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Abstract
Objective To develop a machine learning diagnostic model based on MMP7 and other serological testing indicators for early 
and efficient diagnosis of biliary atresia (BA).
Methods A retrospective analysis was conducted on patient information from those hospitalized for pathological jaundice 
at Beijing Children’s Hospital between January 1, 2019, and December 31, 2023. Patients with serum MMP7, liver stiffness 
measurements, and other routine serological tests were included in the study. Six machine learning models were constructed, 
including logistic regression (LR), random forest (RF), decision tree (DET), support vector machine classifier (SVC), neural 
network (MLP), and extreme gradient boosting (XGBoost), to diagnose BA. The area under the receiver operating charac-
teristic curve was used to evaluate the diagnostic efficacy of the various models.
Results A total of 98 patients were included in the study, comprising 64 BA patients and 34 patients with other cholestatic 
liver diseases. Among the six machine learning models, the XGBoost algorithm model and RF algorithm model achieved 
the best predictive performance, with an AUROC of nearly 100% in both the training and validation sets. In the training set, 
these two algorithm models achieved an accuracy, precision, recall, F1 score, and AUROC of 1. Through model interpreta-
tion analysis, serum MMP7 levels, serum GGT levels, and acholic stools were identified as the most important indicators 
for diagnosing BA. The nomogram constructed based on the XGBoost algorithm model also demonstrated convenient and 
efficient diagnostic efficacy.
Conclusion Machine learning models, especially the XGBoost algorithm and RF algorithm models, constructed based on 
preoperative serum MMP7 and serological tests can diagnose BA more efficiently and accurately. The most important influ-
encing factors for diagnosis are serum MMP7, serum GGT, and acholic stools.
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Introduction

Biliary atresia (BA) is a rare and severe neonatal hepato-
biliary disease, mainly characterized by neonatal biliary 
obstruction, bile stasis, and progressive liver fibrosis. The 
incidence of BA varies greatly worldwide, with rates of 
approximately 1:19,800–1:11,800 in Europe and the United 
States, and higher rates in East Asia [1, 2]. The etiology of 
BA remains unclear and may be related to various factors 
such as abnormal biliary tract development in early fetal 
life, viral infections, and immune disorders. Symptoms usu-
ally present as jaundice, acholic stools, and liver malfunc-
tion within 3 months after birth. Currently. Early diagnosis 
and timely Kasai portoenterostomy (KP) can effectively 
alleviate disease progression. Studies have reported that 
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KP performed within 60 days after birth can significantly 
improve patients’ prognosis [3]. While the 20-year native 
liver survival rate of Patients who undergo surgery older 
than 90 days is less than 20% [4]. Therefore, early and accu-
rate diagnosis of BA is crucial for improving patients’ native 
liver survival.

Matrix metalloproteinase-7 (MMP7) may promote the 
formation and development of biliary atresia lesions by 
degrading collagen fibers and other matrix components in 
the bile duct wall during the pathogenesis of BA [5]. Studies 
from the United States, mainland China, and Taiwan have 
confirmed that MMP7 may be the best serum marker for 
diagnosing biliary atresia with good sensitivity and speci-
ficity [5–10].

Machine learning (ML), as a part of artificial intelligence, 
is being applied in various fields of medical research, such 
as disease diagnosis, severity assessment, and guiding treat-
ment plans [11–14]. However, there is rare research on BA 
diagnosing based on serum MMP7 and other routine sero-
logical test results. The purpose of this study is to apply 
machine learning techniques to BA diagnosis based on 
patients’ serum MMP7 and other routine serological test 
results, with the aim of constructing an efficient and accu-
rate diagnostic model for BA, which will improving patients’ 
native liver survival and prognosis by helping the early diag-
nosis and advancing the patient’s age of surgery,

Methods

Study subjects

We retrospectively investigated the clinical data of chil-
dren with pathological jaundice admitted to neonatal sur-
gery department, Beijing Children’s Hospital from January 
1, 2019, to December 31, 2023. To explore the diagnostic 
efficacy of MMP7 for BA, we only included patients with 
complete preoperative testing, (MMP7, ultrasound and 
other laboratory data). This study was approved by the 
Medical Ethics Committee of Beijing Children’s Hospital 
Affiliated to Capital Medical University, in line with the 
ethical guidelines of the Declaration of Helsinki (revised 
in 2013). Informed consent was exempted due to the ret-
rospective nature of this study. The diagnosis of biliary 
atresia was based on intraoperative anatomical findings and 
cholangiography.

Serum MMP7 measurement

Serum MMP-7 levels were measured using an enzyme-
linked immunosorbent assay (ELISA) kit (R&D Systems, 
DMP700, Minneapolis, MN, USA) [15]. All measurements 
were performed by Beijing Mygenostics Co., LTD. All 

samples were measured in triplicate, and the average serum 
MMP-7 levels were analyzed.

Liver stiffness measurement

In this study, liver stiffness measurement (LSM) was per-
formed using an Aixplorer ultrasound system (SuperSonic 
Imagine SA, Aix-en-Provence, France) with a SuperLin-
ear SL15-4 probe. LSM was obtained from an area of liver 
parenchyma approximately 1 cm in diameter, 0.5–1 cm 
below the liver capsule, avoiding large vessels. The detection 
and analysis of LSM were performed by two experienced 
ultrasound physicians.

Data collection and preparation

Baseline indicators included demographic factors such as 
gender, age, weight, mode of delivery, birth weight, gesta-
tional age at admission, maternal obstetric history, postnatal 
feeding status, etc. Symptoms such as acholic stool were also 
included. Preoperative examinations included ultrasound 
liver stiffness values, serum MMP7 levels, blood routine and 
biochemical laboratory test results. The final diagnosis of 
biliary atresia was based on intraoperative surgery findings 
and cholangiography.

Variables with missing values exceeding 20% were 
excluded from the analysis. The miceforest package was 
used to fill in missing values via multiple imputation by 
chained equations (MICE). To avoid high correlations 
between different features, we performed Spearman corre-
lation analysis on features after handling missing values. The 
correlation coefficient of each feature relative to other fea-
ture was calculated. Features with high correlation (r > 0.9) 
were excluded from the analysis.

Prediction models and evaluation

We explored six machine learning algorithms, including 
logistic regression (LR), random forest (RF), decision tree 
(DET), support vector machine classifier (SVC), multilayer 
perceptron (MLP) and extreme gradient boosting (XGBoost) 
to predict BA. All models were developed using Python 
(version 3.10). The LR, RF, DET, MLP and SVC models 
were implemented using the Python Sklearn package. The 
XGBoost model was implemented using the XGbooster 
package. All patients were randomly divided into a training 
set and a validation set in a 7:3 ratio. Least absolute shrink-
age and selection operator (Lasso) regression was used to 
perform feature selection on the training set data before 
inclusion in the model. The model was trained using tenfold 
cross-validation based on the training set data, and model 
performance was evaluated based on the average score. After 
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obtaining the optimal model parameters, validation was per-
formed on the validation set.

Five metrics recording performance were obtained at each 
iteration, including area under the receiver operating charac-
teristic (ROC) curve (AUROC), accuracy, precision, recall, 
F1 score. The models on each dataset were compared by the 
mean AUROC value over ten iterations. The best performing 
ML model was selected (as measured by its mean AUROC 
value). Calibration curves were used to assess the consist-
ency between the predicted risk and observed risk of these 
ML models. The top ten features with the most significant 
influence on prediction were selected for model explana-
tion using Shapley Additive Explanations (SHAP). Finally, 
based on the regression coefficients, the best-performing ML 
model was selected to construct a nomogram for predicting 
BA in the neonatal.

Data analysis

Patients were divided into BA and control groups, and 
variables between the two groups were displayed and com-
pared. Continuous variables with normal distribution were 
analyzed by independent samples t test, and non-normally 
distributed variables were analyzed by Mann–Whitney U 
test. Categorical variables were analyzed by chi-square (χ2) 
test or Fisher’s exact test. All statistical analyses were per-
formed using Python (version 3.10) and R software (4.2.1), 
with P < 0.05 considered significant.

Results

Queue characteristics

We retrospectively studied children who were hospitalized 
in our center due to pathological jaundice. Patients with 
incomplete preoperative serum MMP7, ultrasound and other 
laboratory data were excluded from the analysis (Fig. 1). 
This study included 98 patients, with 64 BA and 34 non-BA 
served as controls (Table 1). The non-BA group consist of 
20 patients with neonatal hepatitis, 4 patients with diges-
tive tract malformation, 4 patients with Alagille syndrome, 
4 patients with progressive familial intrahepatic cholestasis 
(PFIC), and 2 patients with neonatal intrahepatic cholestasis 
caused by citrin deficiency (NICCD).

The baseline information, liver stiffness, and laboratory 
examination results of the two groups of patients are sum-
marized. The incidence of serum MMP7, acholic stool, birth 
weight, weight at admission, total protein (TP), albumin 
(ALB), globulin (GLO), total cholesterol (TC), direct bili-
rubin (DBIL), low density lipoprotein (LDL), gamma-glu-
tamyl transpeptidase (GGT), total bile acid (TBA), platelet 
(PLT) and Breastfeeding in the BA group was significantly 

higher than that in the control group (P < 0.05). The pre-
mature birth and para 1 in the BA group were lower than 
those in the control group (P < 0.05). While other clinical 
features did not show significant statistical differences. To 
preliminarily explore the diagnostic value of each indica-
tor, we independently constructed ROC curves for MMP7, 
LSM, TP, GGT, DBIL, TBA, PLT, and acholic stool (Fig. 2). 
The results showed that MMP7 (AUROC = 0.855, 95% CI 
0.818–0.952), GGT (AUROC = 0.834, 95% CI 0.754–0.914), 
acholic stool (AUROC = 0.777, 95% CI 0.670–0.883), and 
LSM (AUROC = 0.750, 95% CI 0.645–0.855) had high inde-
pendent diagnostic value.

Predictive performance of machine learning models

Spearman correlation analysis showed no strong correlation 
between any features (r < 0.9, Fig. 3). Therefore, all factors 
in the training set were included in the lasso regression for 
feature selection. Through lasso regression, a total of 10 
features were selected for subsequent model construction, 
including: premature, first delivery, acholic stool, LSM, 
MMP7, GGT, TBIL, DBIL, VLDL, and PLT (Fig. 4A). 
Based on the training set data, the best parameters were 
selected through tenfold cross-validation to reduce model 
overfitting. The best diagnostic model parameters were 
obtained using Optuna for model hyperparameter optimiza-
tion. The performance of all models was validated in the 
validation set. The results showed XGBoost and RF out-
performed the other four models both in the training and 
validation sets (Fig. 4B and Table 2). It is particularly note-
worthy that, due to the high diagnostic specificity of MMP7, 
both XGBoost and RF exhibited extremely high diagnos-
tic efficacy in the training set under optimal optimization 
parameters. In the 30 training cases (19 BA and 11 non-BA), 
the accuracy, precision, recall, F1 score, and AUROC of 
these two models all reached 1 (Fig. 4B and Table 2). The 

Fig. 1  Study flowchart
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Table 1  Patient clinical data and baseline data

LSM liver stiffness measurement, MMP7 Matrix metalloproteinase-7, TP total protein, ALB albumin, GLO globular proteins, TC total choles-
terol, ALP alkaline phosphatase, AST aspartate aminotransferase, ALT alanine transaminase, GGT  gamma-glutamyl transpeptidase, TBIL total 
bilirubin, DBIL direct bilirubin, IBIL indirect bilirubin, TBA total bile acid, TG triglyceride, HDL high-density lipoprotein, LDL low-density 
lipoprotein, VLDL very low density lipoprotein, PALB prealbumin, WBC white blood cells, RBC red blood cells, HB hemoglobin, PLT platelet, 
APRI aspartate aminotransferase-to-platelet ratio index

Variables Total (n = 98) Non-BA (n = 34) BA (n = 64) Statistic P

Age, Mean ± SD (day) 51.55 ± 29.76 45.06 ± 27.38 55.00 ± 30.60 t = − 1.59 0.116
Weight, Mean ± SD (g) 4380.92 ± 1220.91 3908.53 ± 1213.92 4631.88 ± 1157.06 t = − 2.90 0.005
Birthweight, Mean ± SD (g) 3064.64 ± 590.93 2801.18 ± 717.31 3204.61 ± 459.11 t = − 2.97 0.005
LSM, Mean ± SD (kPa) 15.22 ± 18.16 8.68 ± 6.29 18.69 ± 21.26 t = − 3.49  < 0.001
MMP7, Mean ± SD (ng/ml) 53.44 ± 79.95 13.46 ± 6.90 74.68 ± 92.17 t = − 5.29  < 0.001
TP, Mean ± SD (g/l) 52.49 ± 5.67 49.54 ± 6.44 54.05 ± 4.54 t = − 3.63  < 0.001
ALB, Mean ± SD (g/l) 37.32 ± 4.30 35.22 ± 5.34 38.43 ± 3.15 t = − 3.22 0.002
GLO, Mean ± SD (g/l) 15.16 ± 2.87 14.31 ± 2.35 15.62 ± 3.04 t = − 2.19 0.031
TC, Mean ± SD (mmol/l) 4.23 ± 1.71 3.67 ± 1.09 4.53 ± 1.91 t = − 2.41 0.018
ALP, Mean ± SD (U/l) 627.21 ± 409.26 540.82 ± 285.72 673.11 ± 457.12 t = − 1.53 0.128
AST, Mean ± SD (U/l) 269.37 ± 268.45 256.58 ± 310.77 276.16 ± 245.43 t = − 0.34 0.733
ALT, Mean ± SD (U/l) 162.30 ± 152.52 133.76 ± 140.31 177.46 ± 157.59 t = − 1.36 0.178
GGT, Mean ± SD (U/l) 423.85 ± 360.77 186.88 ± 161.45 549.75 ± 374.61 t = − 6.67  < 0.001
TBIL, Mean ± SD (umol/l) 166.12 ± 71.07 154.21 ± 76.09 172.45 ± 68.02 t = − 1.21 0.228
DBIL, Mean ± SD (umol/l) 99.22 ± 56.90 79.67 ± 66.57 109.60 ± 48.46 t = − 2.32 0.025
IBIL, Mean ± SD (umol/l) 67.03 ± 55.79 74.91 ± 63.35 62.85 ± 51.37 t = 1.02 0.311
TBA, Mean ± SD (umol/l) 119.58 ± 66.91 93.08 ± 63.27 133.65 ± 64.94 t = − 2.97 0.004
TG, Mean ± SD (mmol/l) 1.27 ± 0.58 1.14 ± 0.53 1.33 ± 0.59 t = − 1.58 0.118
HLD, Mean ± SD (mmol/l) 0.74 ± 0.39 0.78 ± 0.43 0.72 ± 0.36 t = 0.73 0.467
LDL, Mean ± SD (mmol/l) 2.76 ± 1.44 2.29 ± 0.94 3.00 ± 1.60 t = − 2.37 0.020
VLDL, Mean ± SD (mmol/l) 0.26 ± 0.12 0.25 ± 0.13 0.27 ± 0.12 t = − 0.88 0.384
PALB, Mean ± SD (mg/l) 89.14 ± 39.02 88.15 ± 37.59 89.67 ± 40.04 t = − 0.18 0.855
WBC, Mean ± SD (*109/l) 10.64 ± 3.53 10.73 ± 2.31 10.59 ± 4.05 t = 0.18 0.856
RBC, Mean ± SD (*1012/l) 3.53 ± 0.62 3.68 ± 0.60 3.46 ± 0.62 t = 1.69 0.094
HB, Mean ± SD (g/l) 111.22 ± 23.46 116.79 ± 23.81 108.27 ± 22.91 t = 1.73 0.087
PLT, Mean ± SD (*109/l) 371.04 ± 162.14 306.71 ± 151.22 405.22 ± 158.36 t = − 2.98 0.004
APRI, Mean ± SD 2.03 ± 8.90 3.56 ± 14.89 1.22 ± 2.02 t = 1.24 0.217
Gender, n (%) χ2 = 1.94 0.164
No 44 (44.90) 12 (35.29) 32 (50.00)
Yes 54 (55.10) 22 (64.71) 32 (50.00)
Caesarean section, n (%) χ2 = 0.20 0.658
No 46 (46.94) 17 (50.00) 29 (45.31)
Yes 52 (53.06) 17 (50.00) 35 (54.69)
Premature birth, n (%) χ2 = 13.71  < 0.001
No 82 (83.67) 22 (64.71) 60 (93.75)
Yes 16 (16.33) 12 (35.29) 4 (6.25)
G1, n (%) χ2 = 2.26 0.133
No 59 (60.20) 17 (50.00) 42 (65.62)
Yes 39 (39.80) 17 (50.00) 22 (34.38)
P1, n (%) χ2 = 3.90 0.048
No 48 (48.98) 12 (35.29) 36 (56.25)
Yes 50 (51.02) 22 (64.71) 28 (43.75)
Breastfeeding, n (%) χ2 = 4.05 0.044
No 23 (23.47) 12 (35.29) 11 (17.19)
Yes 75 (76.53) 22 (64.71) 53 (82.81)
Acholic stools, n (%) χ2 = 33.31  < 0.001
No 28 (28.57) 22 (64.71) 6 (9.38)
Yes 70 (71.43) 12 (35.29) 58 (90.62)
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calibration curve shows that 5 models have better consist-
ency between the predicted probability and the actual prob-
ability except for the LRM model  (Fig. 4C).    

Model interpretation and illustration

We used mean SHAP value to screen the ten features with 
the greatest impact on prediction BA from the six ML mod-
els. In multiple models, MMP7, GGT and acholic stool are 
the three most important features. We also analyzed the posi-
tive or negative contributions of features in diagnosing BA 
(Figs. 5 and  6). The AUROCs for diagnosing BA with only 
these three features are 0.855 (95% CI 0.818–0.952), 0.834 
(95% CI 0.754–0.914), and 0.777 (95% CI 0.670–0.883), 
respectively.

To visualize the best-performing ML model (XGBoost 
model), a nomogram integrating 8 selected features was used 
for early diagnosis of BA (Fig. 7A). In the nomogram, the 
score corresponding to each feature value is obtained by 
drawing a line upward to the "Points" axis at a specific point. 
After obtaining the total score for all features, a line is drawn 
directly downward from the total score axis to the risk axis 
to diagnose BA. Based on the nomogram, we constructed an 
ROC curve, and the results showed that the AUROC reached 
0.994 (95% CI 0.985–1), with a specificity of 1.0 and a sen-
sitivity of 0.969 (Fig. 7B). This suggests that the nomogram 
can be conveniently and efficiently applied to the clinical 
diagnosis of BA.

Discussion

BA is a severe neonatal hepatobiliary disease, early diag-
nosis of BA can advance the age at surgery and improve 
the prognosis of the patient. We screened out the 10 
parameters that had the greatest impact on the diagnosis 
and selected a total of six algorithms for model construc-
tion, to avoid bias caused by a single algorithm. Among 
them, the XGBoost and RF showed extremely high diag-
nostic accuracy and application value (AUROC = 1), the 
subsequent calibration curves also confirmed the good 
reliability of the two models. The XGBoost algorithm is an 
ensembled deep learning algorithm based on boosted deci-
sion tree models, which has the advantages of additional 
regularization schemes to prevent overfitting and efficient 
and flexible handling of missing data, and is therefore 
widely used in the diagnosis and prediction of clinical 
outcomes of various diseases [16–19]. The RF algorithm is 
a widely used ensembled deep learning algorithm, which 
works by constructing multiple decision trees and output-
ting the class patterns of these trees with high accuracy. It 
can handle a large number of features with relatively good 
interpretability, despite some drawbacks such as occupy-
ing a large amount of memory space and potentially long 
training times as the number of trees increases [20, 21]. 
SHAP model interpretation showed that serum MMP7, 
serum GGT, and acholic stool were the most important 
factors influencing the diagnosis of BA, and ROC analy-
sis showed that all three factors had strong independent 
diagnostic efficacy. In addition, for the convenience of 
clinical application, we constructed a nomogram based 
on the XGBoost algorithm model. ROC analysis suggested 
that this nomogram could be conveniently and efficiently 
applied to the clinical diagnosis of BA (AUROC = 0.994, 
95% CI 0.985–1). The application of ML diagnostic mod-
els provides an early and efficient method for BA diagno-
sis on the basis of traditional clinical diagnostic methods, 
which is expected for advancing the age at surgery and 
improve the prognosis of BA patients in the future.

As a member of the matrix metalloproteinase family, 
MMP7 is widely recognized as the best serum biomarker 
for the new generation of BA diagnosis [19]. Studies have 
reported that serum MMP7 levels in BA patients are sig-
nificantly higher than in other cholestatic diseases [5, 8]. 
Currently, the AUROC of MMP7 for diagnosing BA is 
between 0.96 and 0.99, with sensitivity ranging from 0.86 
to 1 and specificity ranging from 0.83 to 0.95 [5, 8–10, 22, 
23]. However, the cut-off values for MMP7 in diagnosing 
BA vary widely between studies, ranging from 1.43 ng/
mL to 52.85 ng/ml. The reasons for this may be due to 
different kit types, and ethnic differences [19, 24]. Serum 
MMP‐7 levels are significantly positively correlated with 

Fig. 2  ROC shows that LSM, MMP7, GGT, and acholic stool have 
relatively high independent diagnostic efficacy. ROC curve receiver 
operating characteristic curve, LSM liver stiffness measurement, 
MMP7 matrix metalloproteinase-7, GGT  gamma-glutamyl transferase
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the age of the child, as MMP‐7 is mainly produced by 
adenoepithelial cells, bile duct cells, and Kupffer cells in 
the liver, and older children usually have more severe liver 
fibrosis, more MMP7 is released into the blood. However, 
studies have reported that serum MMP-7 levels in neonates 
diagnosed with BA within 30–35 days are significantly 
lower than that in older infants, so the applicability of 
serum MMP-7 screening for BA in neonates (< 30 days) 
requires further study [20, 21]. Most scholars believe that 
serum MMP7 is positively correlated with the degree of 
liver fibrosis [9, 20, 21, 24]. However, Lertudomphonwanit 
et al. reported that serum MMP‐7 was poorly correlated 
with liver fibrosis staging at diagnosis [5]. Despite some 
shortcomings, MMP7 is still undoubtedly an excellent 
serum diagnostic marker for BA. In this study, the cut-
off value for MMP7 was 21.725 ng/ml, and the AUROC 
for MMP7 alone in diagnosing BA was 0.855 (95% CI 
0.818–0.952). Its diagnostic efficacy alone was lower 
than in previous studies, which may be due to the higher 
proportion of neonates in this cohort. In this study, we 

applied ML models to combine serum MMP7 with other 
clinical indicators, which can compensate for the poten-
tial deficiencies of MMP7 alone. Thanks to the extremely 
high diagnostic potential of MMP7, the RF and XGBoost 
models achieved nearly 100% diagnostic efficacy in both 
the training and validation sets.

Gamma-glutamyl transferase (GGT) is mainly derived 
from liver cells and, as an enzyme, catalyzes the metabolic 
process of glutathione [25]. Elevated serum GGT levels 
often suggest cholestasis, alcoholic liver disease, or fatty 
liver. It has been reported that elevated serum GGT levels 
help differentiate BA from other cholestatic conditions [26, 
27]. Wu et al. reported that serum GGT levels had higher 
diagnostic efficacy for BA than MMP-7 [22]. However, more 
studies showed opposite conclusion [7, 9, 28]. GGT is sig-
nificantly positively correlated with liver fibrosis, and stud-
ies have shown that GGT and glutathione act together on the 
extracellular membrane surface of bile duct epithelial cells 
to generate free radicals and exert pro-oxidative effects [29]. 
Elevated GGT levels after KP suggest a poor prognosis in 

Fig. 3  Spearman correlation analysis of all features in the cohort
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Fig. 4  A Correlation analysis of 10 features extracted by LASSO 
regression. B Area under the receiver operating characteristic curve 
(AUC) of all six machine learning models including logistic regres-
sion (LR), multilayer perceptron (MLP), support vector machine clas-
sifier (SVC), decision tree (DET), random forest (RF), and extreme 
gradient boosting (XGBoost). C Calibration curves for all six 

machine learning models. The calibration curve shows the consist-
ency between predicted risk (x-axis) and actual risk (y-axis). The cal-
ibration curve shows that 5 models have better consistency between 
the predicted probability and the actual probability except for the 
LRM model

Table 2  Diagnostic efficacy of six machine learning diagnostic models on the training and validation sets

Algorithms Average performance of cross-validation on the training set Performance on the validation set

Precision Recall F1 score Accuracy AUROC (95% CI) Precision Recall F1 score Accuracy AUROC (95% CI)

LRM 0.884 0.980 0.923 0.886 0.963 (0.931–0.996) 0.857 0.947 0.900 0.867 0.976 (0.924–1.000)
MLP 0.890 0.940 0.909 0.871 0.943 (0.879–1.000) 0.900 0.947 0.923 0.900 0.990 (0.958–1.000)
SVC 0.890 0.940 0.909 0.871 0.955 (0.913–0.997) 0.857 0.947 0.900 0.867 0.986 (0.945–1.000)
DET 0.931 0.855 0.873 0.840 0.878 (0.801–0.956) 1.000 0.842 0.914 0.900 0.971 (0.914–1.000)
RF 0.935 0.955 0.938 0.914 0.990 (0.969–1.000) 1.000 1.000 1.000 1.000 1.000 (1.000–1.000)
XGBoost 0.947 0.890 0.904 0.886 0.990 (0.969–1.000) 1.000 1.000 1.000 1.000 1.000 (1.000–1.000)
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children, and Ihn et al. reported that children with serum 
GGT concentrations > 550 IU/L at 5 months after KP had 
lower 5-year native liver survival [30]. In this study, GGT 
alone had a high diagnostic efficacy, elevated GGT levels 
was ranked as one of the top three most important factors 

for diagnosing BA by three algorithm models (DET, RF, 
and XGBoost).

Acholic stool is caused by obstruction of the extrahepatic 
bile ducts, which prevents normal drainage of bile into the 
intestinal lumen, resulting in progressively darker urine and 

Fig. 5  Mean SHAP value was used to explain the importance of the 
top ten features in (A) logistic regression (LR), (B) multilayer percep-
tron (MLP), (C) support vector machine classifier (SVC), (D) deci-

sion tree (DET), (E) random forest (RF), and (F) extreme gradient 
boosting (XGBoost) models, with each model screening out the top 
ten features. SHAP Shapley additive explanations

Fig. 6  SHAP value was used to explain the contribution of the top 
ten features to the prediction results in (A) logistic regression (LR), 
(B) multilayer perceptron (MLP), (C) support vector machine classi-
fier (SVC), (D) decision tree (DET), (E) random forest (RF), and (F) 

extreme gradient boosting (XGBoost) models. Every point represents 
a data sample, with the color indicating whether the observed value 
of the feature is higher (red) or lower (blue) in diagnosing BA. SHAP 
Shapley additive explanations, BA biliary atresia
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lighter stool color, even white like clay. A meta-analysis of 7 
studies including 610 patients, reported an overall sensitivity 
of 87% and specificity of 78% for acholic stool in diagnos-
ing BA [31]. In 2004, the infant stool color card (ISCC) 
was first proposed in Taiwan to early identify BA, which 
had a significant economic benefits and improved the prog-
nosis of patients. Subsequently, there have been reports of 
its usage in Japan and the United States [32, 33]. In recent 
years, scholars in Japan and Italy have used machine learn-
ing technology to develop relevant mobile apps which could 
diagnose BA by analyzing photos of neonatal stools [34, 
35]. In this study, five models out of six ranked acholic stool 
as one of the most three important predictive factors, and 
acholic stool alone also had high diagnostic efficacy, reflect-
ing its value as a simple and non-invasive preoperative diag-
nostic indicator.

There are still some limitations in this study. First, this 
is a single-center retrospective study, which may lead to 
selection bias. Second, since there are certain differences 
in the baseline clinical data between the two groups of 
patients (such as birth weight, weight at admission, etc.), 
it may partially affect the effectiveness of the diagnostic 
model. In addition, the sample size of this study is limited, 
and a larger sample size of the training set is expected to 
further improve the effectiveness of the model. Therefore, 

larger-scale prospective multicenter clinical cohort studies 
are needed in the future.

In conclusion, the XGBoost and RF models constructed 
by combining serum MMP7 and other serological character-
istics can diagnose BA more efficiently. The most important 
factors affecting the model are serum MMP7 level, serum 
GGT level, and acholic stool. The nomogram based on the 
ML model can also be conveniently and efficiently applied 
to the clinical diagnosis of BA. However, it is still necessary 
to conduct prospective and multicenter large-sample studies 
to verify and optimize the model.
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