and EaRly 
mortality in Heart Failure (MARKER-HF), a machine-learning model that uses structured data that is readily available in 
the EHR, and compare it with two commonly used risk scores: the Seattle Heart Failure Model (SHFM) and Meta‐Analysis 
Global Group in Chronic (MAGGIC) Heart Failure Risk Score.
Design Retrospective, cohort study.
Participants Data from 6764 adults with HF were abstracted from EHRs at a large integrated health system from 1/1/10 to 
12/31/19.
Main measures One-year survival from time of first cardiology or primary care visit was estimated using MARKER-HF, 
SHFM, and MAGGIC. Discrimination was measured by the area under the receiver operating curve (AUC). Calibration 
was assessed graphically.
Key results Compared to MARKER-HF, both SHFM and MAGGIC required a considerably larger amount of data engineer-
ing and imputation to generate risk score estimates. MARKER-HF, SHFM, and MAGGIC exhibited similar discriminations 
with AUCs of 0.70 (0.69–0.73), 0.71 (0.69–0.72), and 0.71 (95% CI 0.70–0.73), respectively. All three scores showed good 
calibration across the full risk spectrum.
Conclusions These findings suggest that MARKER-HF, which uses readily available clinical and lab measurements in the 
EHR and required less imputation and data engineering than SHFM and MAGGIC, is an easier tool to identify high-risk 
patients in ambulatory clinics who could benefit from referral to a HF specialist.
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Introduction

Heart failure (HF) is a heterogenous, morbid condition that 
affects over 6.5 million adults in the USA [1]. Mortality 
risk, while variable, is considerable and approaches 50% at 
5 years after HF diagnosis with little variation across left 
ventricular ejection fraction (LVEF) spectrum [1]. This risk 
is not always readily apparent to the wide range of clini-
cians, many of whom do not have training with diagnosing 
and managing patients with advanced HF, who take care 
of these patients in various care settings. The 2022 AHA/
ACC/HFSA guideline for the management of heart failure 
states that increased predicted 1-year mortality is an indica-
tor of advanced HF, and that timely referral for HF speciality 
care of patients with advanced HF, when consistent with a 
patient’s goals, is a class I recommendation [2]. However, 
referral to a HF specialist for advanced therapies evaluation 
is often delayed when clinicians fail to recognize the sever-
ity of a patient’s condition and to identify those at high risk 
of death. This may result in lost opportunities to counsel 
patients and their families or initiate advanced therapies 
evaluation for cardiac transplantation or left ventricular 
device implantation (LVAD), which are life-saving therapies 
for a subset of patients with advanced HF [3].

The widespread adoption of electronic health records 
(EHRs) has created an opportunity to develop targeted 

health management strategies based on risk models for 
patients with HF [4]. However, many HF risk models, sim-
ilar to many models for other conditions, were developed 
relying on data from outside of health systems, such as 
community-based, observational cohorts or clinical trials. 
They frequently rely on variables that may be subjective or 
that are not readily available in the EHR for data analyt-
ics. In addition, many of these risk models use medication 
data, which is challenging to accurately extract from the 
EHR due to the lack of uniformity in the structure and 
reporting of dosing information [5–8].

The Machine learning Assessment of RisK and EaRly mor-
tality in Heart Failure (MARKER-HF) is an externally validated, 
boosted decision tree-based machine learning model that uses 
eight commonly measured variables (seven laboratory meas-
urements plus diastolic blood pressure) to estimate 1-year risk 
of mortality in patients with HF [9]. MARKER-HF was devel-
oped using inpatient and outpatient EHR data from patients 
treated at a large academic health center. Its performance has 
been shown to be superior to other HF and general risk mod-
els in diverse HF populations and in HF subgroups defined by 
LVEF [10]. One important strength of MARKER-HF is its 
use of variables that are readily available in EHR repositories. 
This feature makes implementation relatively straightforward 
in clinical settings and could facilitate execution across a broad  
population of patients with HF in a health system.
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In this study, we compared the ease of implementation 
and the performance of two of the most widely used and 
tested HF risk models, Seattle Heart Failure Model (SHFM) 
and Meta‐Analysis Global Group in Chronic (MAGGIC) 
Heart Failure Risk Score [11–19], with MARKER-HF in 

ambulatory patients with HF treated at a large, integrated 
health system using EHR data. We hypothesized that 
MARKER-HF would be easier to implement and require 
less data engineering than SHFM and MAGGIC while hav-
ing similar overall performance for predicting 1-year risk 

Table 1  Data availability and definitions for risk predictors in MARKER-HF, Seattle Heart Failure Model, and MAGGIC Heart Failure Risk 
Score

BUN Blood Urea Nitrogen; CRT-D Cardiac Resynchronization Therapy with Defibrillator; CRT-P Cardiac Resynchronization Therapy with 
Pacemaker; ICD Implantable Cardiac Defibrillator; MAGGIC Meta‐Analysis Global Group in Chronic; MARKER-HF Machine learning Assess-
ment of RisK and EaRly mortality in Heart Failure; NYHA New York Heart Association; SHFM Seattle Heart Failure Model
* Structured data refer to values that than can be pulled directly from the data warehouse without an additional manipulation or processing
† Includes ace-inhibitors, beta-blockers, angiotensin receptor blockers, aldosterone blockers, statins, allopurinol, and diuretics
‡ Includes ace-inhibitors, beta-blockers, angiotensin receptor blockers

Variables by model Data availability and definition

MARKER-HF (No. predictors = 8)
  Diastolic blood pressure Structured data*
  BUN
  Creatinine
  White blood cell count
  Hemoglobin
  Platelet count
  Albumin
  Red cell distribution width

Seattle Heart Failure Model (No. predictors = 20)
  Age Structured data*
  Gender
  Weight
  Systolic blood pressure
  Laboratory measurements
  NYHA class Unavailable
  Left ventricular ejection fraction Extracted as either structured data from echo data repository or by natural language 

processing in echo notes
   Medications† Prescription data structured; diuretic dosing required natural language processing and 

data engineering
  Ischemic Etiology Diagnosis and procedural codes
  Devices (ICD, CRT-P, CRT-D)

MAGGIC Heart Failure Risk Score (No. predictors = 14)
  Age Structured data*
  Gender
  Body mass index
  Current smoker
   Medications‡

  Systolic blood pressure
  Creatinine
  NYHA class Unavailable
  Left ventricular ejection fraction Extracted as either structured data from echo data repository or by natural language 

processing in echo notes
  Diabetes Diagnosis codes
  Chronic obstructive pulmonary disease
  Heart failure first diagnosed Unavailable
   ≥ 18 months ago
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of mortality in a larger, more representative population of 
patients with HF.

Methods

The data supporting the findings of the study are available 
from the corresponding author upon reasonable request and a 
data use agreement. The Northwestern University Institutional 
Review Board approved this study.

Data source and participants

We identified a retrospective cohort of patients ages 18 to 
89 years old with HF who visited outpatient primary care or 
cardiology at least once between 1/1/2010 and 12/31/2018 
from the Northwestern Medicine Enterprise Data Warehouse 
(NMEDW), which houses comprehensive demographic, diag-
nostic, and prescription data from the ten hospitals and over 
100 sites across the integrated health system [20].

Prevalent HF was defined by having a minimum of one 
inpatient or two outpatient diagnosis codes from distinct 
encounters for HF-based on a previously published algorithm 
that has been validated in the NMEDW [21, 22]. The index 
visit, which was the date of prediction, was defined as either 
the first primary care or cardiology visit after first inpatient 
HF diagnosis code in the study period or the first visit of the 
two qualifying ambulatory visits with a HF diagnosis code. 
Follow-up extended through 12/31/2019.

Patients were excluded if they underwent heart transplan-
tation or left ventricular assist implantation prior to or dur-
ing the study period due to inability to accurately identify the 
date of surgery for the entire cohort. Patients who were not 
documented as deceased in the NMEDW and did not have a 
face-to-face encounter between 1-year post-index visit through 
the end of the study period were excluded from the analysis. 
Race, ethnicity, and gender were captured as structured data 
in the EHR.

Fig. 1  Flowchart for cohort identification in a large, regional health system
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Outcome

In all 3 HF risk prediction models, the outcome is death 
from all causes within 1 year of the index event (defined 
above). This information was captured in the NMEDW.

HF risk prediction model inputs

Table 1 shows data availability and definitions for each 
variable included in the MARKER-HF, SHFM, and 
MAGGIC models. Additional details on the definitions 
and lookup period for each variable are available in Sup-
plemental Tables S1. Many variables were available as 
structured data from the EHR data repository and were 
abstracted directly into analytic datasets; here we high-
light variables identified in other manners. As previously 
noted, each variable incorporated into MARKER-HF is 
available as structured data in the EHR data repository; 
the following variables were used in SHFM or MAGGIC.

We used a combination of diagnosis and procedure codes to 
identify patients the presence of one of three types of cardio-
vascular implantable electronic device (CIEDs): implantable 
cardioverter defibrillator, chronic resynchronization therapy 
pacemaker, or combined device. History of chronic obstructive 

pulmonary disease, diabetes, and ischemic cardiomyopathy 
were ascertained using diagnosis codes. Because a history 
of HF first diagnosed ≥ 18 months ago is not readily avail-
able as structured data and challenging to extract with natural 
language processing, all patients were considered to have a 
history of HF first diagnosed < 18 months. NYHA was only 
available in free text in a small subset of notes, so we assumed 
all patients had a mean value of 2.5 as previously done [11].

Creation of common and analytical cohorts

To evaluate relative ease of implementation of MARKER-
HF with SHFM and MAGGIC, we first excluded patients 
with insufficient follow-up time, history of heart transplant 
or LVAD, and EHR data quality issues. We then examined 
the degree of data engineering and missingness and imputa-
tion requirements in the remaining cohort (n = 9231; Fig. 1).

Missing values for systolic blood pressure, weight, labo-
ratory measurements, and LVEF, factors used in SHFM and 
MAGGIC, were imputed with single imputation using chained 
equations due to the high percentage of missing values for 
multiple variables. MARKER-HF score had much fewer miss-
ing values and those were imputed using mean value based 
on guidance from the model developers (AY and CC) and 

Fig. 2  Cohort size by number of missing variables in 9231 patients 
meeting study criteria. This bar chart depicts the size (percentage) of 
the cohort for which each score can be computed for a given number 
of missing variables in the cohort of 9231 patients meeting the inclu-
sion and exclusion criteria for the study. The percentage of top of 

each bar represents the number of patients in each bar divided by the 
cohort size (n = 9231). MARKER-HF, Machine learning Assessment 
of RisK and EaRly mortality in Heart Failure; SHFM, Seattle Heart 
Failure Model; MAGGIC, Meta‐Analysis Global Group in Chronic



1348 Clinical Research in Cardiology (2024) 113:1343–1354

prior analysis demonstrating that the imputation of one of 
eight variables did not lead to substantial decrement in model 
performance.9 Timing of HF diagnosis and NYHA Class were 
imputed for SHFM and MAGGIC as described above.

To evaluate model performance, we then aimed to create 
an analytical cohort that minimized the number of imputed 
variables for the models while also maximizing the size of 
the analytic cohort (Fig. 2). We therefore included patients 
with up to one missing variable for MARKER-HF, up to three 
missing for MAGGIC, and up to four missing variables for 
SHFM to achieve a reasonable cohort size of 6764 patients.

Statistical analysis: HF risk model implementation 
and validation

We generated MARKER-HF risk scores (range − 1 to + 1) and 
1-year survival estimates according to the code available on 
GitHub at https:// github. com/ claud iocc1/ MARKER- HF and 

online calculator available at https:// marker- hf. ucsd. edu/. We 
calculated risk scores and 1-year survival estimates for the 
SHFM and MAGGIC using published algorithms [13, 17].

We evaluated model discrimination, the ability of a model 
to correctly classify HF patients as alive or dead 1-year after 
the index date, using area under the receiver operating curve 
(AUC, or c-statistic) and compared AUCs between models 
with the DeLong Test [23, 24]. We assessed model calibra-
tion, the ability of a model to closely estimate the underlying 
risk, by comparing observed vs predicted 1-year survival for 
each model.

To further evaluate model performance in subgroups, 
we estimated AUC in patients with each HF subtype: (1) 
HF with preserved EF (HFpEF) with LVEF (≥ 50%); (2) 
HF with mildly reduced EF (HFmrEF) with LVEF between 
41 and 49%; and (3) HF with reduced EF (HFrEF) with 
LVEF ≤ 40%. We also estimated AUC in race and gender 
subgroups.

Table 2  Baseline characteristics 
for the analytical cohort and 
those who excluded due 
follow-up of less than 1 year

MARKER-HF Machine learning Assessment of RisK and EaRly mortality in Heart Failure, MAGGIC 
Meta‐Analysis Global Group in Chronic, HFrEF Heart failure with reduced ejection fraction, HFmrEF 
Heart failure with mildly reduced ejection fraction, HFpEF Heart failure with preserved ejection fraction

Variable Analytical cohort 
(n = 6764)

Cohort lost 
to follow-up 
(n = 2295)

Age at time of prediction, median (IQR) 71 (59–82) 70 (58–80)
Female, n (%) 3627 (54) 1277 (56)
Ethnicity, n (%)

  Hispanic 402(6) 168 (7)
  Non-Hispanic 6068(90) 1888 (83)
  Not Available 291 (4) 230 (10)

Race, n (%)
  White 4601 (68) 1364 (60)
  Black or African American 1323 (20) 451 (20)
  Asian 193 (3) 71 (3)
  Other 412 (6) 185 (8)
  Not available 218 (3) 203(9)
  Current smoker, n (%) 476 (7) 176 (8)
  Diabetes, n (%) 2727 (40) 897(39)
  Chronic obstructive lung disease, n (%) 1815 (27) 569(25)
  Ischemic heart disease, n (%) 4533 (67) 1492 (65)
  BMI, mean (SD) 28 (6) 27 (6)

Heart failure subtype, n (%)
  HFrEF (≤ 40%) 1954 (29) 750 (33)
  HFmrEF (41–49%) 529 (8) 222 (10)
  HFpEF (≥ 50%) 2809 (42) 970 (42)
  Sodium, mean (SD), meq/L 138 (4) 137 (4)
  Creatinine, mean (SD), mg/dL 1.5 (1.4) 1.5(1.3)
  Albumin, mean (SD), g/dL 3.6 (0.6) 3.6(0.6)
  MARKER-HF Risk Score, mean (SD)  − 0.3 (0.2)  − 0.2 (0.3)
  Seattle Heart Failure Risk Score, mean (SD) 0.97 (0.7) 1.1 (0.7)
  MAGGIC Heart Failure Risk Score, mean (SD) 22.2 (6.7) 22.2 (7.1)

https://github.com/claudiocc1/MARKER-HF
https://marker-hf.ucsd.edu/
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To evaluate the risk of bias from right censoring, we com-
pared selected baseline characteristics and risk estimates 
from those included in the analytical sample to those who 
were lost to follow-up prior to 1 year. In addition, we per-
formed two sensitivity analyses. First, we evaluated the dis-
crimination of MAGGIC in a subset of patients who almost 
certainly were diagnosed with HF < 18 months prior to index 
date: those with at least 18 months of HF diagnosis code-
free data in the EHR prior to index visit and for whom time 
of index visit equaled time of first HF diagnosis code. Sec-
ond, we evaluated the performance of SHFM and MAGGIC 
with the use of mean imputation instead of chained equa-
tions to mirror the imputation approach for MARKER-HF. 
This is likely the strategy that would be used if the models 
were implemented in a health system. All analyses were con-
ducted using scikit-learn version [25] 1.01, Lifelines [26] 
version 0.26.4, and SPSS, Statistics, version 28.0.1.

Results

Baseline characteristics

From the health system electronic data warehouse, we iden-
tified 13,500 patients with diagnosed HF and at least one 
primary and cardiology ambulatory visit between 2010 and 
2018 (Fig. 1). After excluding patients with insufficient 
follow-up time, history of heart transplant or LVAD, and 
EHR data quality issues, 9231 patients were remaining in 
the cohort. After excluding patients with more than three 
missing variables for MAGGIC (n = 573), four missing vari-
ables for SHFM (n = 1701), and more than one missing vari-
able for MARKER-HF (n = 1776), the resulting analytical 
cohort had 6764 patients remaining. In the analytical cohort, 
median age was 71 years (IQR 59–82), 54% were women, 
90% were Non-Hispanic, and 20% were Black or African 

Fig. 3  Receiver operating curve 
and corresponding area under 
the curve from three models 
(MARKER-HF, SHFM, and 
MAGGIC) of 1-year survival 
in heart failure patients in 
a large, regional US health 
system. DeLong AUC test for 
MARKER-HF vs SHFM and 
MARKER-HF vs MAGGIC 
had p-values of 0.64 and 0.43, 
respectively. MARKER-HF, 
The Machine learning Assess-
ment of RisK and EaRly mortal-
ity in Heart Failure; MAGGIC, 
Meta‐Analysis Global Group in 
Chronic; SHFM, Seattle Heart 
Failure Model

Fig. 4  Calibration of three models (MARKER-HF, SHFM, and 
MAGGIC) of 1-year survival in heart failure patients in a large, 
regional US health system. A MARKER-HF; B SHFM; and C MAG-
GIC. Error bars represent the one sigma statistical uncertainty on the 

mean. MARKER-HF, The Machine learning Assessment of RisK and 
EaRly mortality in Heart Failure; MAGGIC, Meta‐Analysis Global 
Group in Chronic (MAGGIC); SHFM, Seattle Heart Failure Model
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American (Table 2). This cohort had a high comorbidity 
burden: 40% had diabetes, 27% had chronic obstructive lung 
disease, and two-thirds had ischemic heart disease. A total of 
1266 (19%) patients died within the first year of follow-up.

Evaluation of ease of implementation 
and imputation requirements for each model

Of the 20 variables used to calculate the SHFM score, 9 
required data engineering (i.e., diuretic dosing, use of com-
putable phenotypes, and natural language processing to 
extract LVEF) and 1 variable (NYHA) required 100% mean 
imputation since unavailable for all patients. Of the 14 vari-
ables MAGGIC uses, 5 required data engineering (i.e., use 
of computable phenotypes, LVEF extraction) and 2 variables 
(NYHA and history of HF first diagnosed ≥ 18 months ago) 
were 100% missing and required imputation. Although we 
employed previously published algorithms to identify medi-
cal history, computable phenotypes have varying accuracy, 
and ranged from using a list of codes (i.e., diabetes, chronic 
obstructive lung disease) to combination of codes (i.e., 
CIED classification). MARKER-HF did not require compa-
rable data engineering or use of computable phenotypes. No 
value for MARKER-HF was 100% missing from the cohort.

Figure 2 depicts the number of missing input variables 
for the three scores. It includes anthropometric, diagnostic 
testing, and clinical (NYHA for both SHFM and MAGGIC 
and variables and history of HF first diagnosed ≥ 18 months 
ago for MAGGIC) for each model and the resulting cohort 
sizes. With imputation of one variable, MARKER-HF can 
be executed on 81% (7455/9231). For SHFM and MAGGIC, 
the imputation of four and three variables, respectively, was 
required to achieve a similar cohort size. Additional details 
on missingness for each variable in the analytical cohort are 
shown in Table S2.

Performance of HF risk models

MARKER-HF and SHFM demonstrated similar model dis-
crimination. As shown in Fig. 3, the AUC for MARKER-
HF (0.70; [95% CI 0.69–0.72]) was similar to SHFM (0.71; 
[0.69–0.73]; DeLong test P = 0.64) and MAGGIC (0.71; 
[0.70–0.73]; DeLong test P = 0.43).

The calibration, i.e., how well predicted risks match 
observed risks, for MARKER-HF, SHFM, and MAGGIC 
was good over the full range of predicted risk (Fig. 4). There 
was indication for over-estimation of 1-year mortality risk 
in the highest risk group by all three models.

In subgroup analyses stratified by LVEF subtype, race 
(limited to patients who were Black and White due to 
small sample size leading to imprecise estimates in other 
groups), and gender, MARKER-HF, SHFM, and MAGGIC 
all had similar performances, well within the confidence 

intervals for AUC from the subgroup analyses overlapping 
with the confidence intervals for the AUCs in the primary 
analysis (Supplemental Figures S1, S2, and S3). In a sen-
sitivity analysis of MAGGIC examining a subpopulation 
of patients more likely HF diagnosed < 18 months at time 
of prediction (n = 4908), the discrimination was similar 
(0.72; [95% CI 0.70–0.74]). In a sensitivity analysis of 
using mean imputation for systolic blood pressure, weight, 
laboratory measurements, and LVEF instead of chained 
equations for SHFM and MAGGIC, the change in AUC 
was insignificant (< 5%).

Discussion

This study used data extracted from an enterprise data ware-
house to evaluate the ease of implementation and the poten-
tial value of embedding three established risk scores into the 
EHR and incorporating them into routine care. MARKER-
HF, a model that exclusively uses information available in 
the EHR, required less data engineering and imputation than 
SHFM and MAGGIC and was easier to implement. The 
imputation of only one variable for MARKER-HF enabled 
the execution of the risk score on 81% of patients meet-
ing the cohort inclusion and exclusion criteria, whereas as 
SHFM and MAGGIC at a minimum required imputation of 
four and three variables, respectively, to achieve a compa-
rable cohort size. In the analytical cohort of 6674 patients, 
MARKER-HF had similar discrimination and calibration to 
SHFM and MAGGIC. These findings were largely similar 
in subgroup analyses by HF class based on LVEF, race, and 
gender. Results were also similar in sensitivity analyses that 
evaluated the potential effect of inaccurate HF diagnosis 
date in the EHR database on MAGGIC performance and 
the effect of different imputation strategies on SHFM and 
MAGGIC performance.

Incorporating holistic risk HF prediction tools into rou-
tine care can provide valuable insight to inform patient-
clinician shared decisions as well as potential population 
health strategies. Yet, many systems have not adopted these 
tools due to workflow issues—rather, the manner in which 
data are stored in the EHR renders many of the variables that 
are required for risk-prediction tools difficult to access. For 
example, NYHA class, which contributes substantially to the 
SHFM and MAGGIC scores, must be abstracted from clini-
cian notes, embedded in the EHR where its presence is vari-
able. In addition to potentially leading to misclassification or 
inaccuracies due to imputation(s) or computable phenotype 
definitions, our experience in generating this comparison 
was that it required a considerable amount of computational 
effort and resources to curate and analyze the data required 
for calculating the SHFM and MAGGIC from the EHR.
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Our analysis demonstrates that health systems do not 
need to undertake the additional backend work required to 
implement SHFM and MAGGIC; embedding MARKER-HF 
into the EHR could provide similarly valuable HF mortal-
ity risk information to the treating clinician or population 
health team. Moreover, by using readily available variables 
and relatively straightforward, publicly available Python code 
for implementation in the production setting, MARKER-HF 
would likely be more straightforward to build into the EHR 
and maintain than more complex risk scores that require a 
significant amount of data engineering and imputation. Our 
findings also have implications for future model development 
for conditions beyond HF. Given the amount of imputation 
or chart review often required for models developed on data 
sources outside of the EHR, model developers should con-
sider prioritizing variables that are more likely to be reliably 
available in EHR data repositories. Alternatively, for vari-
ables that are highly informative but not routinely available, 
model implementers should consider developing and testing 
strategies to increase the capture of those data elements.

Multiple factors likely contribute to the similar model 
performance of MARKER-HF, compared with SHFM and 
MAGGIC, despite the relative simplicity of its inputs. First, 
MARKER-HF, similar to other studies [27–30], employs a 
machine learning model. More specifically, MARKER-HF 
uses a boosted decision tree-based model, which can cap-
ture complex correlations between the inputs. Second, imple-
menting SHFM and MAGGIC in EHR data requires impu-
tation for outright missing information, as well as reliance 
on computable phenotypes based on diagnosis and proce-
dure codes. For example, both SHFM and MAGGIC require 
NYHA class, which is unavailable in structured EHR data. 
Our imputed value of 2.5 removes the nuance introduced into 
the SHFM and MAGGIC scores by the extreme values. Iden-
tification of current smoking status, presence of CIED and 
type, etiology of HF, chronicity of HF, co-morbidities (such 
as diabetes and chronic obstructive pulmonary disease), and 
in particular medication prescription and diuretic dosing are 
highly challenging to obtain reliably using EHR data [5–8].

The concept of embedding predictive analytics in rou-
tine care to inform population health strategies and shared 
decision-making is central to the creation of learning health 
systems, which are care systems where all available data 
are used to enable evidence-based care equitably while also 
generating new evidence to inform future clinical care deci-
sions [31]. Using risk as part of care decision is particularly 
important for HF. Studies suggest that patients, particu-
larly racial and ethnic minorities and other under-resourced 
populations, are often referred to a HF specialist too late 
[3, 32, 33]. This delay places them at risk for worse out-
comes if advanced therapies, such as cardiac transplantation 
or left ventricular assist device implantation, are pursued 
[3]. Moreover, estimation of mortality risk may also inform 

discussions on therapeutics, palliative care referral, and 
end-of-life decision-making. Although an extensive litera-
ture of risk model derivation and validation studies for HF 
outcomes exist [27, 34–38], MARKER-HF has the unique 
ability to be executed with relative simplicity and similar 
performance across a large, diverse HF populations in health 
systems due to its use of few, routinely collected laboratory 
and diastolic blood pressure measurements.

This study has limitations. Due the lack of availability of 
several of the SHFM and MAGGIC variables as structured 
data in the EHR, we used imputation, natural language pro-
cessing, and computable phenotypes for several variables 
similar to other studies that have evaluated these models 
using EHR-extracted, health system data. The use of these 
strategies, some of which were developed by our team, may 
have led to misclassification or biased these risk scores to 
the mean. However, we based our definitions, when able, 
on prior validation studies of SHFM and MAGGIC and on 
previously published electronic health data algorithms. Fur-
thermore, only a subsample of patients had 1-year follow-
up, which may have biased the sample due to right censor-
ing. However, baseline age, gender, ethnicity, race, and risk 
scores were similar between those with at least of year of 
follow-up for documented death and those without (Table 2), 
which suggests that our results are representative of the 
larger population. MARKER-HF had a lower discrimination 
in this study compared to the initial development and valida-
tion paper [9]. This is may be due to a difference in predic-
tion task; this study used 1-year mortality as the outcome, 
whereas prior study predicted high risk (90-day mortality) 
vs low risk (those who did not die within 800 days) as the 
main outcome as well as differences in the data sources and 
populations. Because the guidelines for HF specifically cite 
elevated 1-year mortality risk as a sign of advanced HF that 
might trigger a referral to a HF specialist and the need to 
standardize the model for model comparison, we used over 
the same time horizon of one year for all three models [2].

The findings from this study suggest that MARKER-HF 
may be informative to identify patients at high risk of death, 
including those who may benefit from HF specialist evalua-
tion based on expert consensus guidance to use risk as part of 
the referral decision-making process [3]. It also may allow the 
identification of low risk patients who may require less inten-
sive resource utilization. Although some criticism has been 
raised at the “black box” nature of machine learning models, 
other experts have argued that rigorous external validation 
of machine learning models achieves the goals of explain-
ability [39]. Moreover, MARKER-HF uses variables with 
biological relevance to and previously described association 
with advanced heart failure and mortality. However, future 
implementation studies are needed to better understand how 
to embed HF risk models as part of routine care to improve 
patient-centered outcomes and their acceptability to clinicians 
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and patients. This includes the development of a more robust 
digital infrastructure and governance system to execute pre-
dictive models and evaluate model performance and its impact 
on clinical care longitudinally [40–43], and trials like The 
REVeAL-HF (Risk EValuation And its Impact on ClinicAL 
Decision Making and Outcomes in Heart Failure) trial, which 
tested the impact of displaying HF risk estimates to clinicians 
for admitted HF patients using a clinical decision support tool 
in a pragmatic clinical trial in a single health system [44]. 
Although this trial did not show an impact on its primary 
endpoints [45], additional studies in evaluating the use of risk 
of death for ambulatory patients either as part clinical decision 
support tool or by a population health team are needed.

In summary, in this study, we found that MARKER-HF, 
a machine learning model that uses readily available vari-
ables, required less imputation and data engineering and 
had similar discrimination and calibration to SHFM and 
MAGGIC in a large, diverse population of patients with HF 
from an integrated health system. These findings indicate 
that MARKER-HF is a useful tool to execute in system-
wide EHR data from diverse health care settings to enable 
patient-clinician shared decision-making and population 
health management strategies.
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