ORIGINAL PAPER

Ezetimibe in high-risk, previously treated statin patients: a systematic review and network meta-analysis of lipid efficacy

Maria Lorenzi¹ · Baishali Ambegaonkar² · Carl A. Baxter³ · Jeroen Jansen¹ · Michael J. Zoratti¹ · Glenn Davies²

Received: 19 March 2018 / Accepted: 25 September 2018 / Published online: 9 October 2018 © Springer-Verlag GmbH Germany, part of Springer Nature 2018

Abstract

Purpose While statins are used as first-line treatments for high-risk patients with hypercholesterolemia, statin monotherapy is often insufficient to achieve target low-density lipoprotein cholesterol (LDL-C) levels. Second-line treatment options include up-titration of statin dose, switching to a more potent statin, or combination therapy, e.g., with ezetimibe. The aim of this study was to evaluate the efficacy of adding ezetimibe to simvastatin, atorvastatin, or rosuvastatin monotherapy versus doubling the dosage or switching to a higher-potency statin in a population of patients with hypocholesterolemia at high risk of cardiovascular disease (CVD) and who had been previously treated with a statin.

Methods A systematic literature search was performed and evidence bases were established for populations of atorvastatin-, simvastatin-, and rosuvastatin-experienced patients using eligible randomized controlled trials (RCTs). Based on the available data, we constructed networks of evidence and conducted a Bayesian network meta-analysis (NMA) within each statin population. The primary outcome of interest was percent change from baseline in LDL-C. Changes in total cholesterol were explored as a secondary outcome.

Findings Across all patient populations, 35 RCTs were identified and included in the evidence base. Among patients on simvastatin therapy, the addition of ezetimibe resulted in a mean difference (MD) in LDL-C of -13.62% (95% CrI -19.99, -6.91; see table below) compared to doubling the starting dose of simvastatin. In the population of patients on atorvastatin therapy, the addition of ezetimibe resulted in an MD in LDL-C of -14.71% (95% CrI -16.46, -12.95) compared to doubling the starting dose of atorvastatin resulted in an MD in LDL-C of -14.71% (95% CrI -16.46, -12.95) compared to doubling the starting resulted in an MD in LDL-C of -14.96% (95% CrI -17.79, -12.11), compared to doubling the starting rosuvastatin dose. Similar trends were observed for changes in total cholesterol.

Implications Given the available data, the addition of ezetimibe to ongoing simvastatin, atorvastatin, or rosuvastatin mono-therapy offers greater reduction in LDL-C among patients at high risk of CVD compared to doubling the initial statin dose.

Keywords Network meta-analysis · Cholesterol · Statins · Ezetimibe

Maria Lorenzi maria.lorenzi@precisionxtract.com

Baishali Ambegaonkar baishali_ambegaonkar@merck.com

Carl A. Baxter carl.baxter2@merck.com

Jeroen Jansen jeroen.jansen@precisionxtract.com

Michael J. Zoratti mzoratti@precisionxtract.com Glenn Davies glenn_davies@merck.com

- ¹ Precision Health Economics, 250-555 12th St, Oakland, CA 94607, USA
- ² Merck & Co., Inc., Kenilworth, NJ, USA
- ³ MSD Ltd, Hoddesdon, UK

Introduction

Patients with cardiovascular disease (CVD), the most common form being coronary heart disease (CHD), are at high risk of events such as myocardial infarction, angina, and stroke. Risk status may be defined according to the American College of Cardiology (ACC), the American Heart Association (AHA), and the European Society of Cardiology (ESC) which consider patients with CHD or CHD risk equivalents as high risk [1, 2]. To reduce lipid levels, these high-risk patients are commonly managed with statins as a first-line treatment [1–5]. Many of these patients, however, do not reach low-density lipoprotein cholesterol (LDL-C) goals with statin monotherapy alone and may require titration to higher statin doses, switching to a more potent statin, or use of combination lipid-lowering therapy, such as ezetimibe and PCSK9 inhibitors [1, 3–11].

To date, no single head-to-head randomized controlled trial (RCT) has been conducted to evaluate additional treatment options in high-risk patients on existing statin therapy. When RCT evidence is available comparing subsets of treatments within the larger patient population framework, it is possible to propose a network of connected evidence. The results of these trials can then be synthesized by means of a network meta-analysis (NMA). Conceptually, the NMA pools the results of trials on a single intervention and uses multiple pairwise comparisons to estimate the relative treatment effects of all interventions included in the network of evidence. Thus, relative efficacy can be estimated between interventions for which no head-to-head RCT evidence currently exists.

Previous systematic reviews and meta-analyses have also analyzed the efficacy of ezetimibe as a supplementary treatment to statin monotherapy. A 2007 meta-analysis of five studies compared ezetimibe as an addition to a statin versus placebo in addition to a statin; results suggested that the addition of ezetimibe to ongoing statin therapy lowered LDL-C significantly more in patients who were not at LDL-C goal on previous treatment compared with those adhering only to statin monotherapy [12]. A 2011 systematic review and meta-analysis of 13 studies analyzed the LDL-C reduction of ezetimibe in combination with a statin versus doubling of statin dose; these results also suggested that ezetimibe as an add-on treatment was significantly more effective in lipid lowering than doubling of statin [13]. While a 2012 analysis looked at ezetimibe plus statin versus different statin monotherapies, including switching to another statin, it was a pooled analysis designed to assess the factors that might affect a patient's response to lipid-altering therapy, rather than a systematic review and meta-analysis [14]. While this analysis suggested that patient characteristics had a limited influence on the lowering of LDL-C, it also did not examine clinical outcomes.

The LDL-C-lowering efficacy of ezetimibe in combination with statin therapy has not yet been reviewed simultaneously alongside two different statin monotherapies (doubling statin dose or switching to higher-potency statin). The purpose of this study, therefore, was to evaluate, through an NMA, the efficacy of adding ezetimibe to existing simvastatin, atorvastatin, or rosuvastatin therapy compared to doubling the statin dose or switching to a higher-potency dose of another statin in patients with hypocholesterolemia and at high risk of CVD. The evidence was based on RCTs identified by means of a systematic literature review.

Methods

Literature search and eligibility criteria

MEDLINE, EMBASE, and the Cochrane Register of Controlled Trials (CENTRAL) were systematically searched in May 2014 to identify RCTs evaluating changes in LDL-C and total cholesterol in patients with hypercholesterolemia and high or very high CVD risk, previously treated with atorvastatin, rosuvastatin, or simvastatin monotherapy. Studies evaluating combination ezetimibe and statin therapy, with either simvastatin, atorvastatin, or rosuvastatin, were considered eligible for inclusion. Placebo was included as a valid comparator. Only studies published in English after 1990 were considered. We excluded crossover or titration studies if outcomes were only reported at study end, but included these studies if outcomes were reported at the time of titration or crossover. Search strategies are presented in Appendix 1.

Data extraction and outcomes

Two researchers, independently and in duplicate, screened all abstracts to ascertain whether they met predefined inclusion criteria. Abstracts that either met inclusion criteria or for which decisions were unclear were evaluated at the full text level.

From the final set of included studies, details on study design, patient baseline characteristics (e.g., age, sex, weight, comorbidities), interventions, and percent change from baseline (CFB) in LDL-C and total cholesterol were extracted. Relative to patients' previous treatment, either pre-enrollment or as part of a trial run-in period, trial arms were classified as maintaining, increasing, switching, or adding new treatments. Potency relationships between statins were classified according to the clinical guidelines published by the National Institute for Clinical Excellence (NICE), presented in Appendix 2 [15]. The primary outcome of interest was the percent CFB in LDL-C, with CFB in total cholesterol explored as a secondary outcome. Safety outcomes were not considered in the current analysis.

Statistical analyses

A Bayesian NMA was used to synthesize the results of the included studies, with the purpose of estimating the relative treatment effects for each intervention represented in the evidence base with respect to CFB in LDL-C and total cholesterol. This statistical approach combines both direct and indirect evidence to estimate the relative treatment effects between each intervention in the network, while weighting trials according to sample size [16]. Inconsistency between direct and indirect evidence in the network was evaluated using edge splitting, with three-sided loops evaluated according to the Bucher test [17]. To estimate these effects for the continuous outcomes of interest, a model with a normal likelihood and identity link was used.

To not influence the observed results by the prior distribution, non-informative priors were used (d_{AK} normal(0,10000) for (pooled) treatment effects with NMA models, and d_{XY} normal(0,10000) for (pooled) treatment effects with independent-means models; σ uniform(0, *u*) for betweenstudy heterogeneity with *u* set at five times the range of observed treatment effects across studies included in the NMA, and μ_{jb} normal(0,10000) for nuisance parameters of the models).

Both fixed and random effects models were fitted to the data using Bayesian Markov chain Monte Carlo methods and were evaluated according to the deviance information criteria (DIC), a measure of model fit [18]. A more complex model will generally be a better fit to the data and will result in a smaller residual deviance. Thus, the model with the lowest DIC is preferred.

All analyses were performed using R version 3.0.3 (http:// www.r-project.org/) and OpenBUGS version 3.2.3 (Open-BUGS Project Management Group).

For each outcome, we presented mean differences and 95% credible intervals (CrI) from the posterior distribution of relative treatment effects for all interventions relative to each other in a cross table. The use of non-informative priors allowed the 95% CrI to be interpreted similarly to the 95% confidence interval of the frequentist framework. Modeled outcomes, which apply the relative treatment effect for each intervention to an anchor comparator, were also presented, where each bar represents the estimated CFB and whiskers represent the corresponding 95% CrI. As each CrI reflects both uncertainty in the estimation of the effect of the anchor comparator as well as the relative treatment effect, these figures should not be used for comparative purposes. For all analyses, the anchor comparator was doubling the existing statin therapy.

Results

Study identification and selection

The systematic search of the clinical literature databases returned 2,960 citations. After duplicate abstract screening, 691 citations were selected for full text review. The final review resulted in 37 publications [19–48] being selected, describing 35 RCTs. The flow of information through the screening process is shown in Fig. 1. An overview of the baseline patient characteristics of the included studies is presented in Appendix 3.

Evidence base and results of NMA, by population

Simvastatin-experienced patients

Thirteen RCTs [19–31] were identified evaluating outcomes in patients previously treated with simvastatin therapy. Most of the included trials specified treatment durations of 6 or 8 weeks, though two trials [20, 23] followed patients for 16 weeks. Trial inclusion criteria differed with respect to minimum required LDL-C levels as well as CHD risk requirements, with many trials specifying documented CHD and others specifying a presence of risk factors for developing CHD, such as diabetes or hypertension. Patients with liver disease, renal disease, or recent cardiovascular events were excluded in most trials. Patient baseline characteristics were consistent across trials with respect to mean age and BMI, though some variation was observed in the proportions of males, smokers, and patients with hypertension. Baseline LDL-C varied from 91 to 169 mg/dL and total cholesterol varied from 154 to 253 mg/dL.

All 13 RCTs (N = 4535) reported CFB outcomes for LDL-C (Fig. 2a). The results of the NMA are presented in Table 1 and modeled outcomes are presented in Fig. 3a. All interventions were more effective in lowering LDL-C relative to maintaining the baseline simvastatin dose. The addition of ezetimibe to simvastatin was significantly more efficacious than doubling the simvastatin dose (MD – 13.62%, CrI: – 19.99, – 6.91) or switching to a higher-potency dose of rosuvastatin (MD – 12.03%, CrI: – 19.37, – 4.73). There was no statistical difference between the addition of ezetimibe and a quadruple dose of the base simvastatin or switching to a higher-potency dose of atorvastatin.

Changes in total cholesterol were reported by 11 RCTs (N=3458), as presented in Appendix 4. All interventions, with the exception of doubling simvastatin, significantly lowered total cholesterol relative to maintaining the baseline dose. The addition of ezetimibe lowered total cholesterol relative to doubling the base simvastatin dose (MD – 8.43%, CrI – 16.01, – 0.73) and switching to a higher-potency dose

Fig. 1 Flow of information

of rosuvastatin (MD - 8.79%, CrI - 17.08, - 0.84). No statistically important difference was found between the addition of ezetimibe and a quadruple dose of simvastatin or switching to a higher-potency dose of atorvastatin.

Atorvastatin-experienced patients

We identified 16 RCTs reporting outcomes for patients previously treated with atorvastatin [20, 25, 27, 29, 32–45]. One trial, however, did not include any study arms that could be incorporated into the network of evidence [32]. There was some variation in the baseline dose of atorvastatin, though the majority of trials included patients previously treated

Fig. 2 Network diagrams of evidence for change from baseline in LDL-C. **a** Simvastatin experienced; **b** Atorvastatin experienced; **c** Rosuvastatin experienced. *HP* higher potency; *LP* lower potency; *EP*

equal potency; *SIM* simvastatin; *RO* rosuvastatin; *AT* atorvastatin; *EZ* ezetimibe. Doses in brackets indicate the baseline or run-in statin dose

with 10 mg of atorvastatin. Most studies specified treatment durations between 6 and 12 weeks, though a single study only followed patients for 4 weeks [43]. There was inconsistency with respect to exclusion criteria for patients with liver disease, kidney disease, or diabetes. Baseline characteristics were comparable across study arms with respect to mean age and BMI, though there was variation with respect to the proportion of males, smokers, and mean LDL-C (82–187 mg/dL) and mean total cholesterol (160–264 mg/ dL) at enrollment.

Sixteen RCTs (N=7167) reported mean CFB in LDL-C in atorvastatin-experienced patients (Fig. 2b). The results of the NMA are presented in Table 2, with modeled outcomes available in Fig. 3b. All interventions significantly

lowered LDL-C relative to maintaining the baseline atorvastatin dose. The addition of ezetimibe to atorvastatin significantly lowered LDL-C relative to doubling the base atorvastatin dose (MD – 14.71%, CrI – 16.46, – 12.95) or switching to an equal- or higher-potency dose of rosuvastatin (MD – 15.78%, CrI – 19.21, – 12.45). No statistically meaningful differences were found between the fixed-dose and loose combination of simvastatin and ezetimibe. Adding ezetimibe to atorvastatin produced similar reductions in LDL-C as switching to lower-potency simvastatin and adding ezetimibe.

Changes in total cholesterol were reported by 14 RCTs (N=5775), as presented in Appendix 4. All interventions, with the exception of switching to equal potency

Double	13.62	23.38	-9.46	12.62	6.81	1.60
simvastatin	(6.91, 19.99)	(10.34, 35.81)	(-18.04, -1.24)	(-2.96, 27.49)	(-3.07, 16.51)	(-8.30, 11.33)
-13.62	Add ezetimibe	9.74	-23.07	-1.01	-6.80	-12.03
(-19.99, -6.91)		(-1.39, 20.66)	(-28.27, -17.91)	(-14.79, 12.55)	(-14.15, 0.68)	(-19.37, -4.73)
-23.38 (-35.81, -10.34)	-9.74 (-20.66, 1.39)	Double simvastatin + add ezetimibe	-32.82 (-42.54, -23.04)	-10.78 (-28.38, 6.80)	-16.56 (-25.83, -7.02)	-21.78 (-31.08, -12.47)
9.46	23.07	32.82	Maintain	22.09	16.30	11.06
(1.24, 18.04)	(17.91, 28.27)	(23.04, 42.54)	simvastatin	(7.39, 36.51)	(11.06, 21.64)	(5.92, 16.15)
-12.62	1.01	10.78	-22.09	Quadruple	-5.79	-11.00
(-27.49, 2.96)	(-12.55, 14.79)	(-6.80, 28.38)	(-36.51, -7.39)	simvastatin	(-21.13, 9.98)	(-26.45, 4.63)
-6.81	6.80	16.56	-16.30	5.79	Switch to HP	-5.25
(-16.51, 3.07)	(-0.68, 14.15)	(7.02, 25.83)	(-21.64, -11.06)	(-9.98, 21.13)	atorvastatin	(-11.72, 1.13)
-1.60	12.03	21.78	-11.06	11.00	5.25	Switch to HP
(-11.33, 8.30)	(4.73, 19.37)	(12.47, 31.08)	(-16.15, -5.92)	(-4.63, 26.45)	(-1.13, 11.72)	rosuvastatin

Table 1 Mean differences in mean percent change from baseline in LDL-C among simvastatin-experienced patients from random-effects network meta-analysis

rosuvastatin, lowered total cholesterol relative to maintaining the baseline atorvastatin dose. The addition of ezetimibe was statistically more efficacious in lowering total cholesterol than either doubling the atorvastatin dose (MD -9.41%, CrI: -10.89, -7.92) or switching to a higher-potency dose of rosuvastatin (MD -11.61%, CrI: -15.19, -7.88).

Rosuvastatin-experienced patients

Five trials investigated patients currently treated with rosuvastatin [34, 42, 46–48]. Four trials reported patient outcomes after 12 weeks, with a single trial [46] reporting outcomes after 6 weeks. Four trials specified minimum LDL-C levels of 100 mg/dL, with one study each specifying minimums of 70 mg/dL [48] and 80 mg/dL [47]. These trials were well matched in terms of mean age, BMI, and proportion of males, though there was more variability in the proportion of patients with diabetes. Baseline lipid levels were relatively consistent across trials, though baseline mean LDL-C was below 100 mg/dL in one trial [48].

All five RCTs (N = 1074) were included in the network of evidence for LDL-C (Fig. 2c). The results of the fixed-effects

NMA are presented in Table 3, with modeled outcomes in Fig. 3c. A fixed-effects model was applied as there were too few studies to inform the estimate of between-study heterogeneity. No study included a treatment arm where patients maintained their baseline rosuvastatin dose. All interventions significantly lowered LDL-C relative to doubling the base rosuvastatin dose. The addition of ezetimibe to rosuvastatin significantly lowered LDL-C relative to doubling the base rosuvastatin dose (MD – 14.96%, CrI: – 17.79, – 12.11). The addition of ezetimibe was not statistically different from switching to a quadruple dose of base rosuvastatin.

Four RCTs (N=999) described changes in the mean percent CFB in total cholesterol, as presented in Appendix 4. The addition of ezetimibe to either the base dose of rosuvastatin or to a switch to an equipotent dose of atorvastatin with ezetimibe was found to significantly lower total cholesterol relative to doubling the base rosuvastatin dose. No statistically important difference was observed between the addition of ezetimibe and switching to a quadruple dose of rosuvastatin.

Each cell represents the comparison (mean difference and 95% CrI) of the row treatment versus the column treatment. All bolded values are statistically meaningful at the 0.05 significance level. DIC 59.7; deviance 30.86; SD 4.35 *HP* higher potency

Fig. 3 Modeled outcomes for change from baseline in LDL-C. *HP* higher potency, *LP* lower potency, *EP* equal potency, *SIM* simvastatin, *RO* rosuvastatin, *AT* atorvastatin, *EZ* ezetimibe

Double	14.71	-9.78	-6.25	-1.07	13.25	15.00
atorvastatin	(12.95, 16.46)	(-13.15, -6.64)	(-10.58, -1.99)	(-4.99, 2.68)	(9.53, 17.19)	(8.35, 21.42)
-14.71	Add ezetimibe	-24.50	-20.95	-15.78	-1.48	0.30
(-16.46, -12.95)		(-27.30, -21.86)	(-24.93, -17.09)	(-19.21, -12.45)	(-5.54, 2.88)	(-6.54, 6.89)
9.78	24.50	Maintain	3.56	8.72	23.04	24.85
(6.64, 13.15)	(21.86, 27.30)	atorvastatin	(0.75, 6.43)	(6.71, 10.81)	(18.20, 28.29)	(17.41, 31.91)
6.25	20.95	-3.56	switch to EP	5.17	19.50	21.30
(1.99, 10.58)	(17.09, 24.93)	(-6.43, -0.75)	rosuvastatin	(2.04, 8.29)	(13.85, 25.40)	(13.22, 28.84)
1.07	15.78	-8.72	-5.17	Switch to HP	14.33	16.14
(-2.68, 4.99)	(12.45, 19.21)	(-10.81, -6.71)	(-8.29, -2.04)	rosuvastatin	(9.09, 19.97)	(8.41, 23.44)
-13.25 (-17.19, -9.53)	1.48 (-2.88, 5.54)	-23.04 (-28.29, -18.20)	-19.50 (-25.40, -13.85)	-14.33 (-19.97, -9.09)	switch to LP simvastatin + add ezetimibe – FD	1.75 (-6.25, 9.17)
-15.00 (-21.42, -8.35)	-0.30 (-6.89, 6.54)	-24.85 (-31.91, -17.41)	-21.30 (-28.84, -13.22)	-16.14 (-23.44, -8.41)	-1.75 (-9.17, 6.25)	switch to LP simvastatin + add ezetimibe – loose

Table 2 Mean differences in mean percent change from baseline in LDL-C among atorvastatin-experienced patients from random-effects network meta-analysis

Each cell represents the comparison (mean difference and 95% CrI) of the row treatment versus the column treatment. All bolded values are statistically meaningful at the 0.05 significance level. DIC 67.96; deviance 39.12; SD 1.26

EP equal potency, HP higher potency, LP lower potency, FD fixed dose

Table 3 Mean differences in mean percent change from baseline in LDL-C among rosuvastatin-experienced patients from fixed-effects network meta-analysis

Doublo rosuvastatin	14.96	12.91	9.61
Double losuvastatili	(12.11, 17.79)	(1.36, 24.47)	(6.16, 12.99)
-14.96	Add anotimika	-2.03	-5.36
(-17.79, -12.11)	Add ezetimide	(-13.33, 9.18)	(-9.82, -0.87)
-12.91	2.03	Quadrumla resurrestation	-3.31
(-24.47, -1.36)	(-9.18, 13.33)	Quadruple rosuvastatin	(-15.39, 8.77)
-9.61	5.36	3.31	switch to EP atorvastatin +
(-12.99, -6.16)	(0.87, 9.82)	(-8.77, 15.39)	add ezetimibe

Each cell represents the comparison (mean difference and 95% CrI) of the row treatment versus the column treatment. All bolded values are statistically meaningful at the 0.05 significance level. DIC 23.83; deviance 14.82

EP equal potency

Discussion

The purpose of this study was to evaluate the relative efficacy of adding ezetimibe to current statin treatment, in terms of lowering LDL-C and total cholesterol, compared to doubling the statin dose or switching to a higher-potency dose of another statin in patients previously treated with simvastatin, atorvastatin, or rosuvastatin. This objective was addressed through an NMA, which simultaneously estimated the relative treatment effect for all interventions in a network of evidence. Treatment regimens were classified according to their relationship (switch, augmentation, equipotency) to prior statin using the NICE statin conversion table; it should be noted that the FDA uses a different conversion table. In all patient populations, the addition of ezetimibe resulted in a statistically larger reduction in LDL-C than doubling the prior statin dose. Among patients on simvastatin or atorvastatin, adding ezetimibe was more efficacious than switching to higher-potency rosuvastatin. In these populations, the addition of ezetimibe was similarly efficacious as quadrupling the statin dose; however, this regimen is not seen as an appropriate option for many patients. Similar results were found with respect to lowering of total cholesterol levels. It should be noted that in the simvastatin and atorvastatin populations, the percent reduction in LDL-C for doubling the prior statin was slightly larger than that predicted by the "rule of 6" [49]; for patients on simvastatin and atorvastatin, the reduction was 9.5% and 9.8%, respectively, although the CrI included 6% in the simvastatin population, so this result is still statistically consistent with the "rule of 6". The Cholesterol Treatment Trialists (CTT) group has described the relationship between lowering LDL-C and reducing major vascular events for statin therapy. In 2010 an updated meta-analysis, which included individual patient data from 170,000 patients in 26 RCTs, described a relationship between lowered LDL-C and a protective effect against vascular events [50]. Twenty-one trials compared statins to controls, with an additional 5 trials comparing higher-intensity to lower-intensity statin treatments. In the overall metaanalysis, a reduction in relative risk of 22% (95% CI 20, 24) was estimated for every 1.0 mmol/L reduction in LDL-C. The results also suggested that these reductions in vascular risk can be achieved safely even in patients who already have low LDL-C concentrations. In a pooled analysis of over 11,000 patients in 17 RCTs, similar results were found; adding ezetimibe resulted in a statistically meaningful reduction in LDL-C, with more than twice the percent change in LDL as doubling the dose of ongoing statin [51].

The recently published IMPROVE-IT trial [52] compared the combination of simvastatin and ezetimibe to simvastatin monotherapy in a population of 18,144 patients who had been recently hospitalized for acute coronary syndrome. Patients on combination therapy achieved a 0.43 mmol/L greater reduction in LDL-C than those on simvastatin monotherapy, signifying a 24% additional reduction in LDL-C in the combination group. The trial found an absolute risk difference of 2.0% (in favor of simvastatin plus ezetimibe) of a composite cardiovascular outcome (cardiovascular death, nonfatal myocardial infarction, unstable angina, or coronary revascularization); HR 0.936 (95% CI 0.89-0.99, p = 0.016). Utilizing similar methods as utilized in the CTT meta-analysis (with imputation for missing LDL-C values) to estimate the clinical benefit to a per mmol/L basis of LDL-C reduction with ezetimibe in IMPROVE-IT resulted in a hazard ratio (HR) of 0.80 [95% CI (0.68; 0.94)], which is consistent with the HR 0.78 (95% CI [0.76; 0.80], p < 0.0001) observed with stating in the meta-analysis performed by the CTT in 2010. These results further strengthen the evidence of the relationship between absolute reduction in LDL-C levels through up-regulating LDL receptors and lowering of cardiovascular risk beyond therapy with statins

alone. The recent ACC consensus statement [53] further supports consideration of the addition of ezetimibe to statin therapy, given its benefits in reduction of cardiovascular outcomes and demonstrated safety profile.

The evidence supporting the efficacy of ezetimibe in combination with a statin to further lower LDL-C is important given the number of patients that do not reach the recommended LDL-C values. The Dyslipidemia International Study (DYSIS) II was an observational, cross-sectional study conducted in 21 countries in Asia/Pacific, Europe, and Middle East/Africa in 2012-2014 that evaluated lipid-lowering treatment and LDL-C goal attainment in two distinct cohorts: patients who survive an ACS event and in patients with a documented history of stable CHD. In the global ACS cohort, 24.8% of patients achieved an LDL-C < 70 mg/dl at admission for their ACS event and 34.4% attained the same goal at 4 month follow-up; at follow-up 87% received statin monotherapy with a mean atorvastatin equivalent dose of 32 mg/day. In the global CHD cohort, 30.6% of patients achieved an LDL-C < 70 mg/dl; 82% received statin monotherapy with a mean atorvastatin equivalent dose of 25 mg/ day. These data indicate that either the statin can be intensified (same dose or switch) or, if a larger decrease in LDL-C is required, ezetimibe can be used in combination with a statin to ensure that more high-risk patients reach the recommended LDL-C values to prevent CV events.

The results of the current study were based on clinical evidence identified through an exhaustive, systematic review of the literature. While the timing of the search precluded the addition of IMPROVE-IT, the results of the current analysis are in line with the IMPROVE-IT study and serve to reinforce the findings of that study. The estimation of relative treatment effects through an NMA is an established methodology and is accepted by numerous health technology assessment agencies worldwide. Extensive validation of NMA models was also performed to investigate the possible sources of heterogeneity and inconsistency in the network of evidence. Despite this, there are some limitations to this analysis. Safety outcomes were not considered, as the purpose of the current study was restricted to determining the relative efficacy. Relatively few studies were identified in rosuvastatin-experienced patients, so these results must be interpreted with some caution. Some inconsistencies were observed between patient baseline characteristics across study arms in the atorvastatin- and simvastatin-experienced trials, such as in the proportion of males, smokers, and patients with hypertension. Some differences were also observed in baseline lipid levels of some study arms. Trials in rosuvastatin-experienced patients were more consistent, though there was some variation in the proportion of patients with diabetes. It is unclear whether these differences impacted outcome estimates. Future studies may investigate

the impact of these differences through a meta-regression NMA approach.

Conclusion

Through a systematic search of the literature, we identified trials in high-risk patients previously treated with simvastatin, atorvastatin, and rosuvastatin, and evaluated CFB in LDL-C and total cholesterol for alternative treatment options. Regardless of the base statin, the addition of ezetimibe resulted in a statistically larger reduction in LDL-C compared to doubling the prior statin dose or switching to higher-potency rosuvastatin. Given the proven LDL-C lowering and CV benefit provided by ezetimibe, it remains an important option to enable more patients to reach the recommended LDL-C values and prevent CV events.

Appendix 1: Search strategies.

A comprehensive systematic search of the literature was conducted of Medline, EMBASE, and Cochrane Central Register of Controlled Trials databases with a pre-specified search strategy.

The combined search strategy for Medline and EMBASE using OVID is presented as follows:

- 1. randomized controlled trial.pt.;
- (random\$ or placebo\$ or single blind\$ or double blind\$ or triple blind\$).ti,ab.;
- 3. (retraction of publication or retracted publication).pt.;
- 4. 1 or 2 or 3;
- 5. (animals not humans).sh.;
- ((comment or editorial or meta-analysis or practiceguideline or review or letter or journal correspondence) not "randomized controlled trial").pt.;
- (random sampl\$ or random digit\$ or random effect\$ or random survey or random regression).ti,ab. not "randomized controlled trial".pt.;
- 8. 5 or 6 or 7;
- 9. 4 not 8;
- 10. (random\$ or placebo\$ or single blind\$ or double blind\$ or triple blind\$).ti,ab.;
- 11. RETRACTED ARTICLE/;
- 12. 10 or 11;
- 13. (animal\$ not human\$).sh,hw.;
- 14. (book or conference paper or editorial or letter or review).pt. not exp randomized controlled trial/;

- 15. (random sampl\$ or random digit\$ or random effect\$ or random survey or random regression).ti,ab. not exp randomized controlled trial/;
- 16. 13 or 14 or 15;
- 17. 12 not 16;
- 18. 9 or 17;
- 19. (cholesterol OR lipid OR hypercholesterolaemia OR hypercholesterolemia OR hyperlipidaemia OR hyperlipidemia OR dyslipidaemia OR dyslipidemia).ti.ab
- 20. (statin or simvastatin or atorvastatin or rosuvastatin or ezetimibe).ti,ab.;
- 21. 18 and 19 and 20;
- 22. limit 21 to human;
- 23. remove duplicates from 22;
- 24. limit 23 to yr="1990-Current".

.pt. denotes a publication type term;

.ab. denotes a word in the abstract;

.sh. denotes a medical subject heading (MeSH) term;

.ti. denotes a word in the title.

The following search strategy was be used for the Cochrane Central Register of Controlled Trials (clinical trials):

"hyperlipidemia" OR "hypercholesterolemia" OR "hypercholesterolaemia" OR "dyslipidemia" OR "dyslipidaemia" in all fields.

Appendix 2: Statin potency relationships according to the National Institute for Clinical Excellence (NICE)

Atorvastatin	Rosuvastatin	Simvastatin
_	-	10 mg
_	-	20 mg
10 mg	5 mg	40 mg
20 mg	10 mg	80 mg
40 mg	20 mg	_
80 mg	40 mg	_

This table was reproduced from the National Clinical Guideline Centre [15].

Appendix 3: Baseline characteristics

See Tables 4 and 5.

Table 4 Baseline patient char	acteristics of included studies,	arranged by prior statin								
Trial; prior treatment	Intervention	Absolute dose	Ν	Men (%)	Age	White (%)	Smokers (%)	Hypertension (%)	Diabetes (%)	BMI
Simvastatin trials										
Averna, 2010; simvastatin 20 mg	Maintain simvastatin + add ezetimibe	20 mg simvastatin + 10 mg ezetimibe	56	30 (54)	61 (8)	56 (100)		30 (54)	(0) (0)	27 (3)
	2x base simvastatin	40 mg simvastatin	56	32 (57)	62 (8)	56 (100)		28 (50)	0 (0)	26 (3)
MERCURY II; simvastatin	Maintain simvastatin	20 mg simvastatin	190	106 (56)	62 (10)	151 (80)			86 (45)	31 (6)
20 mg	Switch to HP rosuvastatin	10 mg rosuvastatin	183	102 (56)	62 (10)	146 (80)			83 (45)	31 (6)
MERCURY II; simvastatin	Maintain simvastatin	40 mg simvastatin	191	107 (56)	62 (10)	152 (80)			86 (45)	31 (6)
40 mg	Switch to HP rosuvastatin	20 mg rosuvastatin	189	105 (56)	62 (10)	150 (80)			85 (45)	31 (6)
LEAD; simvastatin 20 mg	Maintain simvastatin + add ezetimibe	20 mg simvastatin + 10 mg ezetimibe	37	21 (57)	65 (7)	37 (100)		30 (81)	37 (100)	29 (4)
	2x Base simvastatin	40 mg simvastatin	50	38 (76)	64 (6)	50 (100)		32 (64)	50 (100)	28 (4)
Brohet, 2005; simvastatin 10 mg or 20 mg	Maintain simvastatin + add ezetimibe	10 or 20 mg simvasta- tin + 10 mg ezetimibe	208	145 (70)	64 (11)					27 (4)
	Maintain simvastatin + add placebo	10 or 20 mg simvastatin	210	158 (75)	63 (10)					27 (4)
IN-PRACTICE; simvastatin 20 mg	2x Base simvastatin + add ezetimibe	40 mg simvastatin + 10 mg ezetimibe	261	160 (61)	65 (9)	254 (97)	44 (17)		42 (16)	
	Switch to HP atorvastatin	40 mg atorvastatin	263	185 (70)	64 (8)	261 (99)	55 (21)		27 (10)	
STAT; simvastatin 40 mg	Maintain simvastatin	40 mg simvastatin	92	71 (77)	58 (10)		72 (78)	65 (71)		27 (4)
	Switch to HP atorvastatin	40 mg atorvastatin	91	75 (82)	58 (9)		79 (87)	63 (69)		28 (4)
EASE; simvastatin 10 mg or 20 mg or 40 mg or 80 mg	Maintain simvastatin + add ezetimibe	10, 20, 40, or 80 mg simvasta- tin + 10 mg ezetimibe	562	298 (53)	62 (11)	481 (82)			223 (38)	
	Maintain simvastatin	10, 20, 40, or 80 mg simvas- tatin	279	141 (51)	62 (12)	236 (81)			115 (39)	
Pesaro, 2012; simvastatin 20 mg	Maintain simvastatin + add ezetimibe	20 mg simvastatin + 10 mg ezetimibe	40	27 (68)	65 (9) ^a		5 (13)	36 (90)	16 (40)	29 (4)
	4x Base simvastatin	80 mg simvastatin	38	21 (55)	$62 (10)^{a}$		8 (23)	26 (68)	20 (53)	28 (3)
Rosen, 2013; simvastatin 20 mg	Maintain simvastatin + add ezetimibe	20 mg simvastatin + 10 mg ezetimibe	162	81 (50)	64 (9)				158 (100)	
	2x Base simvastatin	40 mg simvastatin	81	40 (49)	65 (8)				78 (100)	
ESD; simvastatin 40 mg	Maintain simvastatin + add ezetimibe	40 mg simvastatin + 10 mg ezetimibe	54	34 (63)	99		24 (45)		54 (100)	29 (4)
	Maintain simvastatin+add placebo	40 mg simvastatin	54	30 (56)	65		30 (56)		54 (100)	29 (4)
MERCURY I; simvastatin	Switch to HP rosuvastatin	10 mg rosuvastatin	277	156 (56)	62 (11)	275 (99)	197 (71)			28 (5)
20 mg	Maintain simvastatin	20 mg simvastatin	250	141 (56)	62 (11)	248 (99)	178 (71)			28 (5)
Van Dam, 2000; simvastatin	Maintain simvastatin	20 mg simvastatin	129	00 (70)	56 (12)		35 (28)	36 (29)		27 (4)
20 mg	Switch to HP atorvastatin	10 mg rosuvastatin	124	87 (70)	55 (12)		31 (26)	40 (33)		27 (4)
Van Dam, 2000; simvastatin	Maintain simvastatin	40 mg simvastatin	64	32 (50)	56 (10)		13 (20)	15 (23)		27 (4)
40 mg	Switch to HP atorvastatin	40 mg atorvastatin	61	40 (66)	54 (12)		10 (16)	18 (30)		27 (3)

🙆 Springer

Table 4 (continued)										
Trial; prior treatment	Intervention	Absolute dose	Ν	Men (%)	Age	White (%)	Smokers (%)	Hypertension (%)	Diabetes (%)	BMI
Zubaid, 2008; simvastatin 20 mg	Maintain simvastatin + add ezetimibe	20 mg simvastatin + 10 mg ezetimibe	60	52 (87)	55 (8)	60 (100)	8 (12)	29 (41)	21 (29)	26 (4)
	Maintain simvastatin	20 mg simvastatin	60	54 (90)	52 (8)	$60\ (100)$	3 (5)	30 (42)	26 (35)	27 (4)
Atorvastatin trials										
MERCURY II; atorvastatin	Maintain atorvastatin	10 mg atorvastatin	185	103 (56)	62 (10)	147 (80)			84 (45)	31 (6)
10 mg	Switch to HP rosuvastatin	10 mg rosuvastatin	191	107 (56)	62 (10)	152 (80)			86 (45)	31 (6)
MERCURY II; atorvastatin	Maintain atorvastatin	20 mg atorvastatin	186	104 (56)	62 (10)	148 (80)			84 (45)	31 (6)
20 mg	Switch to HP rosuvastatin	10 mg rosuvastatin	186	104 (56)	62 (10)	148 (80)			84 (45)	31 (6)
Barrios, 2005; atorvastatin 10 mg	Switch to LP simvastatin + add ezetimibe	20 mg simvastatin + 10 mg ezetimibe	221	141 (64)	64 (10)	205 (93)		141 (64)	59 (27)	29 (4)
	2x Base atorvastatin	20 mg atorvastatin	214	128 (60)	63 (10)	197 (92)		116 (54)	53 (25)	28 (4)
PACE; atorvastatin 20 mg	Maintain atorvastatin + add ezetimibe	20 mg atorvastatin + 10 mg ezetimibe	124	69 (56)	60 (11)	120 (97)			55 (44)	29 (5)
	2x Base atorvastatin	40 mg atorvastatin	126	63 (50)	58 (11)	122 (97)			57 (45)	30 (4)
Conard, 2008 (Protocol 079); atorvastatin 20 mg	Maintain atorvastatin+add ezetimibe	20 mg atorvastatin + 10 mg ezetimibe	98	58 (59)	56 (10)	58 (59)	32 (33)	89 (91)	0 (0)	
	2x Base atorvastatin	40 mg atorvastatin	98	49 (50)	58 (10)	60(61)	28 (29)	87 (89)	0 (0)	
Cruz-Fernandez, 2005 (Proto- cols 803 + 804); atorvastatin	Maintain atorvastatin + add ezetimibe	10 or 20 mg atorvasta- tin + 10 mg ezetimibe	220	153 (70)	63 (9)	219 (99)		127 (58)	38 (17)	28 (3)
10 mg or 20 mg	Maintain atorvastatin	10 or 20 mg atorvastatin	230	157 (68)	63 (10)	227 (99)		124 (54)	41 (18)	27 (4)
Hing Ling, 2012; atorvastatin 20 mg	Switch to LP simvastatin + add ezetimibe	40 mg simvastatin + 10 mg ezetimibe	120	63 (53)	59 (10)	89 (74)			42 (35)	
	2x Base atorvastatin	40 mg atorvastatin	130	65 (50)	60 (8)	69) (69)			45 (35)	
SUBARU; atorvastatin 10 mg	Maintain atorvastatin	10 mg atorvastatin	207	78 (38)	64 (10)	(0) (0)	61 (29)	155 (75)	134 (65)	
	Switch to EP rosuvastatin	5 mg rosuvastatin	208	95 (46)	67 (10)	(0) (0)	53 (25)	148 (71)	132 (63)	
Leiter, 2008; atorvastatin 40 mg	Maintain atorvastatin + add ezetimibe	40 mg atorvastatin + 10 mg ezetimibe	288	173 (60)	61 (10)	237 (82)		266 (92)	155 (54)	
	2x Base atorvastatin	80 mg atorvastatin	291	178 (61)	62 (9)	232 (80)		273 (94)	153 (53)	
ESSENTIAL; atorvastatin 10 mg	Maintain atorvastatin + add ezetimibe	10 mg atorvastatin + 10 mg ezetimibe	115	83 (72)	(6) (9)		20 (17)	90 (78)	42 (37)	24 (4)
	2x Base atorvastatin	20 mg atorvastatin	128	96 (75)	70 (10)		22 (17)	104 (81)	52 (41)	25 (4)
Okada, 2011; atorvastatin 10 mg	Maintain atorvastatin + add ezetimibe	10 mg atorvastatin + 10 mg ezetimibe	43	28 (65)	66 (8)		14 (33)	33 (77)	17 (40)	25 (3)
	2x Base atorvastatin	20 mg atorvastatin	35	29 (83)	65 (9)		11 (31)	27 (77)	19 (54)	25 (4)
Padhy, 2013; atorvastatin 10 mg	Maintain atorvastatin + add ezetimibe	10 mg atorvastatin + 10 mg ezetimibe	15	10 (67)	54 (2)		3 (20)	12 (80)	3 (20)	
	Maintain atorvastatin	10 mg atorvastatin	15	13 (87)	54 (3)		3 (20)	11 (73)	1(7)	
EASE; atorvastatin 10 mg or 20 mg or 40 mg or 80 mg	Maintain atorvastatin + add ezetimibe	10, 20, 40, or 80 mg atorvasta- tin + 10 mg ezetimibe	691	408 (53)	62 (11)	663 (82)			292 (38)	
	Maintain atorvastatin	10, 20, 40, or 80 mg atorvas- tatin	386	195 (51)	62 (12)	326 (81)			151 (39)	

Table 4 (continued)										
Trial; prior treatment	Intervention	Absolute dose	Ν	Men (%)	Age	White (%)	Smokers (%)	Hypertension (%)	Diabetes (%)	BMI
Rosen, 2013; atorvastatin 10 mg	Switch to LP simvastatin + add ezetimibe	20 mg simvastatin + 10 mg ezetimibe	160	80 (50)	64 (9)				160 (100)	
	2x Base atorvastatin	20 mg atorvastatin	81	40 (49)	65 (8)				81 (100)	
MERCURY I; atorvastatin 10	Switch to HP rosuvastatin	10 mg rosuvastatin	276	166 (60)	62 (10)	274 (99)	196 (71)		75 (27)	29 (13)
	Maintain atorvastatin	10 mg atorvastatin	240	144 (60)	62 (10)	239 (99)	171 (71)		65 (27)	29 (13)
MERCURY I; atorvastatin 20	Switch to EP rosuvastatin	5 mg rosuvastatin	293	173 (59)	62 (10)	289 (99)	208 (71)		80 (27)	28 (4)
	Switch to HP rosuvastatin	10 mg rosuvastatin	305	180 (59)	62 (10)	301 (99)	217 (71)		83 (27)	28 (4)
	Maintain atorvastatin	20 mg atorvastatin	299	177 (59)	62 (10)	295 (99)	213 (71)		81 (27)	28 (4)
Stein, 2004; atorvastatin 10 mg	Maintain atorvastatin + add ezetimibe	10 mg atorvastatin + 10 mg ezetimibe	305	159 (52)	53 (18–82) ^b	279 (91)	76 (25)	108 (35)	19 (6)	
	2x base atorvastatin	20 mg atorvastatin	316	171 (54)	52 (18–80) ^b	289 (91)	85 (27)	124 (39)	23 (7)	
Zieve, 2010; atorvastatin 10 mg	Maintain atorvastatin + add ezetimibe	10 mg atorvastatin + 10 mg ezetimibe	526	249 (47)	71 (5)	503 (96)			110 (21)	
	2x Base atorvastatin	20 mg atorvastatin	527	241 (46)	71 (5)	505 (96)			113 (21)	
Rosuvastatin trials										
ACTE; rosuvastatin 5 mg	Maintain rosuvastatin+add ezetimibe	5 mg rosuvastatin + 10 mg ezetimibe	66	64 (65)	61 (9)	66 (67)			25 (25)	30 (5)
	2x Base rosuvastatin	10 mg rosuvastatin	98	58 (59)	61 (10)	67 (68)			21 (21)	28 (5)
ACTE; rosuvastatin 10 mg	Maintain rosuvastatin+add ezetimibe	10 mg rosuvastatin + 10 mg ezetimibe	122	66 (54)	62 (9)	106 (87)			31 (25)	29 (5)
	2x Base rosuvastatin	20 mg rosuvastatin	121	84 (69)	61 (9)	99 (82)			25 (21)	30 (5)
PACE; rosuvastatin 10 mg	Switch to EP atorvastatin + add ezetimibe	20 mg atorvastatin + 10 mg ezetimibe	234	111 (47)	59 (10)	222 (95)			116 (50)	30 (5)
	2x Base rosuvastatin	20 mg rosuvastatin	206	107 (52)	58 (10)	196 (95)			92 (45)	29 (5)
Okada, 2011; rosuvastatin 2.5 mg	Maintain rosuvastatin + add ezetimibe	2.5 mg rosuvastatin + 10 mg ezetimibe	49	37 (76)	66 (11)		25 (51)	41 (84)	27 (55)	24 (3)
	2x Base rosuvastatin	5 mg rosuvastatin	38	26 (68)	68 (7)		15 (39)	27 (71)	18 (47)	25 (3)
Torimoto, 2013; rosuvastatin	2x Base rosuvastatin	5 mg rosuvastatin	36	16 (44)	63 (13)	0 (0)		23 (64)	36 (100)	27 (5)
2.5 mg	maintain rosuvastatin + add ezetimibe	2.5 mg rosuvastatin + 10 mg ezetimibe	39	24 (62)	66 (12)	0 (0)		28 (72)	39 (100)	25 (4)
Yamazaki, 2013; rosuvastatin	4x Base rosuvastatin	10 mg rosuvastatin	24	15 (63)	72 (8)	0 (0)	15 (63)	19 (79)	10 (42)	26 (3)
2.5 mg	maintain rosuvastatin + add ezetimibe	2.5 mg rosuvastatin + 10 mg ezetimibe	22	14 (64)	70 (10)	(0) (0)	11 (50)	17 (77)	8 (36)	24 (3)

ESD Ezetimibe and Simvastatin in Dyshipidemia of Diabetes, PACE primary hypercholesterolemia and high cardiovascular risk patients who are not adequately controlled with atorvastatin 10 mg: a comparison of the efficacy and safety of switching to coadministration ezetimibe and atorvastatin versus doubling the dose of atorvastatin or switching to rosuvastatin

BMI is expressed as mean (SD); age is measured in years, expressed as mean (SD) or median (Q1, Q3), unless otherwise noted

^aExpressed as median (SD)

^bExpressed as mean (min, max)

Table 5	Laboratory	measures	at baseline,	arranged	by	prior	statin
---------	------------	----------	--------------	----------	----	-------	--------

Trial; prior treatment	Intervention	N	Total choles- terol	LDL	HDL	Non-HDL	АроВ	Triglycerides	CRP
Simvastatin trials Averna, 2010; simvastatin	s Maintain simv- astatin + add	56	201 (23)	126 (16)	51 (11)			120 (48)	
20 mg	ezetimibe 2x Base simvas- tatin	56	202 (19)	128 (17)	49 (9)			124 (42)	
MERCURY II; simvasta-	Maintain simv- astatin	190	253 (31)	169 (26)	47 (10)	206 (30)	163 (26)	183 (66)	
tin 20 mg	Switch to HP rosuvastatin	183	253 (31)	169 (26)	47 (10)	206 (30)	163 (26)	183 (66)	
MERCURY II; simvasta-	Maintain simv- astatin	191	252 (32)	169 (28)	47 (11)	206 (33)	162 (26)	185 (68)	
tin 40 mg	Switch to HP rosuvastatin	189	252 (32)	169 (28)	47 (11)	206 (33)	162 (26)	185 (68)	
LEAD; simvastatin 20 mg	Maintain simv- astatin + add ezetimibe	37	201 (23) ^a	128 (19) ^a	46 (12) ^a			142 (62) ^c	
	2x Base simvas- tatin	50	197 (23) ^a	124 (19) ^a	43 (12) ^a			142 (62) ^c	
Brohet, 2005; simvastatin 10 mg or	Maintain simv- astatin + add ezetimibe	208	204 (22) ^a	122 (16) ^a	51 (12) ^a	153 (22) ^a	129 (19) ^b	137 (77) ^{c, f}	
20 mg	Maintain simv- astatin + add placebo	210	204 (21) ^a	123 (14) ^a	51 (12) ^a	152 (19) ^a	129 (17) ^b	136 (62) ^{c, f}	
IN-PRAC- TICE; simvastatin	2x Base simv- astatin + add ezetimibe	261	182 (19)	101 (16)	54 (12)			142 (62–337)	
40 mg	Switch to HP atorvastatin	263	182 (23)	101 (16)	54 (12)			133 (62–354)	
STAT; simvas- tatin 40 mg	Maintain simv- astatin	92	217 (36) ^a	138 (31) ^a	45 (13) ^a			167 (85) ^c	0.2 (0.1, 0.4)
	Switch to HP atorvastatin	91	221 (37) ^a	144 (32) ^a	45 (12) ^a			167 (74) ^c	0.2 (0.1, 0.4)
EASE; simvastatin 10 mg or	Maintain simv- astatin + add ezetimibe	586		129	48	162	129	151	0.2 ^d
20 mg or 40 mg or 80 mg	Maintain simv- astatin	293		129	49	163	130	151	0.2 ^d
Pesaro, 2012; simvastatin 20 mg	Maintain simv- astatin + add ezetimibe	40	175 (157, 195)	99 (89, 117)	42 (37, 48)		90 (80, 100) ^b	139 (108, 168)	0.2 (0.1, 0.4)
	4x Base simvas- tatin	38	171 (155, 212)	101 (85, 130)	45 (38, 50)		90 (70, 100) ^b	117 (85, 150)	0.2 (0.1, 0.6)
Rosen, 2013; simvastatin 20 mg	Maintain simv- astatin + add ezetimibe	162	180 (31)	99 (22)	50 (14)	129 (28)	102 (20)	139 (67)	0.2 (0.3)
	2x Base simvas- tatin	81	177 (27)	97 (21)	51 (12)	126 (26)	101 (19)	131 (61)	0.2 (0.3)
ESD; simvas- tatin 40 mg	Maintain simv- astatin + add ezetimibe	54	162 (36)	99 (31)	48 (11)		83 (22)	123 (95)	
	Maintain simv- astatin + add placebo	54	154 (30)	91 (28)	50 (12)		81 (23)	106 (65)	

Table 5 (continued)

Trial; prior treatment	Intervention	N	Total choles- terol	LDL	HDL	Non-HDL	АроВ	Triglycerides	CRP
MERCURY I; simvastatin	Switch to HP rosuvastatin	277	247 (34)	166 (29)	48 (12)			164 (63)	
20 mg	Maintain simv- astatin	250	248 (34)	165 (29)	49 (12)			171 (68)	
Van Dam, 2000;	Maintain simv- astatin	108	217 (31) ^a	139 (26) ^a	49 (11) ^a			150 (71) ^c	
simvastatin 20 mg	Switch to HP atorvastatin	107	215 (31) ^a	138 (27) ^a	49 (10) ^a			144 (66) ^c	
Van Dam, 2000;	Maintain simv- astatin	54	225 (31) ^a	145 (27) ^a	54 (12) ^a			129 (60) ^c	
simvastatin 40 mg	Switch to HP atorvastatin	55	220 (34) ^a	143 (27) ^a	51 (14) ^a			136 (66) ^c	
Zubaid, 2008; simvastatin 20 mg	Maintain simv- astatin + add ezetimibe	60	197 (3) ^e	127 (2) ^e	40 (1) ^e			145 (8) ^e	
	Maintain simv- astatin	60	202 (4) ^e	131 (3) ^e	43 (4) ^e			156 (8) ^e	
Atorvastatin trial	s								
MERCURY II; atorvasta-	Maintain atorv- astatin	185	253 (33)	169 (28)	47 (11)	206 (33)	161 (27)	184 (66)	
tin 10 mg	Switch to HP rosuvastatin	191	253 (33)	169 (28)	47 (11)	206 (33)	161 (27)	184 (66)	
MERCURY II; atorvasta-	Maintain atorv- astatin	186	251 (32)	168 (26)	47 (10)	204 (33)	160 (26)	181 (68)	
tin 20 mg	Switch to HP rosuvastatin	186	251 (32)	168 (26)	47 (10)	204 (33)	160 (26)	181 (68)	
Barrios, 2005; atorvastatin 10 mg	Switch to LP simvasta- tin + add ezetimibe	221	207 (23)	124 (18)	54 (12)	153 (21)	114 (16)	132 (61)	
	2x Base atorv- astatin	214	211 (23)	126 (19)	56 (14)	154 (23)	113 (16)	122 (65)	
PACE; atorvastatin 20 mg	Maintain ator- vastatin + add ezetimibe	124	202 (23)	119 (16)	51 (12)	151 (22)	102 (19)	144 (79)	0.2 (0.3) ^d
	2x Base atorv- astatin	126	203 (25)	121 (21)	52 (13)	151 (24)	103 (18)	141 (65)	0.2 (0.3) ^d
Conard, 2008 (Proto- col 079);	Maintain ator- vastatin + add ezetimibe	98	203 (25)	120 (20)	51 (12)	152 (24)	123 (23)	155 (72)	0.2 (0.3)
atorvastatin 20 mg	2x Base atorv- astatin	98	201 (22)	118 (17)	52 (12)	149 (22)	120 (21)	148 (77)	0.1 (0.2)
Cruz-Fernan- dez, 2005 (Protocols	Maintain ator- vastatin + add ezetimibe	220	206 (23)	124 (17)	52 (12)	154 (21)	129 (17)	137 (69)	
803 + 804); atorvastatin 10 mg or 20 mg	Maintain atorv- astatin	230	204 (23)	122 (16)	52 (12)	152 (21)	127 (18)	134 (69)	
Hing Ling, 2012; atorvastatin 20 mg	Switch to LP simvasta- tin + add ezetimibe	120	203 (21)	122 (17)	52 (13)	151 (20)	120 (16)	135 (67)	0.2 (0.3)
	2x Base atorv- astatin	130	199 (23)	119 (16)	51 (13)	147 (20)	117 (16)	132 (67)	0.2 (0.3)

 Table 5 (continued)

Trial; prior treatment	Intervention	N	Total choles- terol	LDL	HDL	Non-HDL	АроВ	Triglycerides	CRP
SUBARU; atorvastatin	Maintain atorv- astatin	207	192 (35)	109 (31)	60 (15)			131 (72)	0.2 (0.6) ^d
10 mg	Switch to EP rosuvastatin	207	186 (29)	103 (25)	61 (18)			129 (67)	0.1 (0.1) ^d
Leiter, 2008; atorvastatin 40 mg	Maintain ator- vastatin + add ezetimibe	288	165 (22)	89 (16)	48 (11)	117 (21)	101 (19)	131 (72)	0.2
-	2x Base atorv- astatin	291	165 (23)	90 (16)	47 (10)	118 (22)	102 (19)	136 (72)	0.2
ESSENTIAL; atorvastatin 10 mg	Maintain ator- vastatin + add ezetimibe	115	169 (22)	94 (17)	52 (12)			111 (36)	0.1 (0.2)
	2x Base atorv- astatin	128	167 (21)	95 (18)	51 (12)			106 (34)	0.1 (0.1)
Okada, 2011; atorvastatin 10 mg	Maintain ator- vastatin + add ezetimibe	43	199 (23)	121 (17)	53 (9)			133 (89, 157)	
	2x Base atorv- astatin	35	191 (20)	114 (15)	51 (9)			126 (88, 188)	
Padhy, 2013; atorvastatin 10 mg	Maintain ator- vastatin + add ezetimibe	15	225 (12) ^e	145 (11) ^e	44 (2) ^e			193 (18) ^e	0.5 (0.2, 0.8)
	Maintain atorv- astatin	15	192 (22) ^e	122 (5) ^e	44 (2) ^e			150 (15) ^e	0.1 (0.1, 0.5)
EASE; atorvastatin 10 mg or	Maintain ator- vastatin + add ezetimibe	808		129	48		129	151	0.2
20 mg or 40 mg or 80 mg	Maintain atorv- astatin	404		129	49		130	151	0.2
Rosen, 2013; atorvastatin 10 mg	Switch to LP simvasta- tin + add ezetimibe	160	180 (31)	99 (22)	50 (14)	129 (28)	102 (20)	139 (67)	0.2 (0.3)
	2x Base atorv- astatin	81	177 (27)	97 (21)	51 (12)	126 (26)	101 (19)	131 (61)	0.2 (0.3)
MERCURY I; atorvastatin	Switch to HP rosuvastatin	276	244 (33)	162 (27)	49 (13)			162 (61)	
10	Maintain atorv- astatin	240	242 (31)	163 (29)	49 (12)			160 (68)	
MERCURY I; atorvastatin	Switch to EP rosuvastatin	293	249 (34)	169 (31)	50 (11)			163 (65)	
20	Switch to HP rosuvastatin	305	251 (37)	167 (33)	48 (11)			167 (59)	
	Maintain atorv- astatin	299	248 (38)	167 (30)	50 (12)			159 (62)	
Stein, 2004; atorvastatin 10 mg	Maintain ator- vastatin + add ezetimibe	305	262 (3) ^e	186 (3) ^e	50 (1) ^e	212 (3) ^e		117 (4) ^e	
	2x Base atorv- astatin	316	264 (3) ^e	187 (3) ^e	50 (1) ^e	214 (3) ^e		119 (4) ^e	
Zieve, 2010; atorvastatin 10 mg	Maintain ator- vastatin + add ezetimibe	526	183 (32)	103 (28)	55 (14)	128 (31)	103 (23)	113 (54)	0.2
	2x Base atorv- astatin	527	183 (26)	101 (21)	55 (13)	127 (25)	102 (21)	116 (62)	0.2

Table 5 (continued)

Trial; prior treatment	Intervention	N	Total choles- terol	LDL	HDL	Non-HDL	АроВ	Triglycerides	CRP
Rosuvastatin tria	ls								
ACTE; rosuv- astatin 5 mg	Maintain rosu- vastatin + add ezetimibe	99	188 (29)	107 (23)	52 (15)	135 (27)	112 (22)	133 (80)	0.2 (0.3) ^d
	2x Base rosuv- astatin	98	182 (29)	102 (23)	48 (12)	134 (29)	109 (23)	143 (87)	0.2 (0.3) ^d
ACTE; rosuvastatin 10 mg	Maintain rosu- vastatin + add ezetimibe	122	183 (32)	101 (27)	54 (17)	129 (32)	107 (24)	131 (69)	0.2 (0.3) ^d
	2x Base rosuv- astatin	121	178 (31)	98 (25)	52 (13)	126 (33)	103 (24)	116 (73)	0.2 (0.2) ^d
PACE; rosuvastatin 10 mg	Switch to EP atorvasta- tin + add ezetimibe	234	204 (24)	119 (16)	53 (15)	151 (21)	102 (18)	150 (61)	0.2 (0.3) ^d
	2x Base rosuv- astatin	206	203 (23)	120 (17)	54 (13)	150 (21)	103 (18)	137 (73)	0.2 (0.3) ^d
Okada, 2011; rosuvastatin 2.5 mg	Maintain rosu- vastatin + add ezetimibe	49	201 (24)	120 (13)	51 (14)			123 (96, 172)	
	2x Base rosuv- astatin	38	198 (25)	120 (18)	50 (10)			134 (104, 171)	
Torimoto, 2013;	2x Base rosuv- astatin	36		112 (22)	56 (11)			147 (79)	
rosuvastatin 2.5 mg	Maintain rosu- vastatin + add ezetimibe	39		111 (26)	57 (16)			147 (71)	
Yamazaki, 2013;	4x Base rosuv- astatin	24	168 (17)	89 (13)	46 (12)			165 (79)	0.2 (0.2) ^d
rosuvastatin 2.5 mg	Maintain rosu- vastatin + add ezetimibe	22	164 (23)	84 (15)	50 (12)			149 (104)	0.3 (0.3) ^d

All estimates are in mg/dL and expressed as mean (SD) or median (Q1, Q3) unless otherwise noted

ESD Ezetimibe and Simvastatin in Dyslipidemia of Diabetes, *PACE* primary hypercholesterolemia and high cardiovascular risk patients who are not adequately controlled with atorvastatin 10 mg: a comparison of the efficacy and safety of switching to coadministration ezetimibe and atorvastatin versus doubling the dose of atorvastatin or switching to rosuvastatin, *LDL* low-density lipoprotein cholesterol, *HDL* high-density lipoprotein cholesterol, *Ron-HDL* non-high-density lipoprotein cholesterol, *CRP* C-reactive protein, *ApoB* apolipoprotein B

^aEstimates of total, LDL, HDL, and non-HDL cholesterol were converted from mmol/L to mg/dL by multiplying by 38.67

^bEstimate converted from g/L to mg/Dl

^cEstimates of triglycerides concentration were converted from mmol/L to mg/dL by multiplying by 88.57

^dEstimate converted from mg/L to mg/dL

^eEstimate expressed as mean (SEM)

^fExpressed as mean (min, max)

Appendix 4: Evidence base and results of NMA for total cholesterol

Presented here are the evidence bases and respective NMA results for the change from baseline in total cholesterol outcome, arranged by patient treatment experience.

See Figs. 4, 5 and Tables 6, 7 and 8.

Fig. 4 Network diagrams of evidence for change from baseline in total cholesterol. a Simvastatin experienced, b atorvastatin experienced, c rosuvastatin experienced. HP higher potency, LP lower

potency, *EP* equal potency, *SIM* simvastatin, *RO* rosuvastatin, *AT* atorvastatin, *EZ* ezetimibe. Doses in brackets indicate the baseline or run-in statin dose

Fig. 5 Modeled outcomes for change from baseline in total cholesterol. *HP* higher potency, *LP* lower potency, *EP* equal potency, *SIM* simvastatin, *RO* rosuvastatin, *AT* atorvastatin, *EZ* ezetimibe

Double	8.43	12.86	-8.46	8.46	4.34	$\begin{array}{c} -0.37 \\ (-11.68, 10.44) \end{array}$
simvastatin	(0.73, 16.01)	(-1.11, 26.47)	(-18.38, 1.06)	(-5.31, 21.88)	(-6.98, 15.25)	
-8.43	Add ezetimibe	4.42	-16.89	0.01	-4.07	-8.79
(-16.01, -0.73)		(-7.28, 16.06)	(-23.16, -10.89)	(-11.39, 11.24)	(-12.48, 3.97)	(-17.08, -0.84)
-12.86 (-26.47, 1.11)	-4.42 (-16.06, 7.28)	Double simvastatin + add ezetimibe	-21.30 (-31.23, -11.54)	-4.43 (-20.62, 11.90)	-8.52 (-18.10, 1.05)	-13.23 (-22.77, -3.79)
8.46	16.89	21.30	Maintain	16.88	12.81	8.10
(-1.06, 18.38)	(10.89, 23.16)	(11.54, 31.23)	simvastatin	(4.00, 29.80)	(7.35, 18.24)	(2.77, 13.33)
-8.46	-0.01	4.43	-16.88	Quadruple	-4.08	-8.80
(-21.88, 5.31)	(-11.24, 11.39)	(-11.90, 20.62)	(-29.80, -4.00)	simvastatin	(-18.10, 9.85)	(-22.85, 5.10)
-4.34	4.07	8.52	-12.81	4.08	Switch to HP	-4.73
(-15.25, 6.98)	(-3.97, 12.48)	(-1.05, 18.10)	(-18.24, -7.35)	(-9.85, 18.10)	atorvastatin	(-11.37, 1.89)
0.37	8.79	13.23	-8.10	8.80	4.73	Switch to HP
(-10.44, 11.68)	(0.84, 17.08)	(3.79, 22.77)	(-13.33, -2.77)	(-5.10, 22.85)	(-1.89, 11.37)	rosuvastatin

 Table 6 Mean differences in mean percent change from baseline in total cholesterol among simvastatin-experienced patients from randomeffects network meta-analysis

Each cell represents the comparison (mean difference and 95% CrI) of the row treatment versus the column treatment. All bolded values are statistically meaningful at the 0.05 significance level. DIC 52.92; deviance 26.85; SD 4.69

HP higher potency

Double	9.41	-7.90	-6.72	-2.23	7.26	8.32
atorvastatin	(7.92, 10.89)	(-11.29, -4.26)	(-10.84, -2.31)	(-6.02, 1.82)	(3.66, 10.92)	(2.66, 13.72)
-9.41	Add ezetimibe	-17.29	-16.11	-11.61	-2.15	-1.08
(-10.89, -7.92)		(-20.42, -13.99)	(-19.99, -11.99)	(-15.19, -7.88)	(-6.07, 1.78)	(-6.98, 4.51)
7.90	17.29	Maintain	1.20	5.69	15.20	16.16
(4.26, 11.29)	(13.99, 20.42)	atorvastatin	(-1.21, 3.58)	(3.93, 7.41)	(9.98, 20.08)	(9.45, 22.66)
6.72	16.11	-1.20	switch to EP	4.50	14.00	14.98
(2.31, 10.84)	(11.99, 19.99)	(-3.58, 1.21)	rosuvastatin	(1.84, 7.13)	(8.27, 19.37)	(7.96, 21.93)
2.23	11.61	-5.69	-4.50	Switch to HP	9.51	10.50
(-1.82, 6.02)	(7.88, 15.19)	(-7.41, -3.93)	(-7.13, -1.84)	rosuvastatin	(4.01, 14.66)	(3.54, 17.23)
-7.26 (-10.92, -3.66)	2.15 (-1.78, 6.07)	-15.20 (-20.08, -9.98)	-14.00 (-19.37, -8.27)	-9.51 (-14.66, -4.01)	switch to LP simvastatin + add ezetimibe – FD	1.01 (-5.63, 7.58)
-8.32 (-13.72, -2.66)	1.08 (-4.51, 6.98)	-16.16 (-22.66, -9.45)	-14.98 (-21.93, -7.96)	-10.50 (-17.23, -3.54)	-1.01 (-7.58, 5.63)	switch to LP simvastatin + add ezetimibe – loose

 Table 7
 Mean differences in mean percent change from baseline in total cholesterol among atorvastatin-experienced patients from randomeffects network meta-analysis

Each cell represents the comparison (mean difference and 95% CrI) of the row treatment versus the column treatment. All bolded values are statistically meaningful at the 0.05 significance level. DIC 60.46; deviance 33.16; SD 1.23

HP higher potency, EP equal potency, LP lower potency, FD fixed dose

 Table 8
 Mean differences in mean percent change from baseline in total cholesterol among rosuvastatin-experienced patients from fixed-effects network meta-analysis

Double rosuvastatin	8.49	5.12	7.31
	(6.33, 10.65)	(-2.91, 13.20)	(4.97, 9.68)
-8.49	Add ezetimibe	-3.37	-1.16
(-10.65, -6.33)		(-11.09, 4.43)	(-4.35, 2.02)
-5.12	3.37	Quadruple rosuvastatin	2.20
(-13.20, 2.91)	(-4.43, 11.09)		(-6.20, 10.52)
-7.31	1.16	-2.20	switch to EP atorvastatin
(-9.68, -4.97)	(-2.02, 4.35)	(-10.52, 6.20)	+ add ezetimibe

Each cell represents the comparison (mean difference and 95% CrI) of the row treatment versus the column treatment

All bolded values are statistically meaningful at the 0.05 significance level

DIC 17.47, deviance 9.47

EP equal potency

References

- Stone NJ, Robinson JG, Lichtenstein AH, Bairey Merz CN, Blum CB, Eckel RH, Goldberg AC, Gordon D, Levy D, Lloyd-Jones DM, McBride P, Schwartz JS, Shero ST, Smith SC Jr, Watson K, Wilson PW (2014) 2013 ACC/AHA guideline on the treatment of blood cholesterol to reduce atheroscleroticcardiovascular risk in adults: a report of the American College of Cardiology/American Heart AssociationTask Force on Practice Guidelines. J Am Coll Cardiol 63:2889–934
- Reiner Z, Catapano A, De Backer G et al (2011) ESC/EAS Guidelines for the management of dyslipidaemias. Eur Heart J 32:1769–1818
- 3. Task Force for the management of dyslipidaemias of the European Society of Cardiology (ESC) and the European Atherosclerosis Society (EAS) CA, Reiner Z, De Backer G, Graham I, Taskinen MR, Wiklund O, Agewall S, Alegria E, Chapman MJ, Durrington P, Erdine S, Halcox J, Hobbs R, Kjekshus J, Perrone Filardi P, Riccardi G, Storey RF, Wood D; ESC Committee for Practice Guidelines 2008–2010 and 2010–2012 Committees (2011) ESC/ EAS Guidelines for the management of dyslipidaemias: the task force for the management of dyslipidaemias of the European Society of Cardiology (ESC) and the European Atherosclerosis Society (EAS). Atherosclerosis 217(Suppl 1):S1–S44
- Jellinger PSSD, Mehta AE, Ganda O, Handelsman Y, Rodbard HW, Shepherd MD, Seibel JA (2012) AACE task force for management of dyslipidemia and prevention of atherosclerosis. American Association of Clinical Endocrinologists' Guidelines for Management of Dyslipidemia and Prevention of Atherosclerosis. Endocr Pract 18(Suppl 1):1–78
- 5. Go ASMD, Roger VL, Benjamin EJ, Berry JD, Borden WB, Bravata DM, Dai S, Ford ES, Fox CS, Franco S, Fullerton HJ, Gillespie C, Hailpern SM, Heit JA, Howard VJ, Huffman MD, Kissela BM, Kittner SJ, Lackland DT, Lichtman JH, Lisabeth LD, Magid D, Marcus GM, Marelli A, Matchar DB, McGuire DK, Mohler ER, Moy CS, Mussolino ME, Nichol G, Paynter NP, Schreiner PJ, Sorlie PD, Stein J, Turan TN, Virani SS, Wong ND, Woo D, Turner MB, American Heart Association Statistics Committee and Stroke Statistics Subcommittee (2013) Heart disease

and stroke statistics–2013 update: a report from the American Heart Association. Circulation 127:e6–e245

- Chaudhary R, Garg J, Shah N, Sumner A (2017) PCSK9 inhibitors: a new era of lipid lowering therapy. World J Cardiol 9(2):76–91
- Di Bartolo B, Scherer DJ, Brown A, Psaltis PJ, Nicholls SJ (2017) PCSK9 inhibitors in hyperlipidemia: current status and clinical outlook. BioDrugs: Clin Immunother Biopharm Gene Ther 31(3):167–174
- Fox KM, Tai MH, Kostev K, Hatz M, Qian Y, Laufs U (2018) Treatment patterns and low-density lipoprotein cholesterol (LDL-C) goal attainment among patients receiving high- or moderateintensity statins. Clin Res Cardiol 107(5):380–388
- Laufs U, Karmann B, Pittrow D (2016) Atorvastatin treatment and LDL cholesterol target attainment in patients at very high cardiovascular risk. Clin Res Cardiol 105(9):783–790
- Soran H, Dent R, Durrington P (2017) Evidence-based goals in LDL-C reduction. Clin Res Cardiol 106(4):237–248
- Wada H, Dohi T, Miyauchi K et al (2017) Prognostic impact of nutritional status assessed by the controlling nutritional status score in patients with stable coronary artery disease undergoing percutaneous coronary intervention. Clin Res Cardiol 106(11):875–883
- Mikhailidis DP, Sibbring GC, Ballantyne CM, Davies GM, Catapano AL (2007) Meta-analysis of the cholesterol-lowering effect of ezetimibe added to ongoing statin therapy. Curr Med Res Opin 23(8):2009–2026
- 13. Mikhailidis DP, Lawson RW, McCormick A et al (2011) Comparative efficacy of the addition of ezetimibe to statin vs statin titration in patients with hypercholesterolaemia: systematic review and meta-analysis. Curr Med Res Opin 27(6):1191–1210
- 14. Morrone D, Weintraub WS, Toth PP et al (2012) Lipid-altering efficacy of ezetimibe plus statin and statin monotherapy and identification of factors associated with treatment response: a pooled analysis of over 21,000 subjects from 27 clinical trials. Artherosclerosis 223:11
- 15. National Clinical Guideline Centre (2014) Lipid modification: cardiovascular risk assessment and the modification of blood lipids for the primary and secondary prevention of cardiovascular disease. NICE guideline CG181. National Clinical Guideline Centre, London

- Lu G, Ades AE (2004) Combination of direct and indirect evidence in mixed treatment comparisons. Stat Med 23(20):3105–3124
- Bucher HC, Guyatt GH, Griffith LE, Walter SD (1997) The results of direct and indirect treatmentcomparisons in meta-analysis of randomized controlled trials. J Clin Epidemiol 50:683–691
- Spiegelhalter DJ, Abrams KR, Myles JP (2004) Bayesian approaches to clinical trials and health-care evaluation. Wiley, Chichester
- Averna M, Zaninelli A, Le Grazie C, Gensini GF (2010) Ezetimibe/simvastatin 10/20 mg versus simvastatin 40 mg in coronary heart disease patients. J Clin Lipidol 4(4):272–278
- Ballantyne CM, Bertolami M, Hernandez Garcia HR et al (2006) Achieving LDL cholesterol, non-HDL cholesterol, and apolipoprotein B target levels in high-risk patients: Measuring Effective Reductions in Cholesterol Using Rosuvastatin therapY (MER-CURY) II. Am Heart J 151(5):975.e971–975.e979
- Bardini G, Giorda CB, Pontiroli AE, Le Grazie C, Rotella CM (2010) Ezetimibe + simvastatin versus doubling the dose of simvastatin in high cardiovascular risk diabetics: a multicenter, randomized trial (the LEAD study). Cardiovasc Diabetol 9:20
- 22. Brohet C, Banai S, Alings AM, Massaad R, Davies MJ, Allen C (2005) LDL-C goal attainment with the addition of ezetimibe to ongoing simvastatin treatment in coronary heart disease patients with hypercholesterolemia. Curr Med Res Opin 21(4):571–578
- McCormack T, Harvey P, Gaunt R et al (2010) Incremental cholesterol reduction with ezetimibe/simvastatin, atorvastatin and rosuvastatin in UK General Practice (IN-PRACTICE): randomised controlled trial of achievement of Joint British Societies (JBS-2) cholesterol targets. Int J Clin Pract 64(8):1052–1061
- 24. Mulder DJ, van Haelst PL, Wobbes MH et al (2007) The effect of aggressive versus conventional lipid-lowering therapy on markers of inflammatory and oxidative stress. Cardiovasc Drugs Ther 21(2):91–97
- 25. Pearson TA, Denke MA, McBride PE, Battisti WP, Brady WE, Palmisano J (2005) A community-based, randomized trial of ezetimibe added to statin therapy to attain NCEP ATP III goals for LDL cholesterol in hypercholesterolemic patients: the ezetimibe add-on to statin for effectiveness (EASE) trial. Mayo Clin Proc 80(5):587–595
- Pesaro AE, Serrano CV Jr, Fernandes JL et al (2012) Pleiotropic effects of ezetimibe/simvastatin vs. high dose simvastatin. Int J Cardiol 158(3):400–404
- 27. Rosen JB, Jimenez JG, Pirags V et al (2013) A comparison of efficacy and safety of an ezetimibe/simvastatin combination compared with other intensified lipid-lowering treatment strategies in diabetic patients with symptomatic cardiovascular disease. Diabetes Vasc Disease Res 10(3):277–286
- 28. Ruggenenti P, Cattaneo D, Rota S et al (2010) Effects of combined ezetimibe and simvastatin therapy as compared with simvastatin alone in patients with type 2 diabetes: a prospective randomized double-blind clinical trial. Diabetes Care 33(9):1954–1956
- Schuster H, Barter PJ, Stender S et al (2004) Effects of switching statins on achievement of lipid goals: measuring effective reductions in cholesterol using rosuvastatin therapy (MERCURY I) study. Am Heart J 147(4):705–713
- Van Dam M, Basart DCG, Janus C et al (2000) Additional efficacy of milligram-equivalent doses of atorvastatin over simvastatin. Clin Drug Investig 19(5):327–334
- Zubaid M, Shakir DK, Bazargani N et al (2008) Effect of ezetimibe coadministration with simvastatin in a Middle Eastern population: a prospective, multicentre, randomized, double-blind, placebo-controlled trial. J Cardiovasc Med 9(7):688–693
- 32. Barbosa SP, Lins LC, Fonseca FA et al (2013) Effects of ezetimibe on markers of synthesis and absorption of cholesterol in high-risk patients with elevated C-reactive protein. Life Sci 92(14–16):845–851

- 33. Barrios V, Amabile N, Paganelli F et al (2005) Lipid-altering efficacy of switching from atorvastatin 10 mg/day to ezetimibe/ simvastatin 10/20 mg/day compared to doubling the dose of atorvastatin in hypercholesterolaemic patients with atherosclerosis or coronary heart disease. Int J Clin Pract 59(12):1377–1386
- 34. Bays HE, Averna M, Majul C et al (2013) Efficacy and safety of ezetimibe added to atorvastatin versus atorvastatin uptitration or switching to rosuvastatin in patients with primary hypercholesterolemia. Am J Cardiol 112(12):1885–1895
- 35. Conard SE, Bays HE, Leiter LA et al (2008) Efficacy and safety of ezetimibe added on to atorvastatin (20 mg) versus uptitration of atorvastatin (to 40 mg) in hypercholesterolemic patients at moderately high risk for coronary heart diseaseconflicts of interest. Am J Cardiol 102(11):1489–1494
- Constance C, Westphal S, Chung N et al (2007) Efficacy of ezetimibe/simvastatin 10/20 and 10/40 mg compared with atorvastatin 20 mg in patients with type 2 diabetes mellitus. Diabetes Obes Metabol 9(4):575–584
- 37. Cruz-Fernandez JM, Bedarida GV, Adgey J, Allen C, Johnson-Levonas AO, Massaad R (2005) Efficacy and safety of ezetimibe co-administered with ongoing atorvastatin therapy in achieving low-density lipoprotein goal in patients with hypercholesterolemia and coronary heart disease. Int J Clin Pract 59(6):619–627
- 38. Hing Ling P, Civeira F, Dan A et al. (2012) Ezetimibe/simvastatin 10/40 mg versus atorvastatin 40 mg in high cardiovascular risk patients with primary hypercholesterolemia: a randomized, double-blind, active-controlled, multicenter study. Lipids in Health Dis 11:18
- 39. Kurabayashi M, Yamazaki T, Group SS (2008) Superior benefit of aggressive lipid-lowering therapy for high-risk patients using statins: the SUBARU study-more hypercholesterolemic patients achieve Japan Atherosclerosis Society LDL-C goals with rosuvastatin therapy than with atorvastatin therapy. J Atheroscler Thromb 15(6):314–323
- 40. Leiter LA, Bays H, Conard S et al (2008) Efficacy and safety of ezetimibe added on to atorvastatin (40 mg) compared with uptitration of atorvastatin (to 80 mg) in hypercholesterolemic patients at high risk of coronary heart disease. Am J Cardiol 102(11):1495–1501
- 41. Matsue Y, Matsumura A, Suzuki M, Hashimoto Y, Yoshida M (2013) Differences in action of atorvastatin and ezetimibe in lowering low-density lipoprotein cholesterol and effect on endothelial function: randomized controlled trial. Circ J 77(7):1791–1798
- 42. Okada K, Kimura K, Iwahashi N et al (2011) Clinical usefulness of additional treatment with ezetimibe in patients with coronary artery disease on statin therapy. From the viewpoint of cholesterol metabolism. Circ J 75(10):2496–2504
- Padhy BM, Yadav R, Gupta YK (2013) Hypolipidaemic and antiinflammatory effects of fixed dose combination of atorvastatin plus ezetimibe in Indian patients with dyslipidaemia. Singap Med J 54(2):90–95
- 44. Stein E, Stender S, Mata P et al (2004) Achieving lipoprotein goals in patients at high risk with severe hypercholesterolemia: efficacy and safety of ezetimibe co-administered with atorvastatin. Am Heart J 148(3):447–455
- 45. Zieve F, Wenger NK, Ben-Yehuda O et al (2010) Safety and efficacy of ezetimibe added to atorvastatin versus up titration of atorvastatin to 40 mg in Patients> or = 65 years of age (from the ZETia in the ELDerly [ZETELD] study). Am J Cardiol 105(5):656–663
- 46. Bays HE, Davidson MH, Massaad R et al (2011) Safety and efficacy of ezetimibe added on to rosuvastatin 5 or 10 mg versus up-titration of rosuvastatin in patients with hypercholesterolemia (the ACTE Study). Am J Cardiol 108(4):523–530
- Torimoto K, Okada Y, Mori H et al. Efficacy of combination of Ezetimibe 10 mg and rosuvastatin 2.5 mg versus rosuvastatin 5

mg monotherapy for hypercholesterolemia in patients with type 2 diabetes. Lipids Health Dis 2013;12(1)

- 48. Yamazaki D, Ishida M, Watanabe H et al (2013) Comparison of anti-inflammatory effects and high-density lipoprotein cholesterol levels between therapy with quadruple-dose rosuvastatin and rosuvastatin combined with ezetimibe. Lipids Health Dis 12:9
- Leitersdorf E (2001) Cholesterol absorption inhibition: filling an unmet need in lipid-lowering management. Eur Heart J Suppl 3(suppl E):E17–E23
- Baigent C, Blackwell L, Emberson J et al (2010) Efficacy and safety of more intensive lowering of LDL cholesterol: a metaanalysis of data from 170,000 participants in 26 randomised trials. Lancet 376(9753):1670–1681
- Ambegaonkar BM, Tipping D, Polis AB, Tomassini JE, Tershakovec AM (2014) Achieving goal lipid levels with ezetimibe plus statin add-on or switch therapy compared with doubling the statin dose. A pooled analysis. Atherosclerosis 237(2):829–837
- Cannon CP, Giugliano MAB (2015) RP, et al. Ezetimibe added to statin therapy after acute coronary syndromes. N Engl J Med 372(25):2387–2397
- 53. Lloyd-Jones DM, Morris PB, Ballantyne CM et al (2016) 2016 ACC expert consensus decision pathway on the role of non-statin therapies for LDL-cholesterol lowering in the management of atherosclerotic cardiovascular disease risk: a report of the American College of Cardiology Task Force on Clinical Expert Consensus Documents. J Am Coll Cardiol 68:92–125