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Abstract
Purpose  The purpose of this study was to investigate the autophagy associated with apoptosis in hepatic damage in the short 
bowel syndrome rat model.
Methods  SD rats underwent jugular vein catheterization for continuous total parenteral nutrition (TPN) and 90% small 
bowel resection. Animals were divided into two groups: TPN plus SBS (Control group) or TPN plus SBS plus intravenous 
administration of HGF (HGF group). On day 7, the rats were harvested, and hepatocellular injury was evaluated.
Results  In an SBS rat model, hepatic steatosis and lobular inflammation were histologically suppressed in the HGF group 
(p < 0.01). The expression of tumor necrosis factor-α in the HGF group tend to be higher than that in the control group 
(p = 0.13). The gene expression of transforming Growth Factor-β in the HGF group was suppressed compared to the control 
group (p < 0.01). HGF treatment may have an antiapoptotic effect via the intrinsic pathway by caspase 9. Protein expressions 
of Rubicon (p = 0.03) and p62 (p < 0.01) in the HGF group were found to have increased compared to those in the control 
group.
Conclusion  The inhibitory effect of HGF on hepatic steatosis remains unclear, and further studies focusing on the mecha-
nisms of fat accumulation are needed.
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Abbreviations
IFALD	� Intestinal failure-associated liver disease
SBS	� Short bowel syndrome
NAFLD	� Nonalcoholic fatty liver diseases
HGF	� Hepatocyte growth factor
TPN	� Total parenteral nutrition
IL6	� Interleukin-6
TNFα	� Tumor necrosis factor-α
TGFβ	� Transforming growth factor-β
BAX	� Bcl-2-associated X protein

Introduction

Intestinal failure-associated liver disease (IFALD) is a 
life-threatening complication in patients with short bowel 
syndrome (SBS), who require long-term parenteral nutri-
tion. The pathogenesis of IFALD is complex according to 
the multi-hit theory, and elucidating its pathogenesis and 
drug development remain as major challenges for pediatric 
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surgeons. The hepatic steatosis that occurs in IFALD is 
histologically similar to nonalcoholic fatty liver diseases 
(NAFLD) in adults. However, IFALD in children occurs 
against the background of intestinal failure. Therefore, 
unlike NAFLD and nonalcoholic steatohepatitis in adults, 
inflammation and biliary stasis with hepatic steatosis in the 
early stages of IFALD development and sometimes rapid 
progression are issues that need to be resolved.

Our research group has focused on HGF, which has been 
reported to have anti-inflammatory effects which can thus 
inhibit hepatic steatosis [1–3]. Our previous studies sug-
gested that HGF suppresses hepatic steatosis via the intrin-
sic pathway in a parenterally fed rat model [4] and via the 
gut microbiota and farnesoid X receptor in a rat model of 
SBS [5]. However, the underlying mechanisms of hepatic 
steatosis remain unclear. In this study, we investigated the 
autophagy associated with apoptosis in hepatic damage in 
the short bowel syndrome rat model.

Materials and methods

Animals

Our experimental rats were 7-week-old male Sprague–Daw-
ley (SD) rats weighing 200–240 g (Kyudo Co., Ltd., Saga, 
Japan). The rats were acclimatized to the animal laboratory 
environment for seven days before undergoing the experi-
ments. During this period, the rats were individually housed 
in metabolic cages with ad libitum access to standard rat 
chow and water. The environment for the rats was main-
tained at a standardized temperature (23 ± 1 °C) and humid-
ity (50% ± 10%) with a 12-h light–dark cycle (lights on at 
7:00 a.m.).

Study design

The animals were randomly divided into 2 groups as fol-
lows: massive small bowel resection and total parenteral 
nutrition (TPN) (SBS/TPN: control group, n = 9); SBS/TPN 
with the intravenous administration of rh-HGF (Eisai Co., 
Ltd., Tokyo, Japan) (SBS/TPN/HGF: HGF group, n = 9). 
The dose of rh-HGF was set at 0.3 mg/kg/day based on the 
findings of our previous study [4, 6, 7]. Rh-HGF was dis-
solved in saline and administered daily as a single intrave-
nous infusion via a central venous catheter. On day 7, blood 
and liver tissue specimens were harvested for biochemical 
and histological analyses.

Surgical procedures and maintenance methods

Under anesthesia with isoflurane (1.5% inhalation by mask), 
all rats underwent catheterization using the cut-down method 

through the right jugular vein, and then the catheter was 
tunneled out of the back and attached to a standard swivel 
device using the same methods. After catheterization, all rats 
underwent 90% small bowel resection, leaving 5 cm of the 
ileum above the ileocecal valve anastomosed to the jejunum 
and 5 cm below the ligament of Treitz. The rats received 
cefazolin (50  mg/kg per dose, subcutaneously; Otsuka 
Pharmaceutical Factory, Inc., Tokushima, Japan) to prevent 
any postoperative infection, and buprenorphine (0.01 mg/
kg per dose, subcutaneously; Otsuka Pharmaceutical Fac-
tory, Inc.) for analgesia. The rats were allowed ad libitum 
access to water immediately after surgery. TPN was deliv-
ered using a multichannel syringe pump (KDS Legato 200 
Series Syringe Pump Series; KD Scientific, Inc., Holliston, 
MA, USA). After catheterization, the rats were maintained 
with a low-concentration NEOPAREN® No. 2 (Otsuka Phar-
maceutical Co., Ltd.) TPN solution (60 mL/day), to which 
20% Intralipos® (Otsuka Pharmaceutical Co., Ltd.) was 
added. The composition of the TPN solution was as follows 
(g/L): amino acids 25, dextrose 145, and soybean oil 33.3. 
The solution also contained the following electrolytes (final 
mmol/L):41.6 Na+ , 22.5 K+ , 41.6 Cl− , 4.1 Ca2+ and 4.1 
Mg2+ . After 24 h, the composition of the TPN solution was 
changed to the following (in g/L): amino acids 31.6, glucose 
203, and soybean oil 33.3, with similar electrolyte additives. 
The TPN solution was delivered at a rate of 60 mL/d. This 
provided equivalent isocaloric/isonitrogenous nutritional 
support to all TPN-fed rats, consisting of 76.4 kcal/rat/day 
(1.9 g protein, 2.0 g fat, and 12.2 g carbohydrate). On day 
7, all rats were anesthetized by isoflurane inhalation and 
then were euthanized by exsanguination and blood collec-
tion. Liver tissue was harvested, rinsed in cold saline, and 
fixed in a 10% formaldehyde-neutral buffer solution for 24 h.

Biochemical tests

The collected blood was immediately centrifuged at 4 °C. 
All serum samples were stored at − 80 °C until use. The 
serum levels of diamine oxidase (DAO) were measured 
using an enzyme-linked immunosorbent assay (ELISA; 
Novus Biologicals™ Rat DAO ELISA Kit [Thermo Fisher 
Scientific Inc., Waltham, MA, USA]) according to the manu-
facturer’s protocol.

Histological analysis

For the histological analysis of the liver tissue, we evalu-
ated the degree of lipid accumulation (steatosis score), the 
number of positive macrophages or T lymphocytes in 10 
randomly selected fields (lobular inflammation score) using 
the NAFLD activity score [8].
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RNA extraction, reverse transcription and real‑time 
polymerase chain reaction (PCR)

The intestines were frozen at − 80 °C in RNA later TM 
Soln (Thermo Fisher Scientific Inc.) and batch processed by 
thawing, transferred to a TRIzol reagent (Thermo Fisher Sci-
entific Inc.), homogenized in a POLYTRON homogenizer 
(KINEMATICA AG Inc., Malters, Werkstrasse, Switzer-
land), and the mRNA was extracted using the PureLinkTM 
RNA MIini Kit (Thermo Fisher Scientific Inc.). Chloroform 
was added, mixed vigorously for at least 15 s, and then was 
allowed to stand at room temperature for 3 min. Centrifuga-
tion was performed at 4 °C, 12,000 × g for 15 min to sepa-
rate the water layer (upper layer) and organic layer (lower 
layer). We then transferred 400 μL of the upper layer to a 
1.5-mL micro tube, added an equal volume of 70% ethanol, 
and stirred for 15 s, after which we transferred 700 μL of the 
sample to a Spin Cartridge, centrifuged at 20 °C, 12,000 × g 
for 15 s, and the residual proteins, phenol, and other con-
taminants on the column while washing. RNA was purified 
by adding RNase-free water to the spin cartridge and the 
RNA content in the extracted sample was determined using 
an RNA Nano Drop ultra-trace spectrophotometer (Thermo 
Fisher Scientific Inc.). The RNA concentration was adjusted 
to 200 ng/μL with RNase-free dH2O, and complementary 
DNA was synthesized using Prime Script RT TM Master 
Mix (Takara Bio Inc., Kusatsu, Japan).

Quantitative PCR was performed using TB Green Premix 
EX Taq II (Takara Bio, Inc.). The expression of target genes 

was analyzed using the QuantStudio 3 system (Thermo 
Fisher Scientific Inc.). Forty cycles of PCR were performed 
and the control group was set at a relative ratio of 1. The 
primers used in this study were purchased from Takara Bio 
Inc. All primers used are listed in Table 1a.

Western blot

The liver tissue was homogenized in a solution of T-per™ 
(Thermo Fisher Scientific, MA, USA) plus cOmplete mini 
tablets™ (Roche Diagnostics Inc., Basel, Switzerland). The 
solution was then centrifuged (10,000 × g, 5 min, 4 °C), and 
then the supernatant was mixed with Sample Buffer, and 
finally boiled at 100 °C for 5 min. The details of the process 
was conducted in a similar manner to previous studies [9]. 
All antibodies used in this study are purchased from Abcam 
Inc. All antibodies used are listed in Table 1b.

Statistical analyses

The data are presented as the mean ± standard error. Statis-
tical analyses were performed using a two-factor factorial 
analysis of variance, followed by Tukey’s multiple-com-
parison test. All results were considered to be statistically 
significant when the p-value was < 0.05.

All statistical analyses were performed using EZR 
(Saitama Medical Center, Jichi Medical University, Saitama, 
Japan), a graphical user interface for R (R Foundation for 
Statistical Computing, Vienna, Austria). More precisely, it is 

Table 1   Primer and antibody

Target Forward Reverse

a. Primer for PCR
PPIA (KEEPING) 5′-GGC​AAA​TGC​TGG​ACC​AAA​CAC-3′ 5′-AAA​CGC​TCC​ATG​GCT​TCC​AC-3′
Bak1 5′-CGC​TAC​GAC​ACG​GAG​TTC​CA-3′ 5′-CCA​GCT​GAT​GCC​GCT​CTT​AAATA-3′
Bcl2 5′-CTG​AAC​CGG​CAT​CTG​CAC​A-3′ 5′-CTG​AGC​AGC​GTC​TTC​AGA​GACA-3′
Bcl2l1 5′-CTT​CAG​CCA​CCA​TTG​CTA​CCAG-3′ 5′-CCG​TCT​AGG​CCC​AAC​CCT​ATAA-3′
Atg14 5′-CAC​ACA​GGC​TGC​TTT​ACA​TGGTC-3′ 5′-CGA​ACC​CTG​CCT​AAT​GCT​GA-3′
Bax 5′-TGG​CGA​TGA​ACT​GGA​CAA​CAA-3′ 5′-GGG​AGT​CTG​TAT​CCA​CAT​CAGCA-3′
Fas 5′-AGG​CTC​CAG​GAA​TGA​CTG​CTC-3′ 5′-CGA​GAT​GCA​ATC​ACT​AAG​CCAAG-3′
Tnf 5′-CTC​CGG​GCT​CAG​AAT​TTC​CA-3′ 5′-ATC​GAC​ATT​CCG​GGA​TCC​AG-3′
Casp3 5′-GCA​GCA​GCC​TCA​AAT​TGT​TGAC-3′ 5′-TGC​TCC​GGC​TCA​AAC​CAT​C-3′
Casp9 5′-CCC​AGT​GAC​ATC​CTT​GTG​TCCTA-3′ 5′-GAC​ACC​ATC​CAA​GGT​CTC​GAT​GTA​-3′
Tgfb1 5′-CAT​TGC​TGT​CCC​GTG​CAG​A-3′ 5′-GGT​AAC​GCC​AGG​AAT​TGT​TGCTA-3′

Antibody Host Company Catalog Notes

b. Antibody for western blot
Anti-Rubicon/Baron Rabbit Abcam ab156052 WB (1:1000)
Anti-SQSTM1/p62 Rabbit Abcam ab109012 WB (1:1000)
Anti-LC3B antibody-N-terminal Rabbit Abcam Ab229327 WB (1:1000)
β-actin Rabbit Cell signaling 4970 WB (1:1000)
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a modified version of the R commander, which is designed 
to add statistical functions that are frequently used in bio-
statistics [10].

Ethical approval

This experiment was conducted in accordance with the 
ARRIVE guidelines and is described in the text according 
to the checklist. All experimental procedures were approved 
by the Laboratory Animal Committees of Kagoshima Uni-
versity Graduate School of Medical and Dental Sciences 
and performed in accordance with the “Guidelines for the 
Care and Use of Laboratory Animals” (approval number: 
MD20014).

Results

Body weight and liver weight

The body weight and liver weight are shown in Table 2. The 
body weights before surgery and at sacrifice did not differ 
between the two groups. The liver weight and liver-body 
weight ratio also did not differ between the two groups, but 
the control group, which showed hepatic steatosis, began to 
change more than at 1 week than the HGF group.

Histological findings of liver tissue and the analysis 
based on nonalcoholic fatty liver disease activity 
score

The histological findings of hematoxylin–eosin staining are 
shown in Fig. 1. Hepatic steatosis and inflammatory cell 
infiltration were observed in both groups. However, the HGF 
group showed significantly less hepatic steatosis (Control 
group vs. HGF group: 1.4 ± 0.7 vs. 0.2 ± 0.4, p < 0.01) and 
inflammatory cell filtration (Control group vs. HGF group: 
2.4 ± 0.7 vs. 0.8 ± 0.7, p < 0.01) than the control group.

Biochemical assessments

The biochemical assessments are shown in Fig. 2. Inflamma-
tory cytokines tended to be higher in the HGF group than in 
the control group, although there was no significant differ-
ence between the two groups [IL-6: control group vs. HGF 

group; 41.7 ± 24.2 vs. 86.3 ± 64.7, p = 0.08], [TNFα: control 
group vs. HGF group; 6.0 ± 2.9 vs. 8.4 ± 6.8, p = 0.474].

Gene expressions using real‑time polymerase chain 
reaction

The gene expressions using real-time polymerase chain 
reaction in liver tissue are shown in Fig. 3. Regarding the 
intrinsic pathway, the HGF group showed a decreasing ten-
dency in the BAX/Bcl2 compared to the control group, but 
the difference was not significant (Control group vs. HGF 
group:5.1 ± 9.8 vs. 0.7 ± 0.4, p = 0.24). The HGF group 
showed a decreasing tendency in caspase 9 compared to the 
control group, but the difference was not significant (Con-
trol group vs. HGF group: 5.3 ± 8.1 vs. 1.1 ± 0.7, p = 0.13). 
Regarding the extrinsic pathway, the HGF group showed 
an increasing tendency in TNF-α compared to the control 
group, but the difference was not significant (control group 
vs. HGF group: 2.1 ± 1.4 vs. 6.5 ± 7.0, p = 0.13). The fas 
ligand expression did not differ between the two groups 
(Control group vs. HGF group: 1.1 ± 0.5 vs. 1.1 ± 0.4, 
p = 0.65). The HGF group showed a significant decrease 
in transforming growth factor β1 compared to the control 
group (control group vs. HGF group: 1.7 ± 0.4 vs. 0.7 ± 0.5, 
p < 0.01). The caspase 3 expression did not differ between 
the two groups (control group vs. HGF group: 1.4 ± 2.0 vs. 
1.0 ± 1.1, p = 0.65).

Protein expression levels of autophagy using 
Western blotting

The protein expression levels of autophagy using Western 
blotting are shown in Fig. 4. The rubicon protein expressions 
in the HGF group were significantly higher than those in the 
control group (Control group vs. HGF group: 1.0 ± 0.3 vs. 
1.4 ± 0.5, p = 0.03). The p62 protein expressions in the HGF 
group were significantly higher than those in the control 
group (Control group vs. HGF group: 0.6 ± 0.1 vs. 2.8 ± 1.3, 
p < 0.01). The LC3-I protein expressions were not signifi-
cantly different between the two groups (Control group vs. 
HGF group: 2.1 ± 0.7 vs. 2.4 ± 1.4, p < 0.58). The LC3-II 
protein expressions in the HGF group tended to increase 
more than those in the control group (Control group vs. HGF 
group: 1.0 ± 0.6 vs. 0.6 ± 0.1, p = 0.06).

Table 2   Changes in body 
weight and liver weight at 
sacrifice

TPN + SBS TPN + SBS + HGF p-value

Body weight before surgery, (g) 284.2 ± 31.2 281.6 ± 28.6 0.861
Body weight at sacrifice, (g) 287.2 ± 20.5 285.9 ± 14.8 0.884
Liver weight at sacrifice, (g) 12.8 ± 3.5 11.9 ± 2.7 0.563
Liver/body weight at sacrifice, (%) 4.5 ± 1.2 4.1 ± 0.9 0.534
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Discussion

The major findings of this study are as follows: (1) In an 
SBS rat model, hepatic steatosis and lobular inflamma-
tion in the liver tissue were observed at 1 week, and both 
were histologically suppressed in the HGF group. (2) The 
serum inflammatory cytokines were not suppressed in the 
HGF group at 1 week, and TNFα remained high tendency 
in the liver tissue. (3) tgfβ in the HGF group was sup-
pressed compared to the control group. (4) The HGF group 
showed a decreasing tendency in caspase 9 compared to 

the control group. (5) Protein expressions of Rubicon and 
P62 in liver tissue in the HGF group were found to have 
increased compared to those in the control group.

We prepared a 1-week TPN plus SBS fasting model 
focusing on early postoperative liver injury. In this model, 
the inflammatory responses in rats, including the liver tis-
sue, were higher in the HGF group. Katz et al. reported 
that HGF suppressed TNF-α and IL-6 in a volume-depend-
ent manner in a 2-week study in a 70% SBS plus TPN 
rat model based on immunohistochemical staining [11]. 
Differences in inflammatory response results may be due 
to differences in the number of weeks in the model or the 
length of the bowel resection. The HGF group with high 
inflammation had the potential to promote apoptosis via 
an extrinsic caspase pathway induced by TNF-α, but there 
was no increase in caspase3. This may be the result of the 
anti-apoptotic effect of HGF on the endogenous pathway 
[4, 12]. The strong anti-apoptotic effect of HGF may be 
limited in the early stages of short bowel syndrome due 
to high inflammation. TGF-β causes increased vascular 
resistance in injured liver tissue and portal vein pressure 
[13]. In chronic liver injury, TGF-β is also an important 
factor in the activation of hepatic stellate cells, resulting in 
a reduced resistance to oxidative stress and liver fibrosis. 
HGF has an antagonistic effect on TGF-β [14]; therefore, 

Fig. 1   Histological findings of liver specimens. a Hematoxylin–Eosin staining, left column: TPN + SBS (Control), right column: 
TPN + SBS + HGF, Top Row: Low power view (× 40), Bottom Row: High power view (× 200), b Steatosis, c Lobular inflammation

Fig. 2   Biochemical assessment. a IL 6, b TNF α
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Fig. 3   Gene expressions using real-time polymerase chain reaction. a BAX/bcl2, b Caspase9, c Caspase3, d TGFβ, e TNFα, f Fas

Fig. 4   Protein expression levels of autophagy using Western blotting. a Western blotting, left column: TPN + SBS (Control), right column: 
TPN + SBS + HGF; b Rubicon, c p62, d LC3 I, e LC3 II
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the effect of HGF through TGF‐β suppression may be 
effective in chronic or rapidly deteriorating IFALD.

Accumulated hepatic steatosis is induced by autophagy 
and apoptosis, and the chronic process leads to inflammation 
and fibrosis. It has been reported that in NAFLD, Rubicon 
suppresses autophagy and it enhances apoptosis [15]. In the 
present study, despite the fact that HGF treatment increased 
Rubicon protein expression and inhibited apoptosis, no 
fat deposition was observed. In this study, it is unclear the 
impact of autophagy in the control group, it is speculated 
that autophagy may not be occurring in the HGF group. 
The mechanisms underlying the action of HGF on Rubicon 
and autophagy remain unclear in the present study. How-
ever, since HGF maintains the mTOR activity via PI3K-Akt 
signaling [16, 17], HGF may suppress the mTOR-dependent 
macroautophagic process (main autophagy process) and pro-
tect hepatocytes. In other words, increased the protein of 
Rubicon and P62 may only be seen as a result of decreased 
autophagy.

If lipolysis does not occur, then HGF may inhibit fat accu-
mulation, which is a subject for future research. The main 
mechanisms of fat accumulation in the liver are abnormal 
glucose levels and an abnormal lipid metabolism, increased 
insulin resistance, and increased triglyceride levels. There-
fore, it is likely that HGF acts on one of these pathways. 
HGF has been reported to promote intestinal adaptation in 
an SBS model. Intestinal adaptation protects liver metabo-
lism and inflammation via the intestine-liver axis [18–22]. 
In this study, HGF may also have reduced hepatic steato-
sis by promoting intestinal adaptation, relying solely on 
intestine-liver axis signaling. Fafalios et al. reported that 
HGF restored insulin responsiveness in a mouse model of 
insulin refractoriness [23]. HGF regulates the metabolism 
by stimulating the hepatic glucose uptake and inhibiting the 
hepatic glucose production. The results of the HGF group 
may indicate that metabolism in the liver tissue is working 
normally. The process of HGF acting on the pathways of 
hepatic metabolism must be investigated.

Limitations

Although there was some scattering in the data, we refrained 
from using more animals than we had previously prepared 
for this experiment based on animal ethics. Due to the lim-
ited number of animals, statistical interpretation was limited.

Conclusions

HGF does not cause autophagic lipolysis. The inhibitory 
effect of HGF on hepatic steatosis remains unclear, and fur-
ther studies focusing on the mechanisms of fat accumulation 
are needed.
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