
Accepted: 18 April 2000 Abstract Inflammatory bowel dis-
eases (IBDs) in humans are complex
chronic inflammatory disorders of
largely unknown cause. Several
mouse models that in some respects
resemble human IBDs have recently
been developed and have provided
new insights into immunoregulatory
processes in the gut. Both genetic
and environmental factors have been
shown to be involved in chronic in-
testinal inflammation. In most of the
models CD4+ T lymphocytes have
been identified as central mediators
of inflammation. Inappropriate acti-
vation of TH1-dominated cytokine

pathways upon contact with luminal
bacterial antigens and lack of toler-
ance appear to be crucial for intesti-
nal pathology. We present a brief
overview of important animal mod-
els of IBD and describe the recent
progress in understanding the mech-
anisms that contribute to chronic in-
testinal inflammation. Furthermore,
novel immunotherapeutic approach-
es derived from such animal models
are discussed.
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Introduction

Crohn’s disease (CD) and ulcerative colitis (UC), the
prototypes of chronic intestinal inflammation in humans,
are complex immunological disorders of largely un-
known cause [1]. However, multiple studies in the past
few years have led to the view that both environmental
factors and genetic susceptibility contribute to pathologi-
cal immunoregulatory events causing colitis [2]. Much
of the recent progress in the understanding of mucosal
immunity and pathophysiology in the gut has been
achieved by the development of new experimental ani-
mal models of chronic intestinal inflammation [3, 4]. Al-
though these models do not represent the complexity of
human disease and do not replace studies with patient
material, they are valuable tools for studying many im-
portant disease aspects in reproducible in vivo systems.
In addition, questions that are difficult to address in hu-
mans, such as the pathogenesis of early phases of colitis
and the effect of new therapeutic strategies, may be ana-
lyzed in well-defined animal models.

The healthy gastrointestinal tract is a place for nutri-
ent uptake and a barrier to pathogenic antigens at the
same time. A direct consequence of this physiological
function is a very complex network of immunological in-
teractions leading to a tightly controlled mucosal im-
mune balance [5]. The development of new transgenic
and gene targeting technologies over the past decade has
allowed a more precise analysis of the interplay of dif-
ferent cell types and their soluble factors in health and
disease and has marked a new age in the study of colitis.
In this review we first present a brief overview of a wide
variety of established and recently developed animal
models of chronic intestinal inflammation (Tables 1, 2,
3). In the second part we discuss common mechanisms
for immunopathology and therapy of chronic intestinal
inflammation on the basis of results obtained from both
animal models and patient material.

Animal models of intestinal inflammation can be di-
vided formally into four categories: spontaneous models,
inducible models in mice with a normal immune system,
adoptive transfer models in immunocompromised hosts,

S. Wirtz · M.F. Neurath (✉ ) 
Laboratory of Immunology, 
Medical Clinic I, 
University of Mainz, 
Langenbeckstrasse,
55101 Mainz, Germany
Tel.: +49-6131-172374
Fax: +49-6131-175508



145

and genetically engineered models (transgenic mice,
knockout mice). These models have led to a rapid pro-
gression in our understanding of mucosal immunopathol-
ogy that is also based on the fact that more than 20 novel
animal models of intestinal inflammation have been de-
veloped since 1993. Most of these models are adoptive
transfer models and genetically engineered models of
chronic intestinal inflammation, indicating that many of
these models result from the availability of gene target-
ing/transgenic mouse technologies and a better under-
standing of the pathogenic role of certain cell popula-
tions with pathogenic function. Although most models
have a very heterogeneous origin, many models result in
a common phenotype: mucosal inflammation mediated
by TH1 T cells that are activated by bacterial antigens in
the mucosa. This situation may be very similar to CD,
where many different initiating factors and genetic sus-
ceptibilities may result in a TH1-driven intestinal inflam-
mation.

In spite of our better understanding of mucosal pa-
thology none of the currently available models resembles
in all aspects the human inflammatory bowel diseases
(IBDs). In particular, none of the models so far has a tru-
ly chronic relapsing course with acute flares as in IBD or
truly mimics the extraintestinal manifestations of IBD or
the association of an UC-like lesion with sclerosing
cholangitis. Thus, although considerable knowledge has
been achieved in recent years, there are still many as-
pects of mucosal immunopathology that require a better
understanding, and a more “ideal” animal model for hu-
man IBD must yet be developed.

Models of spontaneous colitis

IBD in humans is believed to occur in individuals with
genetic predisposition after exposure to certain environ-
mental factors. Animal models with spontaneous colitis
(Tables 1, 2) could therefore offer some advantages over
inducible models for defining genetic susceptibility fac-
tors of mucosal inflammation.

Colitis in C3H/HeJBir mice

C3H/HeJBir is a novel substrain of C3H/HeJ mice bred at
the Jackson Laboratory [6]. These mice reproducibly de-
velop a spontaneous pathogen-independent colitis at about
3 weeks of age with acute and chronic lesions and ulcer-
ations mainly in the cecum and the right side of the proxi-
mal colon mucosa. CD4+ T cells, immune reactive to anti-
gens of enteric bacterial flora, but not to food antigens,
have been identified as important components in the patho-
genesis of colitis in these mice [7]. C3H/HeJBir mice have
also been used in combination with inducible colitis mod-
els [8] and together with the parent strain may be valuable
for studying and identifying genetic susceptibility factors.

Cotton-top tamarin colitis

The cotton-top tamarin (Saguinus oedipus) is a primate
with unusual susceptibility to UC-like mucosal inflam-
mation, subsequent colon cancer, and viral infections [9].
Environmental factors strongly affect the pathogenesis
because a further increase in the number of animals with
onset of colitis has been observed when they live outside
a tropic climate. The monkeys have only a single MHC
class I locus [10, 11] and it is thought that this genetic
factor contributes together with environmental factors to
the high incidence of colitis and viral infections in these
animals. In addition, spontaneous development of colon
cancer has frequently been observed in cotton-top tama-
rins, allowing investigation of the genetic basis for ade-
nocarcinoma as a result of gut inflammation.

Although the efforts required for breeding them are
substantial, the spontaneous gut inflammation in these
primates is in some aspects likely to be more relevant to
human IBD than rodent or rabbit models.

Inducible colitis models

Transient or chronic inflammation of the animal gut can
be induced by various methods leading to mechanical or
chemical disruption of the mucosal barrier. Probably the
most important reason for the onset of colitis in these
models is the activation of the mucosal immune system
by contact with luminal antigens (Tables 1, 2). Studies in
germ-free systems and in animals treated with antibiotics
show that in some models the contact of the immune
system with bacterial cell wall components triggers the
inflammatory response.

Colitis induced by formalin/immune complexes

A transient (<5 days) mucosal inflammation in rabbits
can be induced by administration of a diluted formalde-
hyde solution into the distal colon followed by systemic
injection of immune complexes [12, 13]. Presumably,
chemical damage of the epithelium and activation of the
complement cascade in the lamina propria leads to an in-
flammatory response of infiltrating granulocytes and
macrophages, which is characterized by cryptitis, crypt
distortion, and mucosal necrosis. High levels of secreted
mediators such as prostaglandin E2, thromboxane B2,
leukotrienes B4, and C4 and interleukin (IL) 1 can be
found in inflamed areas. Elevated IL-1 levels seem to
play a major proinflammatory role since blocking its
function with an IL-1 receptor antagonist results in a
milder colitis [14, 15]. Additional studies have shown
that prostaglandin E2 and some sensory neuropeptides
are necessary for healing of such colitis [16]. Taken to-
gether, the formalin/immune complex colitis model is
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very valuable for the study of pro- and anti-inflammatory
processes in acute colitis, but is not suitable for long-
term or therapeutic studies.

Acetic acid induced colitis

The intrarectal administration of diluted acetic acid into
rodents or rabbits leads to epithelial injury and increased
permeability followed by an acute mucosal/transmural
inflammation in a dose-dependent manner [17]. This re-

producible model is easy to use and valuable for study-
ing early events of inflammation after mucosal injury
and wound healing.

Carrageenan colitis

Degraded carrageenan polymers in the drinking water of
guinea pigs and mice lead to mucosal inflammation of
the cecum within a week, which extends to the left side
of the colon within 3–6 weeks after treatment [18, 19].

Table 1 Animal models of chronic intestinal inflammation: an overview

Spontaneous Inducible Adoptive transfer Transgenic Knockout

C3H/HeJBir mice Formalin/immune complexes CD45RBHigh→scid HLA-B27 (rats) IL-2
Cotton top tamarin Acetic acid BMC→Cd3εTg26 STAT-4 IL-2Ra
Samp1/Yit mouse Carrageeenan Hsp60 specific CD8+ cells→TCRβ–/– Dom. neg. N-cadherin IL-10

Indomethacin IL-7 CRF2–4
Peptidoglycan-polysaccharide HSV tyrosine kinase TGF-β
Dextrane sulfate sodium Giα2
Radiation TCR-α
Cyclosporin A Trefoil factor

Hapten-based Mdr1a
TNBS/DNBS WASP
Oxazolone TNF∆ARE

Table 2 Characteristics of animal models of chronic intestinal inflammation

Model Species Pathology Affected site Pathogenesis/remarks Costs

Spontaneous models
Cotton top tamarin Primate Acute, Colon T cells/appropriate animal facility required, High

chronic mucosal induction of colon cancer
C3H/HeJBir Mouse Acute, Cecum, T cells reactive to bacterial antigens Medium

chronic transmural right colon

Inducible models
DSS Mice Acute, chronic Colon Toxic intestinal damage plus activation Low

mainly mucosal of the mucosal immune system (TH1/TH2)/
addition of azoxymethane induces 
cancer development

TNBS Mice, rats, Acute, Colon Activation of the immune system Low
rabbits chronic transmural (TH1-mediated; hapten-specific)/optimization 

of TNBS dose required, only certain strains

Adoptive transfer model
CD45RB CD62L+ cell Mice Acute, Colon, IL-12 driven TH1 T cells/induction High
transfer into SCID mice chronic transmural duodenum of colitis requires 6–12 weeks, appropriate 

animal facility for SCID mice required

Genetically engineered models
IL-2 knockout mice Mice Acute, colon IFN-γ producing T cells/colitis 6–15 weeks Medium

chronic mucosal after birth, variability between mice
IL-10 knockout mice Mice Acute, l Colon, TH1 cells in response to bacterial Medium

chronic transmural sometimes antigens/variability between mouse strains
jejunum/ileum

STAT-4 transgenic Mice Acute, Colon, ileum TH1 T cells in response to bacterial Medium
chronic transmural antigens/requires immunization of mice



Removing the polymers from the drinking water pro-
longs the colitis for 1–2 weeks, while prolonged treat-
ment is lethal after 7–8 weeks (due to sepsis). Carragee-
nan affects epithelial cells and severely impairs the mu-
cosal barrier. Several studies have shown that the pres-
ence of anaerobic bacteria (in particular Bacteroides spe-
cies) is important for the development of mucosal lesions
and ulcerations [20], although the exact pathophysiologi-
cal mechanisms remain unclear.

Indomethacin-induced colitis

In rats subcutaneous injections or oral administration of
indomethacin causes chronic ulcerations and transmural
inflammation in the small bowel [21, 22]. Epithelial
damage induced by indomethacin probably together with
bile fluid seems to be an important factor, as well as spe-
cific inhibition of protective prostaglandins. Germ-free
rats and rats treated with antibiotics do not show chronic
inflammation, indicating a pivotal role of the enteric mi-
croflora for disease development.

Peptidoglycan-polysaccharide colitis

Intramural injection of the bacterial cell wall component
peptidoglycan-polysaccharide (PG-PS) into the distal co-
lon of rats induces transmural enterocolitis [23]. In genet-
ically susceptible animals chronic granulomatous colitis
with thickening of the colon wall and infiltrating lympho-
cytes, macrophages, and neutrophils develops after 3–4
weeks. PG-PS increases mucosal permeability and my-
eloperoxidase activity and enhances NO production and
collagen synthesis. Treatment with recombinant IL-1 re-
ceptor antagonist [24] or IL-10 [25] attenuates disease,
the latter particularly the chronic stages of inflammation.
Data obtained from this model clearly show that cell wall
components of nonpathogenic resident enteric bacteria
are sufficient to induce acute and chronic colitis in a sus-
ceptible host when they penetrate into the colon wall.

Dextran sulfate sodium colitis

Feeding mice or rats for several days with dextran sulfate
sodium (DSS) polymers in the drinking water induces an
acute left-sided colitis with bloody diarrhea, ulcerations,
histological damage, and infiltrations with neutrophils
[26]. In susceptible strains the administration of DSS for
several cycles (7 days DSS, 7 days water) results in
chronic lesions with infiltrating macrophages, CD4+ T
lymphocytes, and fissuring ulcers [8]. Later phases of the
disease are associated with increased levels of proinflam-
matory cytokines (IL-2, IL-4, IL-6) and leukotrienes –
signs for involvement of the adaptive immune system. It

has been shown that pretreatment of mice having DSS
colitis with azoxymethane leads to the development of
multiple colorectal tumors predominantly in inflamed re-
gions of the colon [27]. Therefore experimental DSS coli-
tis might be a valuable model for studying the molecular
interplay of colitis and colorectal carcinogenesis.

Radiation induced colitis

MHC class II–/– mice spontaneously develop chronic co-
litis at 4–6 months of age [28]. In a recently published
model lethally irradiated wild-type C57BL/6 mice recon-
stituted with bone marrow from MHC class II–/– mice
displayed severe colitis within 2 months after reconstitu-
tion [29]. It can be speculated that radiation damage af-
fects the epithelial barrier, allowing immune cells in the
lamina propria to encounter luminal antigens. However,
the reasons for onset of colitis only in the MHC class II
deficient environment is poorly understood.

Hapten-based colitis models

Enemas of some contact sensitizing substances into the
colon of mice and rats can induce acute and chronic in-
testinal inflammation. Although the exact mechanisms
remain unclear, the inflammatory processes seem to be
the result of delayed-type hypersensitivity immune re-
sponses against hapten molecules covalently bound to
cellular proteins.

Trinitrobenzene sulfonic acid/dinitrobenzene 
sulfonic acid colitis

Colitis in susceptible strains of mice, rats and rabbits can
be induced by luminal instillation of 2,4,6-trinitroben-
zene sulfonic acid (TNBS) or dinitrobenzene sulfonic ac-
id (DNBS) in 30–50% ethanol [30, 31, 32, 33, 34]. The
development of acute, chronic, or lethal forms of colitis
is highly strain dependent (e.g., Black 6 mice are resis-
tant) and requires individual optimization of the adminis-
tered TNBS concentrations, and sometimes multiple in-
jections are necessary for chronicity. Acute colitis in rats
is associated with mucosal permeability as a conse-
quence of epithelial necrosis and elevations in colonic
myeloperoxidase activity. A high damage score is ob-
served, which is apparently related to an increase in the
number of macrophages and granulocytes.

TNBS/ethanol-induced colitis in SJL/J mice is char-
acterized by a transmural granulomatous inflammation
with severe diarrhea, weight loss, and thickening of the
bowel wall. The chronic stage is associated with an
activation of the mucosal immune system and an in-
crease in the number of infiltrating lymphocytes, espe-
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cially CD4+ T cells in the lamina propria [32]. The
TNBS colitis model has been very useful in studying
many important aspects of gut inflammation, including
cytokine secretion patterns, mechanisms of oral toler-
ance [35], cell adhesion [36], and immunotherapy [37,
38]. In SJL/J mice with TNBS-induced colitis isolated
lamina propria T cells produce significantly more inter-
feron (IFN) γ and IL-2 than IL-4 and IL-5 after stimula-
tion consistent with a TH1 type response. Since treatment
against tumor necrosis factor (TNF) α and anti-IL-12
ameliorates the disease, it has been suggested that a posi-
tive feedback loop between macrophages producing T
cell activating IL-12 upon contact with bacterial antigens
and T cells producing macrophage activating IFN-γ con-
tributes to the chronicity of the inflammation. As in oth-
er models, transforming growth factor (TGF) β and IL-
10 seem to play an important role for downregulation of
the inflammatory process.

Many histopathological aspects of TNBS colitis and
the increased gut levels of IL-12 and TNF-α are consis-
tent with those observed in specimens of patients with
CD. Interestingly, this model has been recently used to
demonstrate that environmental stress factors affect mu-
cosal permeability and can reactivate resolved DNBS co-
litis. This process is mediated and can be adoptively
transferred by CD4+ T cells [39]. It is important to note
that induction of colitis in the TNBS model depends on
the genetic background of the animal strain used and the
individual microflora of the animal facilities. Since dif-
ferent TNBS lots show a striking variability in their ca-
pacity to induce colitis, initial studies are needed to find
the optimal colitis-inducing TNBS/ethanol dose in a giv-
en microenvironment.

Oxazolone colitis

This model was initially developed in rats. Dark Agouti
rats were skin-sensitized with oxazolone prior to an ad-
ditional intrarectal luminal treatment with oxazolone dis-
solved in carmellose sodium/peanut oil [40]. The treat-
ment induced inflammation with an elevated myeloper-
oxidase activity, epithelial damage, and ulcerations. A
single rectal administration of oxazolone in 50% ethanol
in SJL/J mice caused a severe colitis marked by weight
reduction, diarrhea and marked loss of goblet cells, lead-
ing to death of half of the mice [41]. The inflammation
affects only the distal colon and here particularly mucos-
al layers. Mice which survive recover from the wasting
syndrome and diarrhea within 2 weeks after treatment.
Histological features and elevated production of the TH2
cytokines IL-4 and IL-5 of unstimulated and anti-
CD3/anti-CD28 stimulated lamina propria T cells are in
some aspects similar to characteristics of human UC. In
contrast to several other models, treatment with anti-IL-4
antibodies ameliorates disease.

Adoptive transfer models

Bowel inflammation is induced in adoptive transfer
models by selective transfer of certain cell types to im-
munocompromised host animals. These models are ver-
satile tools for unraveling many immunological and ge-
netic factors contributing to disease and have provided
outstanding new insights into the predominant role of T
cells for mucosal immune regulation (Tables 1, 2).

CD45RBHigh transfer model

CD4+CD45RBHigh T cells from wild-type donor mice
transferred to immunodeficient SCID (severe combined
immunodeficiency) or RAG (recombination activating
gene) deficient recipient mice cause a wasting syndrome
with transmural intestinal inflammation starting 5–8
weeks after cell transfer [42, 43, 44, 45]. Recipient mice
repopulated with the entire CD4+ T cell subset or
CD4+CD45RBLo T cells do not develop colitis (or at least
with delayed kinetics), although these cells also colonize
the host gut. While regulatory cells within the
CD4+CD45RBLo population have the potential to prevent
such immune responses, many studies support the view
that the bowel inflammation is caused by a proinflamma-
tory IL-12-driven TH1 response of CD4+CD45RBHigh cells
[46, 47]. CD4+CD45RBHigh T cells obtained from mice
deficient for the signal transducer and activator of tran-
scription (STAT) 4, a key component in IL-12 signal
transduction, develop a less severe disease upon transfer
than wild-type cells [48]. Neutralizing antibodies to either
IL-12, IFN-γ, or TNF-α ameliorate colitis and these
cytokines probably play a pivotal role for pathogenesis in
this model. In the case of IFN-γ there are two conflicting
studies with CD4+CD45RBHigh T cells from IFN-γ knock-
out donors. One group reported that mucosal inflamma-
tion in SCID recipients is abrogated in this case [49] while
another group detected no dramatic differences to transfer
of cells from wild-type donor mice [48]. Several studies
identified IL-10 and TGF-β as central anti-inflammatory
factors in this model. Regulatory T cells (Tr1 cells) which
produce mainly IL-10 due to coculture with IL-10, pre-
vent onset of gut inflammation and antigen-specific im-
mune responses when cotransferred with pathological
CD4+CD45RBHigh T cells [50] as systemic administration
of recombinant IL-10 or TGF-β do [47]. As in many other
models of experimental colitis, bacterial antigens play a
crucial role for pathology since treatment with antibiotics
or germ-free breeding of recipient SCID mice is associat-
ed with significantly less severe bowel inflammation [51].

To avoid the requirement of an expensive FACS sorter,
we recently developed a modified version of this model
by isolation of T cells using magnetic cell sorting. In this
transfer model CD4+CD62LHigh (L-Selectin, MEL14) T



cells from BALB/c mice were isolated and transferred into
CB.17 SCID mice. This cellular population induces a
chronic bowel inflammation with similar disease manifes-
tations and kinetics as transferred CD4+CD45RBHigh cells.
In this model chronic colitis could be effectively treated
by blocking the IL-6 receptor signal transduction pathway,
which is involved in T cell resistance to apoptosis [52].

CD3εTg26 transfer model

Mice with high copy transgenic expression of human
CD3ε display an abnormal structure of the thymus, lead-
ing to a complete loss of both T and natural killer cells
[53, 54]. Interestingly, adoptive transfer studies clearly
demonstrate that these mice develop severe wasting dis-
ease and bowel inflammation after reconstitution with
nonallogenic wild-type bone marrow depleted from T
cells [53]. T cells that have undergone normal thymic se-
lection can effectively inhibit development of such coli-
tis. One striking feature that BM→Tg26ε model has in
common with many other models is the predominant role
of activated T cells secreting IFN-γ and TNF-α, consis-
tent with a polarized TH1 response.

Colitis induced by transfer of hsp60-specific CD8 T cells

Severe lethal intestinal pathology (predominantly in the
small intestine) in this recently introduced mouse model
is induced by adoptive transfer of a hsp60-specific CD8+

T lymphocyte clone, preactivated by bacterial hsp60, in-
to T cell receptor (TCR) β–/– or SCID mice [55]. Forma-
tion of colitis in these mice requires presentation of
hsp60 on MHC class I and depends on a functional role
of TNF-α as adoptively transferred cells do not induce
colitis in TCRβ/TNF receptor I/tumor necrosis factor re-
ceptor II triple-knockout mice. In contrast to the findings
obtained in many other models, intestinal inflammation
in this model does not depend on the presence of the res-
ident bacterial flora. Thus the results obtained by initial
analysis of this model indicate that autoimmune hsp60
CD8+ T cells that are reactive to cellular hsp60 mediate
pathogenesis.

Genetically engineered models

The use of molecular biology techniques, in particular
transgenic mice and gene targeting technologies, in the
gastrointestinal tract is responsible for many recent ad-
vances in our functional understanding of mucosal in-
flammation [56] (Tables 1, 2). Such mice allow the pre-
cise molecular dissection of immunoregulatory pathways
and are useful in identifying specific therapeutic strate-
gies. Mutant strains can often be used together with the

colitis models described above, and intercrossing of mu-
tant strains allows further gradual analysis.

Transgenic mouse models

Colitis in HLA B27 transgenic rats

Rats transgenic for human HLA-B27, a molecule in-
volved in human spondylarthropathies, and β2-micro-
globulin develop a spontaneous inflammatory bowel dis-
ease which affects the stomach, ileum, and in particular
the entire colon [57]. Crypt hyperplasia and mucosal in-
filtration of mostly mononuclear inflammatory cells
characterize the disease. A functional role of activated
TH1 type lymphocytes (presumably from an aberrant an-
tigen presentation via B27) for pathogenesis has been
suggested [58]. This model has been used extensively to
study the effect of resident intestinal bacteria for acute
and chronic stages of gastrointestinal inflammation. Se-
lective colonization of the gut of germ-free bred trans-
genic rats, which do not develop colitis, with certain bac-
terial species of the normal intestinal microflora has
shown that different resident bacteria (e.g., Bacteroides
spp.) have different proinflammatory potentials [59]. In
addition, these studies have demonstrated that various
bacterial species can induce diverse types of pathology,
for example, colitis and gastritis, in these rats [60].

STAT-4 transgenic mice

STAT-4 is a regulatory transcription factor specifically
associated with IL-12 receptor signaling [61]. Transgen-
ic mice for STAT-4 under control of a cytomegalovirus
promoter system which express highly elevated nuclear
STAT-4 levels in CD4+ T cells after systemic adminis-
tration of dinitrophenyl–keyhole limpet hemocyanin
have been shown to develop chronic transmural colitis
[62]. Infiltrating lamina propria CD4+ T cells after stim-
ulation with αCD3/αCD28 produce in vivo and in vitro
predominantly TNF-α and IFN- γ, but not IL-4, consis-
tent with a TH1-type cell response. This demonstrates
that an abnormal activation of the IL-12 driven TH1
pathway can be sufficient to destroy the mucosal im-
mune balance. Interestingly, this suggestion is supported
by the finding that colitis in these mice can be adoptive-
ly transferred to recipient SCID mice by CD4+ T cells
that have been primed with antigens from the autolo-
gous bacterial flora.

Transgenic mice for dominant negative N-cadherin

An elegant approach, which emphasizes clearly the im-
portance of an intact epithelial barrier in the gut for mu-
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cosal homeostasis, was the establishment of N-cadherin
transgenic mice [63]. Cadherins are important mediators
of cellular adhesion. Altered intercellular adhesion by
tissue specific expression of a dominant negative mutant
of N-cadherin in transgenic mice by using a small intes-
tinal epithelial cell specific promoter results in the devel-
opment of chronic inflammatory bowel disease with
some similarities to CD. Human colitis is strongly asso-
ciated with altered cell-cell interaction and adhesion pro-
cesses, but the role of adhesion molecules, such as cad-
herins, in IBD is poorly understood. The differential tis-
sue-specific expression of normal or mutated cadherins
in transgenic mice can therefore contribute to a better
understanding of epithelial cell functions in colitis.

IL-7 transgenic mice

IL-7 synthesized in intestinal epithelial cells regulates pro-
liferation and differentiation of lymphocytes within the
gut mucosa and has been found to be upregulated 
in the serum of patients with UC [64]. The expression of
IL-7 in the colonic mucosa of IL-7 transgenic mice is as-
sociated with chronic colitis caused by infiltrating CD4+ T
cells [65]. The results of this study suggest an important
role of a destructive T cell response for intestinal patholo-
gy. Another group has reported the importance of IL-7 for
the development of colitis by using IL-7–/– deficient mice
in a non-T/non-B cell (RAG-2–/–) colitis model [66]. In
this system the lack of IL-7 prevents a strong pathogenic
myeloid cell response against the bacterial flora.

Jejunoileitis in herpes simplex virus tyrosine kinase
transgenic mice

This model is useful for investigating the functional role of
enteric glia in the gut. Transgenic mice expressing herpes
simplex virus (HSV) tyrosine kinase under control of the
astroglial cell specific glial fibrillary acidic protein promot-
er develop lethal inflammation of the ileum and the jeju-
num after elimination of bowel astroglial cells by a 2-week
treatment with the antiviral drug ganciclovir [67]. The
mechanism by which the loss or dysfunction of enteric glia
in the gastrointestinal tract may contribute to chronic intes-
tinal inflammation remains unclear. However, these mutant
mice may be very helpful in studying the functions of the
enteric nervous system in mucosal immunity.

Gene knockout models

IL-2/IL-2Rα knockout mice

Depending on the genetic background of the strain IL-2
knockout mice develop multiorgan disease, including in-

flammatory bowel disease [68]. Although large numbers of
T and B lymphocytes infiltrate the colon, these are not es-
sential in the formation of colitis since IL-2–/–/JH–/– dou-
ble-knockout mice, which lack B cells, do not fail to devel-
op disease [69]. In the inflamed colon there are increased
levels of proinflammatory cytokines such as IFN-γ, TNF,
and IL-1β, suggesting an activation of the TH1 pathway.
IL-2–/– mice do not develop severe colitis under germ-free
conditions [70, 71]. Although the exact role of IL-2 in mu-
cosal immunity still remains unclear, the analysis of this
extensively studied IBD model indicates that a dysregulat-
ed TH1 response of CD4+ T lymphocytes against compo-
nents of the luminal bacterial flora is essential for intestinal
pathology. Despite its well-known role as a growth factor
for T cells, IL-2 seems to be at the same time a critical
component of mechanisms leading to tolerance of T cells
against autologous bacterial antigens in the gut.

IL-10/CRF2-4 knockout mice

IL-10 is a well-known suppressor of TH1 cells and macro-
phage effector functions. Mice with targeted deletion of
the IL-10 gene spontaneously develop chronic enterocoli-
tis with massive infiltration of lymphocytes, activated
macrophages, and neutrophils [72, 73, 74]. The disease is
accompanied by a TH type 1 cytokine response, which can
be ameliorated by neutralizing antibodies to IL-12 and to
a lesser extent IFN-γ or systemic administration of recom-
binant IL-10 [75]. Studies with B cell deficient IL-10–/–

mice have shown that colitis is not dependent on this cell
type. Germ-free bred IL-10–/– deficient mice have no evi-
dence of colitis or immune system activation in the gut,
suggesting that resident enteric microflora or their prod-
ucts are probably important for initiation and perpetuation
of intestinal pathology [76]. Further evidence of the out-
standing immunoregulatory role of IL-10 in the gastroin-
testinal tract was obtained by analysis of CRF2-4 targeted
mice. CRF2-4 (type II cytokine receptor family) was re-
cently identified as essential element of the IL-10 signal
transduction pathway [77]. Macrophages of CRF2–4–/–

mice are unresponsive to IL-10 after stimulation with lipo-
polysaccharides and develop chronic intestinal inflamma-
tion with similarities to the disease in mice lacking IL-10.

Colitis in Giα2−deficient mice

Heterotrimeric G proteins are involved in signal transduc-
tion processes via adenylate cyclase. Mice with targeted
disruption of the α-subunit of Gi2, which is expressed in
many cell types including intestinal epithelial cells and
lymphocytes, display a severe chronic colitis and high in-
cidence of adenocarcinomas with some clinical and histo-
pathological features similar to UC in humans [78]. T
lymphocytes from these mice show in vitro elevated pro-



Multiple drug resistant (mdr1) gene deficient mice

The multidrug resistance (MDR) gene 1, which is re-
sponsible for drug resistance to chemotherapy in certain
types of cancer, is expressed in the intestinal epithelium
and subsets of hematopoietic cells. Mdr1α–/– mice dis-
play spontaneous bowel inflammation [85]. As in many
other IBD models, an immune response to the resident
bacterial flora triggers mucosal inflammation since oral
antibiotics ameliorate inflammation and inhibit initial
development of disease. Adoptive transfer of mdr1α–/–

bone marrow to irradiated wild-type mice does not in-
duce intestinal pathology, in striking contrast to chimera
of mdr1α–/– mice reconstituted with wild-type bone mar-
row. Thus, mucosal inflammation in these mice is most
likely caused by dysfunction of intestinal epithelial cells
and not by alterations in lymphocyte function.

Wiskott Aldrich syndrome protein deficient mice

The Wiskott-Aldrich syndrome protein (WASP) is in-
volved in cytoskeletal reorganization processes during
activation of lymphocytes. WASP-deficient mice display
mucosal inflammation by 4 months of age with crypt hy-
perplasia and infiltrates of lymphocytic and granulocytes
in the lamina propria [86].

STAT-3 knockout mice

STAT-3 is a part of signal transduction pathways of many
cytokines and growth factors [87]. Mice with specific dis-
ruption of the STAT-3 gene in macrophages and neutro-
phils produce highly elevated amounts of proinflammato-
ry cytokines such as TNF-α, IFN-γ, IL-1, and IL-6 after
systemic challenge with lipopolysaccharides, and this TH1
type immune response may lead to lethal septic shock
[88]. Twenty-week-old mutant mice display chronic en-
terocolitis associated with increased TH1 cell activity and
the presence of macrophages with a constitutively activat-
ed (“IFN-γ primed”) phenotype. STAT-3 in macrophages
is a critical factor within the signal transduction pathway
of IL-10, which for this cell type is a potent inhibitor of
immune responses and proinflammatory cytokine synthe-
sis. It is therefore thought that the absence of an IL-10 me-
diated counterregulatory effect on colonic macrophages,
which are continuously subjected to stimulation by lumi-
nal bacterial or food antigen, is sufficient for the develop-
ment of chronic intestinal inflammation.

TNF∆ AU-rich-element mice

Patients with CD have increased mucosal concentrations
of TNF-α. A chimeric monoclonal antibody that inhibits
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liferation upon stimulation via the T cell receptor and
produce high amounts of proinflammatory TH1 type cyto-
kines (IL-2, TNF-α, and IFN-γ), presumably as a result of
altered thymocyte maturation and function [79]. In the in-
flamed colon there are markedly increased numbers of
memory CD4+ T cells and IgG-producing B cells in the
lamina propria, and in addition to elevated IFN-γ and
TNF-α levels, there is greater production of IL-12 p40
mRNA than in wild-type mice. While development of the
disease depends on the genetic background of the used
inbred strain, environmental factors seem to be less im-
portant, since breeding under specific pathogen-free con-
ditions does not ameliorate the inflammation.

TCR-α chain knockout mice

Mice deficient for the TCR-α chain (TCR-α–/–) sponta-
neously develop mucosal inflammation at 12–16 weeks
of age with some characteristics similar to UC in humans
[28]. Colitis in these mice is associated with increased
numbers of aberrant TH2-type CD4+TCRα–β+ T cells
producing predominantly IL-4 and non-T cells producing
IFN-γ [80]. However, these elevated IFN-γ levels are not
critical for development of colitis because TCR-α/IFN-γ
double-knockout mice display similar pathology as
TCR-α–/– mice. In contrast, both anti-IL-4 neutralizing
antibody treated TCR-α–/–mice and TCR-α/IL-4 double-
knockout mice exhibited no or much milder clinical or
histological signs of inflammation, indicating the pre-
dominance of a pathological TH2 type immune response
in the gastrointestinal tract of these mice [81]. Double-
mutant mice (TCR-α–/–/Ig-µ–/–) lacking B cells show
more severe colitis and starting earlier in life than in
TCR-α–/– mice. These findings suggest that B cells are
not required for the initiation of colitis, but B cells can
probably suppress colitis at later stages of the disease.
TCR-α deficient mice maintained germ free or colonized
with a limited number of defined intestinal bacteria do
not develop intestinal inflammation [82].

Trefoil factor deficient mice

Intestinal trefoil factors (ITFs) are peptides secreted by
mucus cells of the gastrointestinal tract after inflammato-
ry damage [83]. Mice with targeted disruption of ITF
show severely impaired mucosal healing and decreased
epithelial regeneration and die after induction of colitis
by addition of dextran sulfate sodium to the drinking wa-
ter [84]. In acetic acid or TNBS-induced colitis in rats a
beneficial role has been reported for ITF in repair pro-
cesses within the intestinal mucosa. Therefore these
models can be useful in studying wound-healing pro-
cesses in the gut and potentially new therapeutic ap-
proaches for intestinal injury.



TNF (cA2, Infliximab) reduces symptoms of active CD
and is used in patients who respond insufficiently to con-
ventional therapy [89]. Gene targeting of AU-rich ele-
ments (ARE) in the untranslated region of the TNF-α
mRNA in mice is associated with increased constitutive
and inducible levels of TNF [90]. Overproduction of
TNF leads to polyarthritis and chronic intestinal inflam-
mation with infiltrating inflammatory cells and transmu-
ral inflammation, which is dependent on the presence of
T and B cells. This recent animal model emphasizes the
known pathogenic role of TNF production in IBD, and
TNF-α gene mutations or polymorphisms could poten-
tially add to genetic susceptibility to IBD in a subset of
patients.

General mechanisms 
of chronic mucosal inflammation

A steadily increasing number of experimental animal
models with some clinical manifestations similar to
those observed in human inflammatory bowel disease
has recently been developed and have contributed large-
ly to important advances in our current understanding of
the immunological, pathological, and physiological fea-
tures of chronic intestinal inflammation (Table 1). De-
spite the varying nature of these models the aspects
which they have in common greatly support the concept
that environmental factors affecting genetically suscepti-
ble hosts are responsible for induction of mucosal in-
flammation.

CD4+ T cell mediated effector mechanisms

It is now generally accepted that T lymphocytes infiltrat-
ing the lamina propria, in particular the CD4+ T helper
subset, play a key role in both normal and pathophysio-
logical immune regulatory processes in the gastrointesti-
nal tract [91] (Fig. 1). CD4+ T cell involvement for in-
duction of pathogenesis in the gut has been shown in
several knockout (IL-2, IL-10, TCR, Giα2), transgenic
(HLA-B27/β2m, STAT-4), hapten-based (TNBS, oxazo-
lone), and perhaps most strikingly adoptive transfer
models (CD45RBHIGH, CD3εtg26). Altered balances be-
tween TH1 and TH2 effector pathways are associated
with various pathological manifestations [92]. Several
studies have demonstrated elevated levels of IFN-γ, IL-2,
and TNF in the gut of CD patients consistent with a TH1
type response [93]. The dominance of a polarized TH1
pathway in CD is further confirmed by increased expres-
sion of IL-12 [94, 95], which is the key T cell differenti-
ation factor towards cellular immune responses. The ma-
jority of animal models display TH1 cytokine secretion
patterns and some histological findings (transmural,
granulomatous inflammation) consistent with CD. In

these mice genetic and environmental factors, particular-
ly the luminal bacterial flora, are responsible for early
activation of the IL-12/STAT-4 signal transduction cas-
cade in CD4+ T cells [62], which subsequently differen-
tiate into IFN-γ producing TH1 effector cells. IFN-γ
primed tissue macrophages produce large amounts of
TNF and other proinflammatory molecules and induce
chronic mucosal damage via matrix metalloproteinases.
Interestingly, a pivotal role of IL-12 is consistently ob-
served in most models, whereas the presence of IFN-γ in
some models is not required for onset of bowel inflam-
mation. IL-12 dependent TNF production by TH1 cells
and subsequent activation of proinflammatory processes
by TNF itself are likely to compensate for the absence of
IFN- γ [48]. A critical role for TNF in intestinal patholo-
gy is further underlined by a recent study showing that
deregulated expression of TNF in gene-targeted mice is
associated with inflammation of the small intestine [90].

It is know clear that TH1 immune responses in the
normal gut are tightly controlled by anti-inflammatory
mechanisms. The absence of an appropriate counterregu-
latory response is sufficient for development of intestinal
pathology, as shown in IL-10–/–, CRFB-4–/–, and TGF-
β–/– mice. Two different CD4+ T cell subsets, Tr1 and
TH3 cell, have been proposed as central suppressors of
inappropriate intestinal immune responses. Antigen-spe-
cific Tr1 cells probably downregulate immune responses
in the gut by secretion of IL-10 and prevent upon co-
transfer colitis in the CD45RBHIGH model [96]. Such
cells have also been identified in the human intestine,
where they were shown to be responsible for T cell unre-
sponsiveness to antigens of enteric bacteria [97]. TH3
cells, which produce mainly TGF-β and to a lesser extent
IL-4 and IL-10, are discussed in the context of antigen-
specific oral tolerance [98]. Primed TNF-producing mac-
rophages are a predominant target for the anti-inflamma-
tory effect of IL-10. This has been elegantly shown in
mice, which in a macrophage/neutrophil specific manner
are deficient for STAT-3, a protein associated with IL-10
signal transduction processes [88]. Although a patho-
physiological role of TH2 effector mechanisms remains
unclear in IBD patients, a predominance of IL-5 has
been shown in human UC [99]. Histopathological simi-
larities to UC, polarized TH2 responses, and disease
amelioration by anti-IL-4 strategies have been observed
in the inflamed colon of TCR-α–/– mice [80] and the
oxazolone colitis model [41].

Environmental factors

Studies in germ-free environments clearly demonstrate
that bowel inflammation in almost all experimental
models described above depends on the presence of the
enteric microflora. In addition, the basis for inflamma-
tion in several models is a disturbance of the mucosal
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barrier function and subsequent immune responses to
penetrated luminal antigens. The exposure of the mu-
cosal immune system to antigens of the intestinal micro-
flora is associated with a permanent danger of inade-
quate hyperresponsiveness. In healthy conditions a per-
manent immunological activation state is tightly con-
trolled, whereas tolerance is probably broken in the in-
flamed gut [100]. In addition, it has been shown that
such loss of tolerance can be adoptively transferred to
immunodeficient mice [7, 62], which lack appropriate
counterregulatory mechanisms. Interestingly, selective
colonialization of healthy germ-free animals with cer-
tain microbes has shown that not all components of the
flora have an equal potential to induce mucosal inflam-
mation. Bacteroides vulgatus [101] and Heliobacter
hepaticus [102, 103] have a colitis-inducing capacity in
some colitis models, whereas in contrast “probiotic”
Lactobacillus species can prevent colitis in IL-10–/–

mice [104] and are discussed as a potential new thera-
peutic strategy [105].

Animal models of IBD: from basics to therapy

Studies in animal models of chronic intestinal inflamma-
tion have provided many new insights into the complex
immune system of the gut and identified many key
pathological and protective immunoregulatory mecha-
nisms. These findings provide the basis for many novel
potential therapeutic strategies, in which pathophysio-
logical/protective ways of the inflammatory process are
specifically inhibited/supported and evaluated for thera-
py (Table 3). Until now a humanized and a mouse/
human chimeric neutralizing antibody to TNF-α [106]
and recombinant IL-10 and IL-11 [107, 108] have suc-
cessfully been used in patients with CD, although the re-
sponses to anti-TNF therapy are more dramatic than by
treatment with recombinant IL-10. Antibodies or antago-
nists to important cellular adhesion molecules [109, 110,
111] and some proinflammatory molecules including 
IL-1, IL-4, IL-6, and TNF or their receptors have benefi-
cial effects in animal models of IBD. Since IL-12 seems

Fig. 1 Proposed model of the
immunopathogenesis of TH1-
mediated colitis. Macrophages
are activated by penetrating
bacterial antigens after mucosal
damage and secrete IL-12 and
other proinflammatory mole-
cules. Subsequently, antigen-
specific activated CD4+ T cells
differentiate into IFN-γ and
TNF producing TH1 type effec-
tor cells. In the normal gut,
however, inappropriate immune
responses are tightly controlled
by regulatory T cells (Tr1, TH3)
producing anti-inflammatory
cytokines (IL-10, TGF-β). In
some models IL-4 producing
TH2 cells appear to have
pathogenic function rather than
IFN-γ producing TH1 effector
cells
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to play a central role in TH1-mediated responses to enter-
ic bacteria in CD, and anti-IL-12 treatment ameliorates
disease in TNBS colitis, it will be interesting to obtain
the results of anti-IL-12 therapy in patients with CD. An-
tisense phosphorothioate oligonucleotides have been
shown to penetrate efficiently into many different cell
types and potentially to provide a new specific therapeu-
tic option in IBD.

A novel promising therapeutic approach is the use of
specific antisense phosphorothioate oligonucleotides di-
rected against the translation start sites of proteins in-
volved in proinflammatory processes. These small mole-
cules can efficiently penetrate the cell membrane and
neutralize the synthesis of target proteins at the transla-
tional/transcriptional level. These drugs have been used
to downregulate the transcription factor nuclear factor
(NF) κB, which is involved in promoter regulation of
many proinflammatory cytokines and is critical for in-
flammatory processes in IBD. It has been shown that lo-

cal therapy with antisense phosphorothioate oligonucleo-
tides against the p65 subunit of NF-κB reduces levels of
proinflammatory cytokines in isolated macrophages of
CD patients and is clinically effective in TNBS colitis
[112] and DSS colitis (S. Pettersson, personal communi-
cation). Antisense strategies against intercellular adhe-
sion molecule 1 have recently been used in a therapeutic
trial in patients with CD [113, 114], and an antisense trial
against NF-κB p65 is currently in progress (S. Pettersson,
unpublished data). Gene therapy could provide another
means for specific inhibition or modulation of immune
responses in the gut [115].

As the practical use of somatic gene therapy is highly
dependent on safe and efficient transfer methods, several
different gene delivery systems have been recently devel-
oped. Of the various types of viral and nonviral vector
systems, recombinant replication defective human adeno-
viruses of serotype 5 (Ad5) have shown promising re-
sults. Many studies have shown that the replication-

Table 3 Novel potential thera-
peutic strategies for the treat-
ment of IBD (CD Crohn’s dis-
ease, UC ulcerative colitis, 
P preparation phase)

Therapy Animal model Clinical References
trial

Cytokines
IL-10 CD45 transfer, TNBS, DSS, PG-PS CD 25, 46, 100, 107,

119
IL-11 HLA-B27, TNBS CD 108, 120, 121
IFN-α UC, CD 122, 123
NIF Immune complex 124
rhG-CSF Immune complex 125

Antibodies

Cytokines/antagonists
Anti-IFN-γ CD45 transfer, TNBS 46, 126
Anti-TNF-α TNBS, CD45 transfer CD 46, 89, 106, 127
Anti-IL-12 TNBS, IL-10–/–, IL-2–/– CD-P 32, 71, 75, 100
Anti-IL-6R TNBS, IL-10–/–, CD45 transfer 52
Anti-IL-4 TCR–/–, oxazolone 41, 128
IL-1R antagonist TCR–/–, immune complex, PG-PS, TNBS 14, 15, 24, 129, 130

Adhesion molecules
Anti-ICAM DSS 131, 132
Anti-a4/Madcam Cotton-top tamarin, CD45 transfer, IL-2–/– 110, 111, 133, 134
Anti-CD44 V7 TNBS 109
Anti-CD11b/CD18 TNBS 135

Antisense DNA
NF-κB p65 TNBS, IL-10–/–, DSS CD, UC 112
ICAM-1 (ISIS 2302) DSS CD 113, 114, 136

Gene transfer
IL-4 TNBS 118

Other
Ox40 Ig fusion protein IL-2–/–, TNBS 137
IL-2 Ig fusion protein TNBS 38
PPR-g ligands DSS 138
Anti-EN-RAGE/RAGE IL-10–/–, TNBS 139
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defective Ad5 vector has a highly efficient mode of entry
into a broad spectrum of eukaryotic cells of many differ-
ent species and can, unlike retroviruses, infect both divid-
ing and nondividing cells. Recombinant adenoviruses can
efficiently transduce intestinal epithelial cells in vitro and
in vivo and subepithelial areas in the inflamed colon in
mice [116]. A recombinant adenoviruses encoding a mu-
tated, nondegradable IκB has been used to block NF-κB
in intestinal epithelial cells in vitro [117]. Another study
has demonstrated that an adenovirus containing the
cDNA for IL-4 ameliorates TNBS colitis in rats [118],
and similar data have recently been presented for IL-10
expressing adenoviruses. Since there is steady progress in
the development of new adenoviral and other viral and
nonviral gene transfer vehicles, further progress in the
field of intestinal gene therapy can be expected in the
near future. Targeted therapy either by antisense oligonu-
cleotides, gene therapy, or other specific inhibitors of pro-
tein functions, for example, peptides or drugs designed on
the basis of their three-dimensional structures has a prom-
ising potential and is certainly a possible future direction
for the treatment of inflammatory bowel disease.

Conclusion and future directions

Studies with animal models have improved our under-
standing of the complex field of human IBD and allowed
the molecular dissection of pathophysiological mecha-
nisms responsible for development of chronic intestinal
inflammation. There is now convincing evidence that
both genetic predisposition to sustained inflammatory re-

sponses and loss of tolerance to environmental factors
are major contributing factors to mucosal inflammation.
Most of the models highlight the promotion of an IL-12
dependent mucosal TH1 response against unknown com-
ponents of the bacterial microflora as a critical patholog-
ical event. The development of novel therapeutic strate-
gies on the basis of such better understanding of the mu-
cosal immune system is an exciting challenge for the fu-
ture.

It will be important for future approaches to mucosal
immunopathogenesis to develop further animal models
that more closely mimic human IBD, for example, mod-
els with truly chronic relapsing course and acute flares
by using inducible transgenic mouse systems. In our
opinion, it will also be important to understand more
precisely the mechanisms of apoptosis resistance of lam-
ina propria T cells, since many effective new treatment
modalities (e.g., anti-TNF, anti-IL-12, anti-IL-6R) ap-
pear to exert their effects at least in part by blocking ap-
optosis resistance with consecutive T cell apoptosis. In
addition, it will be important to understand the molecular
mechanisms of oral tolerance in the gut and mechanisms
responsible for the generation of TH3 and Tr1 cells that
could have therapeutic potential for human IBD. Finally,
the development of novel therapeutic approaches (e.g.,
by recombinant molecules, designer molecules/low mo-
lecular weight inhibitors, antibodies, antisense DNA,
gene transfer) will be an important field that could be
very relevant for the development of novel immunomod-
ulatory strategies to treat patients with IBD with added
specificity and fewer side effects than conventional im-
munosuppressive strategies.
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