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Abstract
Purpose  This study systematically reviewed our team’s research on the mechanism and assessment of liver fibrosis in BA, 
summarized our experience, and discussed the future development direction.
Methods  In this study, Pubmed and Wanfang databases were searched to collect the literature published by our team on the 
mechanisms of liver fibrosis in BA and the assessment of liver fibrosis in BA, and the above research results were systemati-
cally reviewed.
Results  A total of 58 articles were retrieved. Among the included articles, 25 articles related to the mechanism of liver 
fibrosis in BA, and five articles evaluated liver fibrosis in BA. This article introduces the key pathways and molecules of 
liver fibrosis in BA and proposes a new grading system for liver fibrosis in BA.
Conclusions  The new BA liver fibrosis grading method is expected to assess children’s conditions, guide treatment, and 
improve prognosis more accurately. In addition, we believe that the TGF-β1 signaling pathway is the most important in the 
study of liver fibrosis in BA, and at the same time, the study of EMT occurrence in BA should also be deepened to resolve 
the controversy on this issue.
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Introduction

Biliary atresia (BA) is a disease involving progressive 
fibrosis and inflammatory destruction of intrahepatic and 
extrahepatic bile ducts that, without intervention, leads to 
biliary cirrhosis and liver failure [1]. In the absence of a 
single recognized cause, BA is most likely secondary to 
viral infection, environmental toxins, genetic mutations, and 

morphogenetic defects [2]. In the treatment of BA children, 
when there is no obvious contraindication to Kasai surgery, 
the sequential treatment of Kasai surgery–liver transplanta-
tion should be given priority [3].

Unlike liver fibrosis in adults, most children with BA 
progress rapidly. The severity of liver fibrosis at the time 
of the Kasai operation can affect the long-term prognosis of 
children with BA [4]. In addition, about half of BA children 
after the Kasai operation require liver transplantation due to 
progression of cirrhosis [5]. Therefore, preventing the pro-
gression of liver fibrosis in children with BA is the greatest 
challenge faced by pediatric surgeons.

To explore the specific mechanism of liver fibrosis in 
children with BA, our team has done a lot of work in this 
field. In this study, we systematically reviewed the literature 
on the mechanism and grading of liver fibrosis in the BA 
by our group. This may be important for understanding the 
pathogenesis of BA and providing new targets and strategies 
for the treatment of BA.
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Methods

The study followed the protocol of registration with the 
International Platform of Registered Systematic Review 
and Meta-analysis Protocols (INPLASY). INPLASY ID: 
INPLASY202450056.

Search strategy

Pubmed and Wanfang databases were searched from the 
establishment of the database to January 1, 2024. The MeSH 
keywords covered “Biliary Atresia”, “Liver Cirrhosis” and 
related free words, and Jianghua Zhan was included in the 
author. We use the Boolean operator “OR” to connect sub-
ject words with free words to extend the search criteria. 
Then, we connect individual subject words via the Boolean 
operator “and” to determine the search scope. The database 
search strategy is described in Online Resource 1. There 
are no restrictions on the language and publication status 
of this paper.

Literature searches

Inclusion criteria included: articles related to the mecha-
nism of liver fibrosis in BA and articles related to the assess-
ment of liver fibrosis in BA. Meanwhile, the criteria used to 
exclude studies were as follows: case reports, guidelines, 
reviews, expert commentary, and articles with inconsistent 
content.

Study selection and definitions

All authors independently screened the titles and abstracts 
of the search results from both databases for relevance. 
Finally, two authors independently evaluated the full text of 
the remaining results according to prespecified criteria, and 
discrepancies were resolved by the third author. The final list 
of included articles was determined through careful discus-
sion among the authors.

Data extraction

Information extracted from the included studies was as 
follows:

(1) Molecules associated with the degree of liver fibrosis 
and their corresponding P and r values.

(2) Grading criteria for liver fibrosis in biliary atresia.
(3) The potential diagnostic molecules of BA liver fibro-

sis and the following data were extracted: detection method, 
sample source, cutoff value, sensitivity, specificity, and area 
under the curve (AUC) value.

Results

Search process

The literature screening flow chart is shown in Fig. 1. First, 
the first step identified 58 articles by database search. In the 
second step, we removed 22 articles based on reading the 

Fig. 1   Flow chart of literature 
screening
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title and abstract of the articles, leaving only 36 articles. In 
the third step, we conducted a close reading of the full text 
of 36 articles and removed six of them. Finally, we identified 
25 articles related to the mechanism of liver fibrosis in BA 
[6–30]. At the same time, there were five articles related to 
the assessment of liver fibrosis in BA [4, 31–34].

Literature data statistics

In recent years, our group has made some progress in the 
study of the mechanism of liver fibrosis in BA, which 
involves multiple signaling pathways and molecules 
(Table 1).

Molecules related to the degree of liver fibrosis

The expression levels of FN1, CCR9, LECT2, M2BPGi, 
Leptin, GPC3, Hes-1, CD163, IL-6, PDGF-AA, MMP7, and 
HIF-1α in BA liver tissues were positively correlated with 
the degree of liver fibrosis (Table 2).

Molecules for differential diagnosis of BA

Our group found that LECT2, HDAC2, CCL25, CD163, 
M2BPGi, and GPC3 were associated with liver fibrosis in 
BA and showed good predictive accuracy in differentiating 
BA from other cholestasis diseases in children (Table 3).

Grading of liver fibrosis in BA

Liver biopsy is the gold standard for the assessment of liver 
fibrosis. Clinically, Ishark, Metavir, and Scheuer scoring sys-
tems are commonly used to grade the progression of liver 
fibrosis in BA. However, these scoring systems are based 
on the characteristics of liver fibrosis in adults with chronic 
hepatitis and are not related to histopathological features 
related to BA, so there is a large bias in evaluating liver 
fibrosis in BA. Based on the main pathological features of 
BA (fibrosis degree and bile duct reaction), our team estab-
lished the grading criteria for liver fibrosis in BA in 2015 
[32] and optimized it in 2023 (Table 4) [4]. This grading 
standard can not only better reflect the actual status of liver 
fibrosis in children with BA, but also indicate the tendency 
of cirrhosis and poor prognosis. It can also make up for the 
gap in judging the degree of liver fibrosis during operation 
by observing the portal area, P–P area, and boundary plate 
under the frozen section during operation. In addition, by 
comparing the BA-specific grading system with Ishak and 
Metavir scoring systems with the prognosis of children with 
BA after KP, our team found that the BA-specific grading 
system not only reflects the situation of liver fibrosis but 
also helps to better assess the prognosis of children with BA 
when combined with infant BA liver fibrosis (iBALF) and 
severe bile duct proliferation (BDP) [4].

Systematic review

TGF‑β signaling pathway

TGF-β regulates extracellular matrix (ECM) formation, deg-
radation, and remodeling and has been shown to play a key 
role in other chronic liver diseases, while it is also dysregu-
lated in BA [35]. TGF-β1, a member of the TGF-β super-
family. Our group mainly explored the regulatory role of 

Table 1   Statistics of the number of studies on the mechanisms of 
liver fibrosis in  BA involved in the systematic review

Literature 
in Chinese

Literature 
in English

Total Ratio

TGF-β signaling pathway 5 0 5 20.0%
EMT 1 1 2 8.0%
LECT2 1 1 2 8.0%
Notch signaling pathway 2 0 2 8.0%
Hedgehog signaling pathway 1 0 1 4.0%
PI3K/Akt signaling pathway 1 0 1 4.0%
RhoA, Rac1 and Cdc42 1 0 1 4.0%
JNK2, TIMP-1 and collagen 

III
1 0 1 4.0%

Leptin 1 0 1 4.0%
SOX9 1 0 1 4.0%
MMP-7 1 0 1 4.0%
VEGF 1 0 1 4.0%
HDAC2 1 0 1 4.0%
CCL25 1 0 1 4.0%
CD163 1 0 1 4.0%
M2BPGi 1 0 1 4.0%
GPC3 1 0 1 4.0%
BMP-9 1 0 1 4.0%

Table 2   Relevance and 
significance of molecules 
associated with the degree 
of liver fibrosis in BA in the 
systematic review

Molecule rs P

FN1 0.938 P < 0.01
CCR9 0.820 P < 0.001
LECT2 0.850 P < 0.0001
M2BPGi 0.847 P < 0.001
Leptin 0.876 P < 0.01
GPC3 0.619 P < 0.01
Hes-1 0.791 P < 0.001
CD163 0.912 P < 0.001
IL-6 0.920 P < 0.001
PDGF-AA 0.887 P < 0.001
MMP7 0.609 P < 0.001
HIF-1α 0.597 P = 0.009
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the TGF-β1/SMAD signaling pathway and other molecules 
involved in the TGF-β1 pathway in BA children.

TGF‑β1/SMAD signaling pathway

We studied the expression of TGF-β1, SMAD2, SMAD3, 
SMAD4, P-SMAD2, and P-SMAD3 in the liver tissue of 
children with BA and their roles in liver fibrosis [16, 17]. 
The results showed that SMAD3, P-SMAD2, P-SMAD3, 
and SMAD4 were closely related to the pro-fibrotic effect of 
TGF-β1 pathway in BA liver, and their expressions were first 
increased and then decreased during the progression of BA 
fibrosis. The decrease of various proteins in the late stage of 
liver fibrosis may be due to the decrease of cell number and 
protein source caused by liver decompensation. However, 
the expression of SMAD2 did not seem to be affected, show-
ing a wavy change without obvious regularity. Therefore, we 
further investigated the mRNA expression level of SMAD2, 
and the results showed that its expression also increased first 
and then decreased with the progression of BA fibrosis.

In the early stage of liver fibrosis, P-Smad3 is positively 
correlated with the grade of liver fibrosis, and the changes of 
PAI-1 and P-Smad3 are consistent, suggesting that the secre-
tion of PAI-1 may be affected by the content of P-Smad3 
[16]. Based on the above experimental results, our group 
continued to explore and found that the expression of PAI-1 
in the hepatic lobule was stronger than that in the portal 

area, and PAI-1 was a product of the TGFβ-1 pro-fibrotic 
pathway, reflecting the direction of the pro-fibrotic pathway, 
suggesting that the pro-fibrotic effect of TGFβ-1 pathway is 
more likely to be manifested by damage to the structure of 
the hepatic lobule in BA [20].

Other molecules involved in the TGF‑β1 pathway

In addition to SMAD-dependent pathways, TGF-β1 activates 
SMAD-independent pathways, such as MAPK, NF-kB, and 
PI3K pathways [36]. JNK2, p38, and ERK1/2 are different 
subtypes of MAPK signaling pathway, which promote the 
process of liver fibrosis by participating in the phosphoryla-
tion and nuclear translocation of TGF-β1 signaling path-
way-related proteins [37]. Our previous studies have shown 
that the expression levels of JNK2, p38, and ERK1/2 are 
increased in the cytoplasm of hepatocytes, bile duct epithe-
lial cells, and vascular endothelial cells in the liver of BA 
children, suggesting that they may play an important role in 
the progression of liver fibrosis in BA [18, 19].

αvβ8 acts as a cell adhesion molecule by binding to the 
latency-associated peptide-1 (LAP-1) region of TGF-β1, it 
then promotes membrane-type 1 matrix metalloproteinase 
(MT1-MMP) binding to LAP-1 on TGF-β1, Furthermore, 
MT1-MMP can form a complex with αvβ8-TGF-β1 and acti-
vate the TGF-β1 signaling pathway through their interaction 
[38]. Our study found that αvβ8 was strongly positive in 

Table 3   Molecules associated with the differential diagnosis of BA in the systematic review

IHC immunohistochemistry, AUC​ area under the curve

Molecule Testing method Source of sample Cut off value Sensitivity Specificity AUC​

LECT2 [22] ELISA Serum of BA children 23.99 ng/ml 86% 94% 0.95
HDAC2 [14] IHC Liver samples of BA children 6 points 79.4% 90% 0.925
Combined CCL25, 

GGT, and TBA 
[13]

ELISA Serum of BA children CCL25: 267.12 pg/ml; 
GGT:135.00U/L; TBA: 
106.5 μmol/L

85.2% 100% 0.958

CD163 [12] ELISA Serum of BA children 8.323 μg/L 86.67% 100% 0.927
M2BPGi [11] ELISA Serum of BA children 4.48 ng/ml 88.9% 100% 0.972
GPC3 [9] ELISA Serum of BA children 0.639 μg/L 82.93% 80.95% 0.878

Table 4   New grading criteria for liver fibrosis in BA

Liver tissue manifestations

0 No edema or widening in the portal tract area, no obvious fibrous tissue proliferation observed
1 Mild edema and widening in the portal tract area, localized fibrous tissue proliferation around sinuses and 

within lobules, with or without the formation of short fibrous septa
2 Formation of fine fibrous septa in the portal tract area, bridging fibrosis involving < 50% of the portal tract area
3 Widening of fibrous septa in the portal tract area, bridging fibrosis in > 50% of the portal tract area; uneven 

liver lobule size, structural disarray, occasionally accompanied by nodule formation
4 Presence of multiple pseudo-lobules, indicative of liver cirrhosis
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liver tissues of BA children, indicating that αvβ8 may be 
involved in the process of liver fibrosis in BA children [18]. 
In addition, TGF-β1 can inhibit ECM degradation by inhib-
iting MMP and promoting the natural inhibitor TIMP [36]. 
Increased expression of TIMP-1 was also found in BA liver 
tissues in our study [19].

BMP-9 is a member of the TGF-β superfamily, which is 
like the ligand–receptor binding form in the TGF-β signal-
ing pathway. After binding to the receptor, BMP-9 leads 
to the phosphorylation of SMAD1/5/8. Phosphorylated 
SMAD1/5/8 binds to SMAD4 and migrates to the nucleus 
to regulate gene expression [39]. Studies have confirmed 
that BMP-9 can promote liver fibrosis, but its expression 
in BA liver tissue is not clear [40]. Our study found that 
the expression of BMP-9 increased with the aggravation 
of liver fibrosis in BA children, and BMP-9 could induce 
the expression of ID1 in the hepatic stellate cell nucleus by 
phosphorylating SMAD1/5, leading to the increase of the 
expression of extracellular matrix α-SMA, and promote the 
process of fibrosis [21].

Epithelial–mesenchymal transition (EMT)

Intrahepatic cells (including hepatocytes, HSCs, and cholan-
giocytes) can transform into myofibroblasts through EMT, 
and play an important role in developing liver fibrosis by 
involving various pathways [41]. BA-related fibrosis is 
closely related to the occurrence of EMT in the human nor-
mal intrahepatic biliary epithelial cell line [42].

Association of Hedgehog signaling pathway with EMT

In BA, the Hedgehog signaling pathway affects the occur-
rence of liver fibrosis from many aspects, mainly by activat-
ing HSC, OPN regulation, EMT, vascular remodeling, and 
other biological processes [24]. In addition, several genes 
(e.g., add3, gpc1) that regulate the Hedgehog pathway have 
been reported to be associated with BA susceptibility [43, 
44]. The previous findings of our group showed that the 
mRNA and protein expression of SHH and GLI2 in the liver 
of BA children were significantly higher than those of the 
control group, and the EMT marker N-cadherin and CK19 
were co-expressed in BA biliary epithelial cells. In addition, 
activation of the Hedgehog signaling effector transcription 
factor GLI2 with r-SHH treatment promoted EMT (inhibited 
E-cadherin and enhanced N-cadherin), which was blocked 
by blocking this pathway [24].

Association of EGF with EMT

EGF is a member of the growth factor family and has been 
shown to play an important role in EMT, but there is no 
relevant study in BA [45]. Previous studies from our group 

identified the role of EGF in liver fibrosis in BA patients. 
The main findings were as follows: (1) EGF was elevated 
in BA and correlated with liver fibrosis; (2) EGF promoted 
EMT and proliferation of BA hepatobiliary epithelial cells 
through the EGF/EGFR–ERK1/2 signaling pathway; (3) 
EGF promoted the expression of IL-8 in hepatocytes 
through the ERK1/2 pathway and activated HSCs in vitro; 
(4) Neutralizing antibody to EGF attenuated liver fibrosis 
in BDL mice [26].

Proliferation of blood vessels

In the development of liver diseases, activated hepatic 
stellate cells can secrete many pro-angiogenic factors to 
promote the formation and development of new blood ves-
sels. At the same time, new blood vessels stimulate HSCs 
through activated TGF-β to accelerate the process of liver 
fibrosis [46]. The hepatic vascular system of BA children 
is abnormal, and there is a characteristic subcapsular spi-
der telangiectasia [47]. Our previous study found that the 
process of liver fibrosis in BA was accompanied by vas-
cular proliferation in the portal area [17, 32]. We further 
found that HIF1-α and VEGF may induce angiogenesis 
and promote liver fibrosis in BA [27].

LECT2 is a chemokine synthesized and secreted by 
hepatocytes. After the liver injury, the secretion of LECT2 
increases around the portal area and at the injury bound-
ary, which can aggravate liver fibrosis by promoting the 
capillarization of hepatic sinusoidal endothelial cells [48]. 
Οur group found that LECT2 was highly expressed in BA 
liver tissue and serum, and its expression level in liver tis-
sue was significantly positively correlated with the degree 
of liver fibrosis and the number of neovascularization in 
the portal area [28]. In addition, macrophages can regulate 
LECT2 associated with liver fibrosis in BA by secreting 
TGF-β1 [22].

Discussion

Liver fibrosis in BA has always been a difficult problem for 
pediatric surgeons. Our team has been committed to the 
study of liver fibrosis in BA in recent years and has made 
some progress. We summarize the molecules that have been 
previously associated with the grade of liver fibrosis in BA 
and those that are helpful in the differential diagnosis of BA. 
LECT2 has the highest diagnostic efficiency in differentiat-
ing BA from other cholestatic diseases, which can be further 
studied. In addition, we propose a new grading criterion for 
liver fibrosis in BA and summarize the mechanisms associ-
ated with liver fibrosis in BA.
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Fig. 2   Diagram of possible mechanisms by which the TGF-β pathway regulates liver fibrosis in BA. Created with BioRender.com
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TGF‑β signaling pathway

Figure 2 shows a possible mechanistic diagram of the TGF-β 
pathway regulating liver fibrosis in BA based on our sys-
tematic review described above. The results of our team are 
consistent with five other studies, which suggest that the 
TGF-β1 pathway plays an important role in liver fibrosis in 
BA [49–53]. However, Lee et al. [54] found that TGF-β2 was 
more actively transcribed TGF-β gene compared to TGF-β1 
during the progression of liver fibrosis in BA. We have not 
previously explored TGF-β2 expression in BA liver fibrosis, 
and this finding will be further explored in the future. In 
addition, the results of SMAD2 in our study were peculiar. 
It has been suggested that SMAD2 plays a protective role 
during fibrosis [36]. Therefore, we speculate that the incon-
sistent expression levels of SMAD2 protein and mRNA may 
be related to the protective effect of liver fibrosis, but this 
needs to be confirmed by further studies.

EMT

Consistent with the results of the present study, four other 
studies similarly suggested that EMT may be present in 
biliary epithelial cells of BA [55–58]. However, whether 
EMT occurs in the process of liver fibrosis remains con-
troversial. Lineage tracing studies demonstrated that EMT 
did not occur in biliary epithelial cells of mice with liver 
fibrosis [59–61]. The possible reasons for this contradic-
tion are as follows: (1) EMT of biliary epithelial cells may 
be an initial event [62]. (2) Lineage tracing technology has 
its limitations, and EMT in liver fibrosis still needs to be 
further explored.

In conclusion, our proposed method for grading liver 
fibrosis in BA is expected to assess the condition of chil-
dren more accurately with BA, guide treatment, and improve 
prognosis. In addition, BA liver fibrosis is a complex patho-
logical mechanism, and its specific pathogenesis cannot be 
explained by one certain pathway. Multiple signaling path-
ways mediated by TGF-β1 may be involved in the progres-
sion of liver fibrosis in BA, and it is the most important 
signaling pathway in the process of liver fibrosis in BA. 
Furthermore, as one of the most controversial processes in 
BA, EMT still needs to be further explored.
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