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Abstract
As clinicians, we understand the development of atherosclerosis as a consequence of cholesterol deposition and inflammation 
in the arterial wall, both being triggered by traditional risk factors such as hypertension, hyperlipidaemia or diabetes mellitus. 
Another risk factor is genetic predisposition, as indicated by the predictive value of a positive family history. However, we 
had to wait until recently to appreciate the abundant contribution of genetic variation to the manifestation of atherosclerosis. 
Indeed, by now 164 chromosomal loci have been identified by genome-wide association studies (GWAS) to affect the risk 
of coronary artery disease. By design, practically all risk variants discovered by GWAS are frequently found in our popula-
tion, resulting in the fact that principally every Western European individual carries between 130 and 190 risk alleles at the 
known, genome-wide significant loci (there are 0, 1, or 2 risk alleles per locus). One can assume that it is this widespread 
disposition that makes mankind susceptible to the detrimental effects of lifestyle factors, which likewise increase the risk of 
atherosclerosis. In this review, we summarize the recent genetic discoveries and attempt to group the multiple genetic risk 
variants in functional groups that may become actionable from a preventive or therapeutic perspective.
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Introduction

For the time being, a positive family history is the clini-
cian’s only tool for estimating the impact of genetic dis-
position on the development of an atherosclerotic disease. 

For family members, a doubling of risk can be assumed, 
when myocardial infarction (MI) had been diagnosed before 
the 55th year of age in a male or before the 65th year in a 
female first-degree relative [1]. Specifically, a high rate for 
reoccurrence was found in identical twins of MI patients. 
For example, the chance to die from MI before the age of 
55 years was found to be increased eightfold, when an identi-
cal twin was affected at an early age [2]. The inherited risk 
of coronary artery disease (CAD) is particularly evident in 
(rare) families with multiple affected family members [3]. 
However, with the exception of the LDL-receptor gene, the 
molecular causes underlying such risk remained elusive until 
very recently [3, 4]. Indeed, it was the emergence of GWAS 
that led to the discovery of multiple common variants which 
reproducibly affect CAD risk [5].

It all started in 2007 with the discovery of the 9p21 risk 
locus [6]. Subsequently, steadily growing GWAS consortia 
were formed, which unraveled by now 164 chromosomal loci 
reaching genome-wide significance (P < 5 × 10−8) (Fig. 1) 
[7–11], thus demonstrating a linear relationship between 
sample size and the number of loci (Fig. 2), implying that 
larger sample sizes will lead to new discoveries. However, 
the statistical power to detect associations between genetic 
variants and a trait clearly depends not only on sample size, 

This article is part of the Spotlight Issue of Clinical Research 
in Cardiology with the title “German cardiac society welcomes 
ESC”.

 * Heribert Schunkert 
 schunkert@dhm.mhn.de

1 Deutsches Herzzentrum München, Klinik für Herz- und 
Kreislauferkrankungen, Technische Universität München, 
80636 Munich, Germany

2 DZHK (German Center for Cardiovascular Research) 
e.V., Partner Site Munich Heart Alliance, 80636 Munich, 
Germany

http://crossmark.crossref.org/dialog/?doi=10.1007/s00392-018-1324-1&domain=pdf


S3Clinical Research in Cardiology (2018) 107 (Suppl 2):S2–S9 

1 3

but also on other factors, such as the effect size and allele 
frequency at those loci [12]. For example, when consider-
ing the so-called ultra-rare variants (i.e., those with a fre-
quency of 1/100,000), whole-genome sequencing and a 
sample size of more than one million would be required to 
identify associations, but only when the effect sizes of the 
variants are very large [12]. Hence, it is not expected that 

we might reach a saturation (i.e., identification of nearly 
monogenic variants significantly associated with CAD) 
soon, at least not within the next 5 years to come. Currently, 
in fact, exome-wide studies have just started to identify rare 
variants in the coding regions additionally contributing to 
CAD risk [13]. Moreover, the discoveries regarding mono-
genic causes were so far limited to the genes causing familial 
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Fig. 1  The figure displays all genes that have achieved genome-wide 
significant association signals for CAD in GWAS studies as of today 
[10, 11]. Genes at the 164 loci were grouped into functional classes 
by gene ontology and canonical pathway maps, such as Consensus-
PathDB (http://cpdb.molge n.mpg.de), including the Kyoto Encyclope-

dia of Genes and Genomes. Some genes have been assigned to mul-
tiple pathways. The figure indicates that most genetically influenced 
mechanisms leading to an increased risk of coronary artery disease 
are poorly defined and not addressed by current treatments

Fig. 2  The number of indi-
viduals studied (x-axis) vs. the 
number of CAD loci reaching 
genome-wide significance 
(y-axis) since the first CAD 
GWAS in 2007, until today 
(taken from [11])

http://cpdb.molgen.mpg.de
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hypercholesterolemia and disorders in the NO-cGMP sign-
aling pathway [3, 4, 16]. However, this is now expected to 
change as the scientific community is increasingly moving 
to whole-genome sequencing, thus increasing the number of 
CAD risk variants that can be identified and, possibly even, 
revolutionizing the discovery and diagnosis of monogenic 
disorders [17].

The genetic architecture of coronary disease

The chromosomal loci associated with atherosclerosis risk 
that were identified by GWAS analyses are remarkable for 
several reasons:

1. Only few associated variants alter protein structure. 
Rather, most risk alleles appear to affect gene regulation.

2. Only 30% of the chromosomal loci conferring CAD 
risk do so via modulating traditional risk factors like 
LDL cholesterol and blood pressure (Fig. 1). Thus, the 
mechanisms increasing atherosclerosis risk are vague 
for the majority of chromosomal loci [14].

3. Almost all currently identified risk alleles—in part by 
design of GWAS analyses—are relatively frequent. For 
example, in Europeans, the probability to carry one or 
two risk alleles at the most prominent CAD risk locus, 
at chromosome 9p21.3, is 50% and 25%, respectively 
[6]. Thus, only 25% of our population is free of this 
specific genetic risk factor for MI—but there are at least 
160 more risk loci in the genome! Given that we have 
two alleles at each locus, most Europeans carry overall 
between 130 and 190 of currently known risk alleles.

4. Each risk allele increases the probability of atherosclero-
sis only by a small margin, i.e., 5–25 relative percent per 
allele. In other words, individuals who are homozygous 
for the risk allele on chromosome 9p21.3 carry a 50% 
relative risk increase to suffer from MI (since they carry 
this risk allele twice) as compared to the 25% of our 
population, who do not carry this allele. However, even 
if a subject does not carry one of the 9p21.3 risk alleles, 
he or she is likely to carry many other risk alleles at the 
other loci.

5. The high number of loci carrying risk alleles, the high 
frequency of most of these risk alleles, and the even 
spread of risk alleles in the genome of subjects of a 
given population explain why the implications of the 
recently identified genetic factors are substantial at the 
population level, even though each individual risk allele 
confers only a relatively moderate effect.

6. The genetic risk conferred by the newly discovered com-
mon risk variants is largely independent of the risk sig-
naled by a positive family history [15]. By contrast, in 
heavily affected families cascade-screening for familial 

hypercholesterolemia should be initiated to provide early 
preventive treatment [16].

7. Of note, however, each individual will also carry a num-
ber of alleles that may decrease the CAD risk, i.e., the 
so-called “protective alleles” (e.g., by disrupting cer-
tain protein functions, typically via loss-of-function 
effects of genes that go along with increased risk such 
as APOC3 [18] and ANGPTL4 [13]). Other alleles may 
specifically neutralize or diminish risk coming from 
environmental or endogenous factors.

8. Finally, the overall genomic architecture has to be con-
sidered, as genetic variants associated with increased 
risk of complex diseases such as CAD may be also found 
in genomes of long-lived people, and do not seem to 
compromise their longevity [19].

Clinical utilization of GWAS findings

From a clinician´s perspective one may ask, how these dis-
coveries may improve prevention and treatment of coronary 
artery disease? A first step is the conduction of Mendelian 
randomization studies, which aim to predict the beneficial 
effect of medications [20]. The principle is based on the 
fact that any given genetic variant, which exclusively affects 
a biomarker (e.g., a lipid or inflammatory molecule), can 
only be related to the outcome (e.g., coronary disease), if 
this biomarker plays a causal role in this condition [20]. In 
this respect, GWAS have provided compelling evidence that 
pharmacological interventions to increase HDL cholesterol 
are unlikely to lower coronary risk, since there is little evi-
dence that genetic variants which increase HDL cholesterol 
levels decrease CAD risk [21]. By contrast, medications that 
lower LDL cholesterol or triglycerides may be good candi-
dates, since multiple genetic variants which lower LDL cho-
lesterol or triglycerides levels also lower CAD risk [13, 22].

Nowadays, pharmaceutical companies increasingly pay 
attention to the predictive value of such GWAS results in 
their decision-making, when they select novel agents for 
clinical evaluation. Indeed, genetic variants may mimic drug 
effects and thereby allow predicting the outcome of clinical 
studies [13, 23]. Moreover, it has become increasingly clear 
that genetic variation can actually affect drug responses in 
individual patients, including susceptibility to adverse drug 
reactions.

Finally, the prediction of premature atherosclerosis may 
be improved by consideration of a genetic risk score build 
on the hundreds if not thousands of genetic variants that 
all modulate the respective disease risk [24]. Moreover, in 
addition to the 164 CAD risk loci, GWAS have identified a 
large number of genetic variants associated with the tradi-
tional CAD risk factors such as hypertension [25], type 2 
diabetes [26] and hypercholesterolemia [27]. Indeed, it has 



S5Clinical Research in Cardiology (2018) 107 (Suppl 2):S2–S9 

1 3

been demonstrated that genetic risk scores based on risk 
factor SNPs, e.g. for hypertension, are likewise associated 
with CAD [25]. Hence, these additional genetic variants 
may be considered when constructing genetic risk scores, 
as this information may lead to more precise risk estima-
tion for CAD and, in some cases, also to specific lifestyle 
recommendations.

Genotyping arrays are able to yield such information at 
low cost (e.g., 40 € in a research setting) and assign each 
individual a percentile rank of a genetic risk score within 
a given population. The higher the rank, the higher the risk 
to develop CAD, in particular if the genetic risk score is 
beyond the 80th or 90th percentile [24]. The advantage of 
such testing is that the predictive CAD risk value can be 
obtained already at a young age and thus before any mani-
festation of atherosclerotic lesions. However, future studies 
first need to determine the clinical utility of such information 
before genetic testing can be recommended as a diagnostic 
tool. Finally, as the run time and costs of whole-genome 
sequencing drop rapidly, we might be entering a new era of 
next generation diagnostics, soon.

The growing spectrum of causal pathways

From a clinical point of view, it may be helpful to conden-
sate the many loci (and genes) to a manageable number of 
functional groups and pathways that may need therapeutic 
attention [5]. Figure 1 offers such grouping of genes. All 
genes listed are genome-wide significantly associated with 
CAD risk [11]. The allocation of the genes to downstream 
effects was made by gene ontology and canonical pathway 
maps including, among others, the Kyoto Encyclopedia of 
Genes and Genomes. Given that a gene can play a role in 
multiple biological processes, some genes are found multiple 
times in the Figure such that the overall number of entries 
is much larger than the 164 loci that house these respective 
genes. As can be seen, only a few functional groups and 
pathways (or genes) are currently addressed by therapeutic 
interventions. Indeed, only genetic variants affecting LDL 
cholesterol, triglycerides, platelet function, blood pres-
sure or inflammation can be addressed by pharmacologi-
cal or lifestyle measures that may neutralize an unfavorable 
disposition.

Figure 3 exemplifies a hypothetical sub-network from 
such a functional group: cell migration and adhesion. All 
genes illustrated in the sub-network are genome-wide 
significantly associated with CAD [11]. Endothelin-1, its 
receptor type A and other downstream genes in the Figure 
are likely to play a role in the development of atherosclero-
sis by modulating cell migration and adhesion, most prob-
ably through their impact on the activation of integrins 
[31]. Databases on protein–protein interactions curated 

from scientific literature suggest that the respective gene 
products may interact, as these genes were also annotated 
to the respective categories in databases or found manual 
curation (e.g., EDNRA) to affect cell migration and adhe-
sion. Thus, it is possible that these genetic variants, iden-
tified for their genome-wide significant association with 
CAD, disturb this cellular function (e.g., in monocytes or 
endothelial cells) and therefore increase MI risk. Future 
studies need to merge such in silico predictions with 
experimental validation to broaden our understanding of 
the mechanisms leading to coronary disease [28].

The successful discovery or multiple risk alleles by 
GWAS allows to explain an increasing proportion of 
overall CAD heritability (i.e., currently about 25%) [11]. 
However, there is still a substantial proportion of “miss-
ing heritability”. This is particularly eminent in subjects 
with a positive family history, suggesting either specific 
gene–gene interactions (epistasis) or rare (private) variants 
have a profound effect in such families or individuals with 
otherwise unexplained risk. Finally, as for most complex 
multi-factorial diseases, it is the interplay between genetic 
predisposition, as well as lifestyle and environmental fac-
tors that modulates each individual’s risk of developing 

Fig. 3  The figure displays a hypothetical sub-network affecting CAD 
risk. All genes shown in the figure were genome-wide significantly 
associated with CAD in GWAS studies [10, 11]. Interestingly, all 
these CAD GWAS hits are related to the term cell migration and 
adhesion in functional annotations retrieved from the Gene Ontology 
(http://www.geneo ntolo gy.org/) and ConsensusPathDB (http://cpdb.
molge n.mpg.de/datab ase) databases. The latter database integrates 
32 public resources, including biochemical pathway data and pro-
tein–protein interactions (PPI) curated from the literature. Querying 
the protein–protein interactions and searching for direct interactions 
among the CAD GWAS hits previously annotated to the cell migra-
tion and adhesion functional group constructed the sub-network. It 
illustrates a hypothetical cascade by which endothelin-1 (EDN1) via 
its receptor A (EDNRA) and activation of the insulin receptor sub-
strate signaling protein (IRS1) could potentially influence these pro-
cesses. EDN1 endothelin-1, EDNRA Endothelin Receptor Type A, 
RHOA Ras homolog gene family member A, PRKCE Protein kinase 
C epsilon type, ITGB5 integrin subunit beta 5, PLCG1 phospholipase 
C gamma 1, NCK1 NCK adaptor protein 1, IRS1 Insulin receptor sub-
strate1

http://www.geneontology.org/
http://cpdb.molgen.mpg.de/database
http://cpdb.molgen.mpg.de/database
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CAD, suggesting that more efforts should be put on docu-
menting and integrating the latter.

Moreover, there is a substantial need to explain the dis-
ease mechanisms both, at the chromosomal level, as well 
as the level of subsequently affected functional groups and 
pathways. Currently, large efforts address the systems biol-
ogy affected by genome-wide significant risk alleles [28].

The first step in the elucidation of the pathophysiological 
pathway is to identify the casual variant at each locus, fol-
lowed by the challenge to identify the target gene affected by 
that variant which is ultimately responsible for the GWAS 
signal [29]. Next, the downstream mechanisms that are dis-
turbed by changes of the causal gene need to be determined 
[28]. In most cases unraveled so far, this happens via altera-
tion of gene expression and subsequent protein abundance 
in the first place [30]. However, despite valid hypotheses 
regarding many genes and pathways, the exact mechanisms 
underlying the identified loci often remain unknown. Even 
the assignment of the loci to genes is mainly based on 
proximity.

Conclusion

The last decade of genomic research led to the identifica-
tion of 164 common genetic loci, each of them conferring 
modest risk for CAD and MI [10, 11]. It is foreseeable that 
more variants will be identified with increasing sample sizes 
of GWAS. In addition, whole-exome and whole-genome 
sequencing studies have identified rare risk variants in fami-
lies and large patients’ cohorts with stronger effects. Particu-
larly GWAS expanded the understanding of genetic disease 
etiology, such that by now we have a much better picture of 
the underlying biology. Currently, functional studies inves-
tigating the mechanistic link between genetic variation and 
disease onset, aim at identifying novel treatment targets. 
Enormous progress has been made in this respect, as exem-
plified by GUCY1A3, PCSK9, ANGPTL4, and ANGPTL3, 
i.e., genes with genome-wide association to CAD and poten-
tial druggability. Indeed, these recent findings are excellent 
starting points for individualized treatment strategies in the 
future. Finally, despite all these advances, only a part of the 
heritable risk for CAD can be explained until now.
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