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Abstract
Background  Fractional flow reserve based on coronary CT angiography (CT-FFR) is gaining importance for non-invasive 
hemodynamic assessment of coronary artery disease (CAD). We evaluated the on-site CT-FFR with a machine learning 
algorithm (CT-FFRML) for the detection of hemodynamically significant coronary artery stenosis in comparison to the inva-
sive reference standard of instantaneous wave free ratio (iFR®).
Methods  This study evaluated patients with CAD who had a clinically indicated coronary computed tomography angiog-
raphy (cCTA) and underwent invasive coronary angiography (ICA) with iFR®-measurements. Standard cCTA studies were 
acquired with third-generation dual-source computed tomography and analyzed with on-site prototype CT-FFRML software.
Results  We enrolled 40 patients (73% males, mean age 67 ± 12 years) who had iFR®-measurement and CT-FFRML calcula-
tion. The mean calculation time of CT-FFRML values was 11 ± 2 min. The CT-FFRML algorithm showed, on per-patient and 
per-lesion level, respectively, a sensitivity of 92% (95% CI 64–99%) and 87% (95% CI 59–98%), a specificity of 96% (95% 
CI 81–99%) and 95% (95% CI 84–99%), a positive predictive value of 92% (95% CI 64–99%), and 87% (95% CI 59–98%), 
and a negative predictive value of 96% (95% CI 81–99%) and 95% (95% CI 84–99%). The area under the receiver operating 
characteristic curve for CT-FFRML on per-lesion level was 0.97 (95% CI 0.91–1.00). Per lesion, the Pearson’s correlation 
between the CT-FFRML and iFR® showed a strong correlation of r = 0.82 (p < 0.0001; 95% CI 0.715–0.920).
Conclusion  On-site CT-FFRML correlated well with the invasive reference standard of iFR® and allowed for the non-invasive 
detection of hemodynamically significant coronary stenosis.

Keywords  Coronary artery disease · Coronary CT angiography · Fractional flow reserve derived from coronary computed 
tomography angiography · Instantaneous wave-free ratio · Invasive coronary angiography · Myocardial ischemia

Abbreviations
CAD	� Coronary artery disease
cCTA​	� Coronary computed tomography 

angiography
CT	� Computed tomography
CT-FFR	� Fractional flow reserve derived from coro-

nary computed tomography angiography

CT-FFRML	� Fractional flow reserve derived from coro-
nary computed tomography angiography 
based on machine learning algorithm

ESC	� European Society of Cardiology
FFR	� Fractional flow reserve
ICA	� Invasive coronary angiography
iFR®	� Instantaneous wave free ratio

Introduction

Due to its high sensitivity and negative predictive value, 
coronary computed tomography angiography (cCTA) has 
become an established and helpful clinical tool to rule out 
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obstructive coronary artery disease (CAD) in patients with 
low to intermediate pre-test probability [1, 2]. Yet, similar to 
invasive coronary angiography (ICA), cCTA provides only 
morphological assessment. In clinical practice an increasing 
number of unnecessary ICAs in cases of non-obstructive 
CAD are performed [3, 4] due to the tendency of cCTA 
to overestimate the severity of stenosis, as expected given 
the comparatively moderate specificity of cCTA [5]. Fur-
thermore, two previous studies, the prospective multicenter 
imaging study for evaluation of chest pain (PROMISE) and 
SCOT-HEART, were inconsistent in their conclusions on 
the role of cCTA in the disease management plan of patients 
with CAD [6, 7].

It is now possible to calculate resting flow dynamics by 
cCTA-based fractional flow reserve (CT-FFR) [8]. With this 
technique, cCTA datasets can be assessed not only anatomi-
cally but also regarding the hemodynamic significance of 
lesions, which can be determined with no additional radia-
tion exposure [9]. CT-FFR demonstrates strong correla-
tion with invasive fractional flow reserve (FFR) [10, 11] 
and is gaining importance for non-invasive hemodynamic 
assessment of obstructive CAD [12–16]. Several large tri-
als and meta-analyses demonstrate significant improvements 
in diagnostic accuracy compared to cCTA alone [17–22]. 
Moreover, the Food and Drug Administration approved the 
use of an off-site CT-FFR approach in 2015. An evolution in 
the development of CT-FFR is the development of an on-site 
prototype with a machine-learning algorithm (CT-FFRML). 
There has been a remarkable reduction of required computa-
tion time compared to CT-FFR based on computational fluid 
dynamics [23, 24].

FFR during invasive coronary angiography (ICA) is an 
established reference standard in the determination of the 
hemodynamic significance of coronary stenosis [25, 26]. 
However, in clinical practice, FFR measurements are limited 
by a variety of factors. E.g., the intravascular administration 
of adenosine involved in this procedure leads to numerous 
side effects, such as discomfort, dyspnea, and angina pecto-
ris and often prolongs the ICA procedure [9, 27–29]. Instan-
taneous wave free ratio (iFR®) is an innovative approach and 
has generated interest for the invasive detection of hemo-
dynamically significant coronary stenosis. With the use of 
pressure wires, iFR® isolates a specific period of time during 
diastole known as the wave-free period when microvascu-
lar resistance is low and stable and can then detect relevant 
coronary stenosis based on results of pressure and flow. iFR® 
was proven to be non-inferior to FFR but does not involve 
the need for hyperemia [30–32]. Therefore, iFR®, as a rest-
ing index, offers several substantial advantages, including 
the reduction of side effects and improvements of patient 
comfort by obviating the need of adenosine [30, 31, 33]. 
Accordingly, both FFR and iFR® have a class IA recommen-
dation for determining the indication of revascularization 

in the European Society of Cardiology (ESC) guidelines 
of 2018 [34]. We aimed to investigate on-site CT-FFRML 
in terms of clinical practicability and diagnostic accuracy 
when compared to iFR® as one the current invasive reference 
standards to detect hemodynamically significant coronary 
artery stenosis.

Materials and methods

Patient population, study design

The local Institutional Review Board approved the study 
protocol (No. 2015-583N-MA). Written informed consent 
was obtained from all patients. Our prospective, single-
center, and non-randomized study was applied to actual 
clinical settings, under the consideration of the current 
ESC-guidelines on myocardial revascularization [34]. The 
initial population of our study consisted of 80 patients with 
suspected CAD who underwent a clinically indicated cCTA 
between July 2017 and December 2018. General clinical 
exclusion criteria for performing cCTA were known contrast 
agent allergies, severely reduced left ventricular function, 
renal insufficiency, significant increase of high-sensitivity-
troponin I (> 0.2 ng/mL), EKG signs of acute myocardial 
injury, and significant valvular pathology.

Specific exclusion criteria for on-site CT-FFRML calcu-
lation were severe left main disease, severe stenosis of the 
coronary ostium, serial lesions, complex bifurcation stenosis 
type D (SYNTAX score classification), aneurysms, severe 
diffuse disease, chronic total occlusion, previous percutane-
ous coronary stent implantation, previous coronary artery 
bypass grafting (CABG), or inadequate image quality of the 
cCTA dataset. Baseline characteristics and cardiovascular 
risk factors were obtained from medical records. In accord-
ance with the recommendation of the ESC, the CAD con-
sortium clinical score was applied to determine the pretest 
probability for CAD [35]. In addition, the impairment of left 
ventricular function was determined by echocardiography 
before cCTA. Acquisition of cCTA datasets was performed 
with a standard cCTA protocol. If cCTA showed a steno-
sis with the potential of hemodynamic relevance or uncer-
tain finding, which was verified by a senior radiologist, an 
ICA was indicated. During ICA, the coronary arteries were 
evaluated by a senior interventional cardiologist. Visually 
intermediate grade stenotic lesions (40–80%) were evaluated 
by iFR®-measurement intraprocedurally for hemodynamic 
significance. In case the iFR® value was hemodynamically 
significant (≤ 0.89), revascularization was performed by per-
cutaneous coronary intervention (PCI) or coronary artery 
bypass graft (CABG) [25, 26, 34]. After successful comple-
tion of cCTA and iFR®-measurements, the cCTA datasets 
were evaluated by on-site CT-FFRML (Fig. 1).
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Acquisition and analysis of cCTA datasets

Acquisition and analysis of cCTA data were performed 
according to the standard of care. After a non-contrast 
calcium scoring acquisition, cCTA was accomplished 
utilizing a low-dose protocol on a third-generation dual-
source CT system (Siemens, Somatom FORCE, Siemens 
Healthineers). Sublingual nitroglycerin was administered 
prior to cCTA and beta-blockers were given to achieve a 
resting heart rate below 65/min. An injection of 80 mL 
of iodinated contrast material (Iomeron 400; Bracco 
Imaging S.p.A., Milan, Italy) was given in an antecubi-
tal vein using a power injector (Stellant D; Medrad, War-
rendale, PA, USA) at a flow rate of 4 mL/s and followed 
by a 20 mL saline chaser. cCTA images were analyzed 
on a multi-modality 3D-enabled workstation (Syngo 
VE36A; Siemens Healthineers, Forchheim, Germany) 
and interpreted by an experienced cardiovascular radiolo-
gist blinded to patient characteristics [36]. Coronary cal-
cium was assessed with a dedicated software application 
according to the Agatston scoring convention (CaScore, 
Siemens Healthineers) [37]. Coronary artery stenosis was 
quantitatively graded using on-site prototype software 
(Coronary Plaque Analysis 2.0. syngo.via FRONTIER, 
Siemens Healthineers) and visually graded in accordance 
with SCCT guidelines as normal (< 25%), mild (25–49%), 
moderate (50–69%), severe (70–99%), or totally occluded. 

Obstructive CAD was defined as ≥ 50% luminal stenosis 
on cCTA [38].

Analysis of computed tomographic‑based fractional 
flow reserve (CT‑FFRML)

The cCTA datasets were analyzed by an on-site CT-FFRML 
prototype software based on a machine-learning algorithm 
(Siemens cFFR, version 3.1; Siemens Healthineers, cur-
rently not commercially available) installed on a regular 
workstation (Syngo VE36A; Siemens Healthineers). For 
each vessel, the software semi-automatically generated vas-
cular-specific centerlines that defined the lumen and marked 
the stenosis. An experienced cardiovascular radiologist 
who was blinded to patient clinical data reviewed the vessel 
boundaries and centerlines before accepting the results. The 
location of iFR®-measurement reviewed and then matched 
to cCTA by the blinded cardiovascular radiologist. Through 
patient specific physiological conditions (blood pressure, 
heart rate, left ventricular mass) and flow dynamic models 
a hybrid approach of the prototype software permitted the 
simulation of blood flow and showed the hyperaemic state 
in the coronary vessels [8]. Thus, a patient-specific anatomic 
color-coded 3-dimensional mesh of the epicardial coronary 
artery tree and aortic root was created. CT-FFRML values 
could be directly evaluated by placing a marker in the vessel 
of interest. To validate the reproducibility of the CT-FFRML 

Fig. 1   Flowchart illustrates 
the enrollment process. cCTA​ 
coronary computed tomography 
angiography, CT-FFRML frac-
tional flow reserve derived from 
coronary computed tomography 
angiography based on machine 
learning algorithm, ESC Euro-
pean Society of Cardiology, ICA 
invasive coronary angiography, 
iFR® instantaneous wave free 
ratio
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results, another experienced cardiovascular radiologist, 
who was also blinded to patient clinical data, analyzed the 
same cCTA datasets with the on-site CT-FFRML prototype 
software. This allowed to evaluated the inter-observer vari-
ability. For the diagnosis of a hemodynamically relevant 
stenosis, CT-FFRML values of ≤ 0.80 were established as a 
cut-off value [22].

ICA measurement with instantaneous wave free 
ratio (iFR®)

An experienced senior interventional cardiologist performed 
the ICA as indicated under the current ESC guidelines [34]. 
The coronary arteries were visually evaluated and analyzed 
by quantitative coronary angiography software (QCA Caas 
Workstation, PIE Medical Imaging, Maastricht, The Neth-
erlands). Every visually suspicious stenosis (intermediate 
grade 40–80%) was interrogated by iFR® intraprocedurally 
for hemodynamic significance according to the current ESC 
guidelines [34]. For this purpose, an iFR® pressure wire 
(Verrata™ pressure wire, Volcano Corporation, Koninkli-
jke Philips N.V. Amsterdam, The Netherlands) was placed 
distally to the suspicious stenosis and iFR®-measurements 
were obtained during five consecutive heartbeats and was 
calculated with the assistance of computer software (Vol-
cano Corporation). The optimal wave-free period for the 
iFR®-measurement, which is defined as a fixed period of 
diastole where the microvascular resistance is minimized 
and constant, was found intraprocedurally by the pressure 
curve [39]. To determine a hemodynamically significant 
stenosis an iFR® cut-off value ≤ 0.89 was chosen and is in 
accordance with current ESC guidelines [34].

Statistical analysis

All analyses were performed using SAS (Version 9.4 SAS 
Institute Inc., Cary, NC, USA). Categorical variables are 
presented as percentages; whereas, continuous variables 
are presented as either mean ± standard deviation (SD) or 
median with interquartile range (IQR) and were analyzed 
with the independent sample t test. Pearson statistics and an 
interclass correlation coefficient were applied to analyze the 
degree of correlation between CT-FFRML and iFR®. More-
over, a Bland–Altman analysis was performed comparing 
CT-FFRML and invasive iFR®-measurement on a per-lesion 
level. Sensitivity, specificity, positive predictive value and 
negative predictive value were evaluated on a per-lesion 
and per-patient level for cCTA (> 50%), cCTA (> 70%) and 
CT-FFRML (≤ 0.80) using iFR® (≤ 0.89) as the reference 
standard to detect lesion-specific ischemia. The area under 
the receiver operating characteristics curve (AUC) was 
determined, compared and tested by the DeLong test for 
cCTA, CT-FFRML and iFR® as a metric of overall diagnostic 

performance [40]. A p value of ≤ 0.05 was considered sta-
tistically significant.

Results

Between July 2017 and December 2018, we included 80 
patients with a clinical indication for cCTA (Fig. 1). Base-
line characteristics of included patients are presented in 
Table 1. Our study population had the following propor-
tions of cardiovascular risk factors: 75% hypertension, 
48% hyperlipidemia, 28% had a family history of CAD, 
20% diabetes mellitus, and 20% were current smokers. We 

Table 1   Baseline characteristics (n = 40)

Unless otherwise specified, data are numbers of patients with per-
centages in parentheses. Data are mean ± standard deviation (SD) or 
frequency
CAD coronary artery disease
a Pretest probability calculated with the CAD consortium clinical 
score [35]
b Defined as blood pressure > 140 mmHg systolic, > 90 mmHg dias-
tolic, or use of an antihypertensive medication
c Defined as a total cholesterol level of > 200 mg/dL or use of antilipi-
demic medication

Parameter Mean value ± standard 
deviation or frequency 
(%)

Age (years) 67 ± 12
Men (%) 29 (73%)
Height (cm) 172 ± 9
Weight (kg) 86 ± 15
Body-mass-index (kg/m2) 29 ± 5
Pretest probabilitya (%) 57
Prior percutaneous coronary intervention 7 (18%)
Atrial fibrillation 8 (20%)
Systolic blood pressure (mmHg) 131 ± 19
Diastolic blood pressure (mmHg) 70 ± 13
Heart rate (beats per min) 69 ± 12
Cardiovascular risk factors
 Hypertensiona 30 (75%)
 Hyperlipidemiab 19 (48%)
 Family history of CAD 11 (28%)
 Diabetes mellitus 8 (20%)
 Current smoking 8 (20%)

Medication
 Angiotensin converting enzyme inhibitor 

or AT1 receptor antagonists (%)
23 (58%)

 Β-blocker (%) 18 (45%)
 Statin (%) 17 (43%)
 Aspirin (%) 15 (38%)
 Calcium channel blocker (%) 12 (30%)
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calculated a mean pretest-probability for CAD of 57% (CAD 
consortium clinical score) for our patient population. In 35% 
of the indicated cCTA cases, no relevant coronary artery 
stenosis could be detected. According to the current ESC 
guidelines an ICA is indicated when cCTA shows stenosis 
with luminal narrowing (30–90%) or uncertain findings are 
observed. This was the case in 50 patients (63%). In 84% 
(n = 42), the iFR®-measurement was performed within one 
month to assess the hemodynamics of the suspected lesion. 
The iFR®-measurement was not indicated in eight patients 
because six cases had high-grade stenosis (> 80%) and two 
cases had non-obstructive stenosis that could be determined 
by invasive visual assessment alone. Finally, the stenosis 
measured by iFR® were evaluated by the on-site CT-FFRML 

algorithm. We were able to calculate CT-FFRML values in 40 
out of 42 patients (95%). In one case, inadequate CT image 
quality prevented successful analysis, and in the other case 
the patient had prior stent placement. Example cases are 
presented in Figs. 2 and 3.

Within the remaining 40 patients, 57 vessel specific 
lesions were analyzed and 15 (26%) lesions were determined 
as hemodynamically relevant by iFR® ≤ 0.89. cCTA (> 50%) 
overestimated the severity of stenosis in 21 of 57 lesions and 
cCTA (> 70%) overestimated severity in 6 of 57 lesions. 
However, CT-FFRML revealed the absence of lesion specific 
ischemia, thus ruling out obstructive CAD, in 40 of 57 sten-
oses, which could have resulted in a substantial reduction 
of unnecessary ICAs on non-obstructive lesions. The mean 

Fig. 2   58-year-old woman with history of atypical chest pain, 
increased cardiovascular risk profile and pre-test probability for CAD 
of 20%. a cCTA demonstrates severe stenosis (>70%) of the proximal 
left anterior descending coronary artery caused by calcified plaques 
(arrow). b CT-FFRML derivation, displayed in a color-coded 3-dimen-
sional mesh, resulted in a value of 0.98 (arrow). c Coronary catheter 

angiography shows a stenosis (arrow) with an iFR® measurement 
of 0.95. cCTA​ coronary CT angiography, CT-FFRML fractional flow 
reserve derived from coronary computed tomography angiography 
based on machine learning algorithm, iFR® instantaneous wave free 
ratio

Fig. 3   67-year-old man with suspected CAD and an increased car-
diovascular risk profile. a cCTA shows a severe, high risk stenosis 
(>70%) of the mid left anterior descending artery (arrow). b In a 
3-dimensional—color-coded mesh a calculated CT-FFRML value of 
0.65 is presented (arrow). c This high-risk stenosis (arrow) is visual-
ized in ICA and measurement with iFR® (iFR®-value 0.84; iFR® cut-

off value ≤ 0.89). Revascularization with PCI and implantation of two 
drug eluting stents was performed. cCTA​ coronary CT angiography, 
CT-FFRML fractional flow reserve derived from coronary computed 
tomography angiography based on machine learning algorithm, iFR® 
instantaneous wave free ratio, PCI percutaneous coronary interven-
tion
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calculation time for CT-FFRML was 11 ± 2 min. Relevant 
results of standard cCTA acquisition and CT-FFRML analysis 
compared to iFR® are illustrated in Table 2. On per lesion 
evaluation, the correlation was r = 0.82 (p < 0.0001; 95% CI 
0.715–0.920; Pearson’s product-moment) (Fig. 4) with an 
intraclass correlation coefficient of r = 0.76 (p < 0.0001; 95% 
CI 0.595–0.866) between the on-site CT-FFRML and iFR®. 
The inter-observer correlation was r = 0.91 (p < 0.0001, 95% 
CI 0.87–0.95). As illustrated in Fig. 5, a Bland–Altman 
analysis was performed and the mean differences for on-site 
CT-FFRML and iFR® on a per lesion level was calculated at 
0.078 (95% limits of agreement − 0.19 to 0.12). CT-FFRML 
for a per-patient and per-lesion basis revealed a sensitivity of 
92% (95% CI 64–99%) and 87% (95% CI 59–98%), a speci-
ficity of 96% (95% CI 81–99%) and 95% (95% CI 84–99%), 
a positive predictive value of 92% (95% CI 64–99%) and 
87% (95% CI 59–98%), and a negative predictive value of 
96% (95% CI 81–99%) and 95% (95% CI 84–99%), respec-
tively (Table 3). In comparison, the sensitivity, specificity, 
positive predict value, negative predict value and accuracy 
for cCTA (> 50%), cCTA (> 70%) and ICA (> 50%) are also 
presented in Table 3, using iFR® as the reference standard. 
The diagnostic accuracy for the detection of hemodynami-
cally relevant stenosis of cCTA (> 50%), cCTA (> 70%), 
ICA (> 50%), and CT-FFRML when compared to iFR® on a 
per-lesion and a per-patient level was calculated to be 61% 
(95% CI 48–74%) and 55% (95% CI 39–71%), 81% (95% CI 

68–90%) and 72% (95% CI 56–85%), 68% (95% CI 55–80%) 
and 70% (95% CI 54–83%), and 93% (95% CI 83–98%) and 
95% (95% CI 83–99%), respectively. Notably, there was a 
significant improvement in the specificity between cCTA 
(> 50%) and CT-FFRML, which increased from 50% (95% 
CI 34–66%) to 95% (95% CI 84–99%) on a per-lesion basis 
and from 37% (95% CI 19–58%) to 96% (95% CI 81–99%) 

Table 2   Findings of cCTA, CT-FFRML and ICA

Unless otherwise specified, data are numbers of patient, with percent-
ages in parentheses. Data are mean ± standard deviation (SD) or fre-
quency
CT-FFRML fractional flow reserve derived from coronary computed 
tomography angiography based on machine learning algorithm, iFR® 
instantaneous wave free ratio
a Agatston score was obtained in 33 patients

Parameter Mean value ± standard 
deviation or frequency 
(%)

Coronary computed tomography
 Agatston scorea 928 ± 981
 Rangea 0–3608
 No. of patients > 400 21 (64%)
 Luminal stenosis > 50% 57 (100%)
 Luminal stenosis > 70% 24 (42%)
 CT-FFRML ≤ 0.80 15 (26%)
 CT-FFRML procedure time (min) 11 ± 2

Invasive coronary catheter angiography
 Left anterior descending coronary artery 31 (54%)
 Left circumflex coronary artery 14 (25%)
 Right coronary artery 12 (21%)
 iFR® ≤ 0.89 15 (26%)

Fig. 4   Performance for determining the hemodynamic relevance of 
coronary artery stenosis on a per lesion basis illustrates a strong cor-
relation between on-site CT-FFRML with invasive iFR® as the refer-
ence standard (Pearson correlation coefficient p = 0.82, p < 0.0001, 
95% CI 0.715–0.920). CT-FFRML fractional flow reserve derived 
from coronary computed tomography angiography based on machine 
learning algorithm, iFR® instantaneous wave free ratio

Fig. 5   Bland Altman analysis plot comparing iFR® with CT-FFRML 
on a per lesion level. Mean difference between both techniques was 
0.078 (limits of agreement − 0.19 to 0.12). CT-FFRML fractional flow 
reserve derived from coronary computed tomography angiography 
based on machine learning algorithm, iFR® instantaneous wave free 
ratio
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on a per-patient level. The area under the curve (AUC) that 
is illustrated in Fig. 6 shows a substantial improvement in 
diagnostic performance for the detection of lesion-specific 
ischemia with CT-FFRML when compared with the mere 
morphological assessment by cCTA. The AUC compari-
son to determine lesion-specific ischemia (iFR® ≤ 0.89) 
reached statistical significance in the per-patient analysis 
(p = 0.0086) and in the per-lesion analysis (p = 0.0196) 
between cCTA and CT-FFRML.

Discussion

In this study, we examined an on-site CT-FFRML machine 
learning algorithm in terms of clinical practicality and 
diagnostic accuracy for the determination of the hemody-
namic severity of suspicious coronary lesions when com-
pared to the current invasive reference standard of iFR®.

Table 3   Diagnostic 
performance of fractional 
flow reserve from coronary 
computed tomography 
angiography, invasive coronary 
angiography and standard 
evaluation of coronary 
computed tomography 
angiography on a per-lesion and 
per-patient level using iFR® as 
the reference standard

cCTA​ coronary computed tomography angiography, CT-FFRML fractional flow reserve derived from cor-
onary computed tomography angiography based on machine learning algorithm, ICA invasive coronary 
angiography, iFR® instantaneous wave free ratio, NPV negative predictive value, PPV positive predictive 
value

cCTA (>50%) cCTA (>70%) ICA (>50%) CT-FFRML (≤0.80)

Per-lesion (n = 57)
 Sensitivity (%) 93 (68–99) 67 (38–88) 73 (45–92) 87 (59–98)
 Specificity (%) 50 (34–66) 86 (72–95) 67 (51–80) 95 (84–99)
 PPV (%) 40 (24–58) 62 (35–85) 44 (24–65) 87 (59–98)
 NPV (%) 96 (77–99) 88 (74–96) 87 (71–97) 95 (84–99)
 Accuracy (%) 61 (48–74) 81 (68–90) 68 (55–80) 93 (83–98)

Per-patient (n = 40)
 Sensitivity (%) 92 (64–99) 61 (32–86) 85 (55–98) 92 (64–99)
 Specificity (%) 37 (19–58) 78 (58–91) 63 (42–81) 96 (81–99)
 PPV (%) 41 (23–60) 57 (29–82) 52 (30–74) 92 (64–99)
 NPV (%) 91 (59–99) 81 (61–93) 90 (67–99) 96 (81–99)
 Accuracy (%) 55 (39–71) 72 (56–85) 70 (54–83) 95 (83–99.)

Fig. 6   On per-patient (a) and per-lesion level (b), the area under 
the curve for the detection of hemodynamically relevant stenosis by 
CT-FFRML using iFR® as the reference standard were 0.96 (95% CI 
0.87–1.00) and 0.97 (95% CI 0.91–1.00), respectively. By cCTA and 
ICA, AUC results were on, per-patient and per-lesion level, 0.72 (95% 
CI 0.55–0.90) and 0.81 (95% CI 0.68–0.94), and 0.68 (95% CI 0.51–

0.86) and 0.66 (95% CI 0.50–0.81). AUC​ area under the curve, cCTA​ 
coronary CT angiography, CT-FFRML fractional flow reserve derived 
from coronary computed tomography angiography based on machine 
learning algorithm, ICA invasive coronary angiography, iFR® instan-
taneous wave free ratio
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Our observations suggest that the CT-FFRML algorithm 
performs well in clinical settings. In addition, we dem-
onstrate that the use of the on-site CT-FFRML algorithm 
achieves a reduction in the time needed for calculating this 
index. Our mean calculation time was 11 ± 2 min. Published 
in 2014, Renker et al. introduced an on-site computational 
fluid-dynamics based CT-FFR algorithm with a process-
ing and calculation time of 37.5 ± 13.8 min [41]. Off-site 
CT-FFR algorithms are more time consuming in compari-
son; yet, the off-site FFR-CT analysis by HeartFlow Inc. 
(Redwood City, CA, USA) remains the only commercially 
and clinically available solution to date. This algorithm has 
attained approval by the Food and Drug Administration in 
2015 and sees increasing coverage by healthcare payors, 
thus indicating the growing recognition of the usefulness 
and effectiveness of CT-FFR. Accordingly, CT-FFR is an 
increasingly established tool in the evolving field of coro-
nary physiology. Various large trials such as DISCOVER-
FLOW, DeFACTO, and NXT have investigated CT-FFR in 
comparison to invasive FFR as the reference standard for 
the detection of hemodynamically relevant stenosis [20–22]. 
The insights of these studies demonstrated that the CT-FFR 
strategy was significantly superior compared to the sole 
cCTA strategy for the determination of the hemodynamic 
relevance of coronary artery stenosis [20–22].

We compared the on-site CT-FFRML algorithm with a 
novel innovative invasive resting index without administra-
tion of adenosine. Instantaneous wave free ratio (iFR®) has 
gained importance for the invasive detection of hemody-
namically significant coronary stenosis. This adenosine-
independent approach has many advantages over the inva-
sive FFR method and has already proven its usefulness in 
various studies [30, 31, 33, 39, 42]. iFR®, as a resting index, 
finds consideration in the guideline of the ESC on myo-
cardial revascularization and is now of equal standing with 
FFR as a class IA recommendation [34]. With the use of 
iFR® as the reference standard, the diagnostic performance 
of CT-FFRML on a per-patient and per-lesion level showed 
high specificity [96% (95% CI 81–99%) and 95% (95% CI 
84–99%)] for CT-FFRML to detect hemodynamically rel-
evant stenosis. Our results are comparable with previous 
studies that have evaluated an on-site CT-FFRML approach 
in terms of diagnostic accuracy when compared to invasive 
FFR [24, 41]. Similar to previous work we observed a sub-
stantial increase in the area under the curve on a per-lesion 
and per patient level [AUC, 0.96 (95% CI 0.87–1.00) and 
0.97 (95% CI 0.91–1.00)] to detect hemodynamically signifi-
cant coronary stenosis compared to the evaluation of cCTA 
studies alone [20, 22, 41].

The correlation between iFR® and CT-FFR has been 
investigated before. In 2018, Fujimoto et al. for the first 
time reported a correlation coefficient of r = 0.62 between 
CT-FFR and iFR® [43]. However, in our investigation the 

correlation coefficient between CT-FFRML and iFR® was 
substantially higher with r = 0.82 (p < 0.0001; Pearson’s 
product-moment), which is much more comparable with the 
results of previous investigations that had used invasive FFR 
as the reference standard [22, 41].

As expected, cCTA overestimated stenosis in 17/40 of our 
patients, which could have potentially led to a reduction in 
ICAs without the need of coronary intervention. In contrast 
to the evaluation of cCTA alone, the addition of CT-FFRML 
resulted in the true negative reclassification of 40 stenoses 
and 26 patients as free of lesion specific ischemia, which 
could have led to a drastic reduction in unnecessary ICAs. 
In contrast, CT-FFRML correctly identified 13 stenoses and 
12 patients as true positive for obstructive CAD. Thus, our 
results are very much in line with the 2014 PLATFORM 
trial, which differed from the concept of other former vali-
dation studies and was able to prove a significant reduction 
in originally planned ICAs with utilization of CT-FFR [19]. 
Hlatky et al. performed a sub-analysis of the PLATFORM 
data and found a significant cost reduction without any 
adverse outcomes and enhanced quality of life [44].

Limitations

Our results are to be evaluated and considered in light of 
the following limitations: First, it should be noted that our 
study cohort of a total number of 40 enrolled patients with 
57 lesions is relatively small. Second, patients had to be 
excluded because of prior CABG, prior stent placement, or 
complex bifurcation stenosis type D. These first two limi-
tations are due to the structure of our investigation as we 
aimed to perform a longitudinal study over a defined period 
of time in a real-life clinical setting with the consideration of 
current ESC guidelines. Third, in our study we did not per-
form any comparisons to conventional invasive FFR. From 
a scientific point of view, comparison with FFR would have 
been interesting. Nevertheless, this was clinically not indi-
cated because iFR® is now of equal standing with FFR as a 
class IA recommendation. Finally, we have not performed 
any patient follow-up for outcome determination. Rather, our 
primary aim was the comparison of CT-FFRML and iFR® in 
terms of diagnostic accuracy and testing its applicability in 
everyday clinical practice. Further studies will be necessary 
to validate our findings of CT-FFRML compared with iFR® 
and to provide more representative results.

Conclusions

The results of our study suggest that on-site CT-FFRML per-
forms well in routine clinical practice. In addition, we were 
able to demonstrate high diagnostic accuracy of CT-FFRML 
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compared to iFR® as a resting index; moreover, we showed a 
strong correlation between CT-FFRML values and iFR® val-
ues in the detection hemodynamically significant stenosis. 
Further studies will be necessary to validate our findings of 
CT-FFRML compared with iFR® and to provide more rep-
resentative results.
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