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Abstract Testicular descent occurs in two morpho-

logically distinct phases, each under different hormonal

control from the testis itself. The first phase occurs between

8 and 15 weeks when insulin-like hormone 3 (Insl3) from

the Leydig cells stimulates the gubernaculum to swell,

thereby anchoring the testis near the future inguinal canal

as the foetus grows. Testosterone causes regression of the

cranial suspensory ligament to augment the transabdominal

phase. The second, or inguinoscrotal phase, occurs between

25 and 35 weeks, when the gubernaculum bulges out of the

external ring and migrates to the scrotum, all under control

of testosterone. However, androgen acts mostly indirectly

via the genitofemoral nerve (GFN), which produces cal-

citonin gene-related peptide (CGRP) to control the direc-

tion of migration. In animal models the androgen receptors

are in the inguinoscrotal fat pad, which probably produces

a neurotrophin to masculinise the GFN sensory fibres that

regulate gubernacular migration. There is little direct

evidence that this same process occurs in humans, but

CGRP can regulate closure of the processus vaginalis in

inguinal hernia, confirming that the GFN probably medi-

ates human testicular descent by a similar mechanism as

seen in rodent models. Despite increased understanding

about normal testicular descent, the common causes of

cryptorchidism remain elusive.
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Introduction

In the 18th and 19th centuries, the anatomy of descent of

the testis was the primary impetus of research, while

throughout the 20th century, the hormonal regulation of

testicular descent became the main focus. By the 1980s,

attempts were being made to integrate the disparate ana-

tomical and regulatory evidence into a unifying schema,

culminating in the proposal of the two-stage model, with

the recognition that different hormones were regulating the

early and later stages of descent [1].

It is now generally accepted that testicular descent oc-

curs in two discrete anatomical and hormonal stages. In the

human both phases occur prenatally, with the transab-

dominal phase between 10 and 15 weeks’ gestation and the

inguinoscrotal phase between 25 and 35 weeks of gesta-

tion. By contrast, in rodents the transabdominal phase oc-

curs in the third trimester while the inguinoscrotal phase

occurs in the first week to 10 days after birth. Apart from

these differences in timing, however, the anatomy and

hormonal regulation of the two stages of testicular descent

are remarkably similar between rodent models and humans

[2] (Fig. 1).
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Early embryology

The gonads develop on the anteromedial surface of the

mesonephros in urogenital ridge, which is attached to the

posterior coelomic wall and by thickenings of the attach-

ment cranially (cranial suspensory ligament) and caudally

by the genitoinguinal ligament, or gubernaculum. About

the time of sexual differentiation in the human (7–8 weeks’

gestation) the mesonephros regresses, leaving the devel-

oping ovary or testis on a mesentery, now called the

mesovarium or mesorchium. In the free edge of the uro-

genital ridge, the mesonephric (Wolffian) duct and the

paramesonephric (Müllerian) duct develop. The Wolffian

duct initially drains the mesonephros, but after regression

of the latter structure the duct becomes attached directly to

the testis to form the rete testis. Under the action of an-

drogen from the newly formed Leydig cells in the devel-

oping testis, the Wolffian duct continues to differentiate

into the epididymis and vas deferens. At the caudal end of

the Wolffian duct the ureteric bud forms, and cranially to

this a second, hormone-dependent bud forms the seminal

vesicle. The Müllerian duct in the male regresses under the

influence of the hormone secreted by the newly differen-

tiated Sertoli cells, anti-Müllerian hormone (AMH) (also

known as Müllerian inhibiting substance (MIS)) [3, 4].

Transabdominal phase

Shortly after sexual differentiation at 7–8 weeks’ gestation,

the transabdominal phase of testicular descent occurs be-

tween 10 and 15 weeks. In male, the cranial suspensory

ligament regresses and the gubernaculum enlarges; while

in the female both ligaments persist without obvious

changes as the foetus grows. By a combination of gonadal

enlargement and the ‘swelling reaction’ in the guber-

naculum, the testis remains close to the future inguinal

canal, where the gubernaculum is attached to the inguinal

abdominal wall (Fig. 2a). By contrast the developing ovary

moves relatively further from the inguinal region as the

female foetus enlarges.

The ‘swelling reaction’ in the gubernaculum is caused

by cell division in the primitive mesenchymal cells of the

distal gubernaculum along with a sudden increase in ex-

tracellular matrix molecules, especially glycosaminoglycan

and hyaluronic acid [5]. This ‘swelling reaction’ leads to

the caudal end of the gubernaculum enlarging to a similar

size as the testis where the former is embedded in the

abdominal wall [6]. The swollen distal gubernaculum is

known as the bulb, and the inguinal abdominal wall mus-

cles differentiate around it to produce the inguinal canal.

The proximal attachment of the gubernaculum to the testis

Fig. 1 Testicular descent in the

human foetus vs that in a rodent.

In both species, the process

occurs in two separate phases:

the transabdominal and

inguinoscrotal stages. Migration

of the gubernaculum is similar,

except that in rodents the

extracellular matrix in the

gubernaculum regresses before

migration begins at birth, while

in humans this occurs after the

gubernaculum reaches the

scrotum, and the entire process

is prenatal. Also in humans, the

last step after descent is closure

of the processus vaginalis (to

prevent inguinal hernia), while

in rodents the processus remains

open and a fat pad on the

epididymis, which plugs the

inguinal canal, prevents

herniation (reproduced with

permission from J Pediatr Urol

[2])
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and developing epididymis is known as the gubernacular

cord, and this also remains short in the male (Fig. 2b),

unlike the female where the entire gubernaculum remains

long and forms the round ligament.

The peritoneum over the intraabdominal surface of the

gubernacular bulb forms an annular diverticulum that

grows into the gubernaculum, dividing the gubernaculum

into 3 distinct anatomical parts. The infravaginal part (-

caudal to the peritoneal diverticulum) is the bulb of the

gubernaculum, which contains undifferentiated mes-

enchymal cells. Inside the annular diverticulum, the central

column of gubernacular cells differentiates into fibroblasts

to form the gubernacular cord, which anchors the in-

traperitoneal gonad and epididymis to the bulb, which is

embedded in the inguinal muscles. Just outside the peri-

toneum in the gubernaculum the cremaster muscle devel-

ops, and with elongation of the diverticulum later the

muscle comes to lie around the outside of the diverticulum

(which will form the processus vaginalis) in the extra-

vaginal part (outside the processus vaginalis).

In 1999, it was discovered that knockout of the insulin-

like hormone 3 gene in mice had undescended intraab-

dominal testes [7, 8], and it has now been confirmed that

insulin-like hormone 3 (INSL3) is the primary hormone

regulating the swelling reaction. INSL3 secreted from the

Leydig cells of the testis stimulates the swelling reaction,

and in conjunction with the short gubernacular cord, this

provides traction on the testis to keep it close to the in-

guinal abdominal wall as the foetal abdomen enlarges.

INSL3 is secreted in mid gestation which is at the right

time to control the swelling reaction, and its receptor (the

relaxin family receptor 2, RXFP2) also is located in the

gubernaculum at the right time.

INSL3 is a member of the insulin family of related

hormones and growth factors, and is synthesised as a

131-amino acid preprotein, which contains a 24-amino acid

signalling peptide [9]. In vitro studies of the foetal rat

gubernaculum showed that INSL3 stimulated gubernacular

growth, with both AMH and testosterone providing some

augmented stimulus [10]. Moreover, INSL3 knockout in

mice prevented the swelling reaction, so that the guber-

nacular bulb lacked a central core of undifferentiated

mesenchyme at embryonic day 16.5 [7]. When the INSL3

gene was activated in female mice, the ovaries descended

to the lower abdomen beside the bladder neck, analogous

to transabdominal descent in male mice [11]. INSL3 ap-

pears to act through the RXFP2 receptor and then the

downstream intracellular signalling involves both NOTCH

and Wnt/b-catenin pathways [12–14].

Mutations of INSL3 or its receptor are uncommon in

humans with cryptorchidism, which is in keeping with the

fact that intraabdominal testes with deficient transab-

dominal descent are uncommon [15, 16]. However, when

considered in proportion to children with impalpable testis

Fig. 2 The two stages of testicular descent. a Before descent the

developing testis is held in the urogenital ridge by the cranial

suspensory ligament (CSL) cranially and the gubernaculum (G) cau-

dally. The adjacent Wolffian duct (WD) forms the epididymis and vas

deferens in a male while the Müllerian duct (MD) forms the uterus

and tubes in a female. b At the end of the transabdominal phase

(*15 weeks) the testis is held near the future inguinal ring by the

swelling reaction in the gubernaculum. The skin just beyond the

gubernaculum is over the future external inguinal ring, as the scrotum

is remote in the perineum of a mammal. c Inguinoscrotal phase

requires the gubernaculum to elongate to the scrotum, under control

of androgens and calcitonin gene-related peptide (CGRP) released

from the genitofemoral nerve (GFN). After migration is complete, the

peritoneum of the processus vaginalis (PV) closes and then

completely involutes and disappears (see Fig. 4)
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only, defects in INSL3 signalling are likely to be common

[17].

Although INSL3 is now accepted as the primary hor-

mone controlling the gubernacular swelling reaction and

transabdominal descent, there are some pieces of evidence

that suggest a role for AMH, particularly in the human.

First, in children with mutations of the AMH gene or its

receptor, they have undescended testes with persistence of

an infantile uterus and tubes, known as the persistent

Müllerian duct syndrome (PMDS). The testes are intraab-

dominal (*70 %) or prolapsed into a hernial sac (*20 %,

‘hernia uteri inguinalis’), or where both testes (along with

uterus and tubes) are prolapsed into the same patent pro-

cessus vaginalis (*10 %, transverse testicular ectopia)

[18]. The gubernacular cord in these patients is abnormally

long (i.e.,[10 cm rather than\� cm), which prevents the

testis being held near the internal inguinal ring as in normal

transabdominal descent. By contrast, the swelling reaction

is presumed to be normal so that the gubernacular bulb

creates an inguinal canal and migration to the scrotum in the

inguinoscrotal phase is also normal. The elongated guber-

nacular cord mirrors a very long round ligament, and allows

the testes to flop about in the pelvis and prolapse into the

ipsilateral processus vaginalis (to create ‘hernia uteri in-

guinalis’), or even into the contralateral processus vaginalis

(to cause transverse testicular ectopia) [18, 19]. In addition,

the extreme mobility of the testis in PMDS may predispose

to the reported high frequency of intraabdominal torsion

causing vanishing testis in this anomaly [20].

Inguinoscrotal phase

The second phase of testicular descent occurs about

25–35 weeks of gestation in the human foetus and in the first

week postnatally in a mouse. The overall process is quite

similar in most mammals, allowing for some differences [2].

In human, the gubernaculum which originally ended in the

inguinal abdominal wall bulges out to create a future ex-

ternal inguinal ring. The gubernaculum then migrates to the

scrotum by remodelling from an inert ligament into an ac-

tively migrating and elongating structure, with many

analogies to an embryonic limb bud [21–23] (Fig. 2c). What

triggers this sudden change in the biology of the guber-

naculum is incompletely understood, but there is some

evidence that the mammary line may be involved [24].

The possible role of the mammary line in the inguino-

scrotal phase is suggested by the anatomy of the marsupial,

which separated in evolution from eutherian mammals

about 200 million years ago. The mammary line persists

over the inguinal ring in both modern marsupials, such as

the kangaroo, as well eutherian mammals such as rodents

and humans. In the kangaroo and wallaby, the homologous

muscle to the cremaster is known as the ilio-marsupialis,

and it is supplied by the genitofemoral nerve (GFN) in both

sexes (the same as in mammals) [25]. In male, it has a

suspensory function similar to the retractile reflex; while in

female, the muscle is attached to the breast and is the

suspensory muscle of the nipple [26] (Fig. 3).

Once the close association between the cremaster muscle

and GFN and the breast was appreciated in the marsupial,

we went back and looked specifically in the foetal rodent,

and to our surprise we found that the GFN supplies not only

the gubernaculum itself but also the breast bud. Moreover,

the breast bud is located just superficial to where the gu-

bernaculum ends in the abdominal wall [24, 27]. The

mammary line has inductive properties that control the un-

derlying mesenchyme similar to the apical ectodermal ridge

of an embryonic limb bud, as it arises on the side of the

embryo precisely between the upper and lower limb buds

Fig. 3 a Foetal male rodent showing close relationship between

gubernaculum and mammary bud (M) before inguinoscrotal phase

begins (P penis, S scrotum). b Marsupial male pouch young showing

gubernaculum extending into scrotum, which is above the pubis, in

the same site as the mammary bud in rodent (a) and female marsupial

(c). c Marsupial female pouch young showing muscle of guber-

naculum (ilio-marsupialis, homologue of cremaster muscle) attaching

to the developing mammary bud
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[28]. Although it is not completely established, we suspect

that the mammary line over the end of the gubernaculum

provides the initial signalling to enable remodelling and

outgrowth of the gubernaculum like an embryonic limb bud

at the start of inguinoscrotal descent [29].

During inguinoscrotal descent, the gubernaculum elon-

gates towards the scrotum while the processus vaginalis

inside it also elongates, enabling the intraperitoneal testis

to leave the abdomen while still remaining inside an ex-

tension of the peritoneum. It is likely that extracellular

matrix enzymes, which are produced by the gubernaculum

or the inguinoscrotal fat pad itself, dissolve the matrix to

enable the gubernaculum to elongate in a free tissue plane

without obstruction [30]. Once the gubernaculum has

reached the scrotum in human several important changes

occur. The bulky, gelatinous extracellular matrix of the

gubernacular bulb resorbs, leaving a small fibrous remnant.

In addition, the fibrous remnant becomes adherent to the

inside of the scrotum. In this short time interval, between

arrival of the gubernaculum in the scrotum and develop-

ment of its fibrous connection to the surrounding tissues, is

when perinatal torsion of the testis is likely to occur, be-

cause of the extreme mobility of the gubernaculum and its

contained testis at that time [31].

The final event after the gubernaculum and testis reach

the scrotum is closure of the proximal processus vaginalis

in the human, thereby preventing inguinal hernia and/or

hydrocele. This final stage of testicular descent is seen in

humans and primates, but many other mammals have a

processus vaginalis that remains patent. In mouse and rat,

for example, the inguinal canal remains patent throughout

life, and inguinal hernia is prevented by the presence of a

large fat pad attached to the head of the epididymis, which

effectively plugs the inguinal canal. Patency of the pro-

cessus vaginalis is demonstrated by the fact that the testis

can retract back into the peritoneal cavity even in an adult

rat when the retractile reflex is stimulated.

When all the stages of inguinoscrotal descent are seen

together, it can be appreciated that there are actually three

steps: (1) migration of the gubernaculum and elongation of

the processus vaginalis inside it to enable the intraperi-

toneal testis to reach the scrotum while still inside the

processus vaginalis; (2) closure of the proximal processus

but not the distal tunica vaginalis, leaving the testis inside a

satellite peritoneal cavity within the hemiscrotum; (3)

obliteration of the remnant of the processus vaginalis,

which enables the spermatic cord to elongate normally

after birth (Fig. 4). Failure of migration leads to congenital

cryptorchidism, while failure of the processus closure leads

to inguinal hernia or hydrocele. Failure of the last step, i.e.,

complete involution of the PV, is likely to be the cause of

acquired cryptorchidism.

Androgens control the inguinoscrotal phase, as in both

humans and animals with complete androgen insensitivity,

the testis remains in the inguinal canal or groin, demon-

strating normal transabdominal descent but completely

deficient inguinoscrotal descent [1]. It was not appreciated

until recently that androgens act in a narrow time window,

which in the rat is embryonic days 15–19 [32]. It was

assumed for many years that androgens would act directly

on the gubernaculum, and hence androgen receptors (AR)

should be present in the gubernaculum itself. However, on

quantitative analysis of AR localisation using immunohis-

tochemistry we found that AR only appeared in the gu-

bernaculum perinatally, just after the window of

androgenic sensitivity controlling postnatal inguinoscrotal

descent [33]. Not only were AR absent in the guber-

naculum during the foetal ‘programming window’, but they

were also absent from the sensory cell bodies of the GFN in

the L1-2 dorsal root ganglia until after birth [33]. As the

GFN has been proposed to not only supply the guber-

naculum and its contained structures (processus vaginalis

and cremaster muscle), but also direct gubernacular mi-

gration to the scrotum, the mechanism by which androgens

control descent via the GFN remains unknown, and it is the

subject of current research (see below).

The role of the genitofemoral nerve (GFN)

In 1948, Lewis reported that transection of the GFN in a

neonatal rat, just before inguinoscrotal migration occurs,

caused cryptorchidism [34]. After repeating Lewis’ study

in the 1980’s, Beasley and Hutson proposed that the effect

of androgen on gubernacular migration may be via the

nerve itself, which may release a neuropeptide [35] to

control descent. Calcitonin gene-related peptide (CGRP)

was subsequently identified in the sensory nucleus of the

GFN after initial proposals that the neuropeptide may be in

the motor nucleus proved incorrect [36].

There is now abundant evidence that CGRP synthesised

in the GFN sensory branches modulates inguinoscrotal

migration of the gubernaculum in rodent models. Both

transection of the nerve and ablation of sensory nerves with

a specific neurotoxin, capsaicin, not only interfere with

gubernacular migration but also sensitise the gubernaculum

to CGRP by upregulation of CGRP receptors with the

gubernaculum to exogenous CGRP in vitro [37–39]. CGRP

causes rhythmic contractibility of the developing cremaster

muscle in the gubernaculum [40–42], which is thought to

orientate the gubernaculum towards the scrotum by

chemotaxis [43]. CGRP stimulates mitosis in the guber-

nacular bulb in vitro, although androgens are required for

gubernaculum to respond [44, 45].
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CGRP receptors are present in the rodent gubernaculum

and in models of androgen blockade they are upregulated,

consistent with androgen controlling CGRP release from

the GFN [46], like the flutamide-treated rat and the TFM

mouse. In a rat model of congenital cryptorchidism (tran-

scrotal or TS rat), we found that there was no abnormality

of androgenic action, but the GFN in this model contained

too many sensory nerves and an excess of CGRP [47].

Cryptorchidism in the TS rat appears to be caused by an

excess of CGRP in the GFN sensory branches causing

downregulation of the gubernacular response to exogenous

CGRP, as this can be reversed by transection or capsaicin,

the sensory nerve toxin [39, 47].

With clear evidence that the sensory branches of the

GFN control gubernacular development via CGRP, and

knowing that this is androgen dependent, the failure of

AR to be present in either the GFN or the gubernaculum

itself in the foetal ‘programming window’ suggested that

androgens must masculinise the GFN indirectly [48]. One

possibility is that target organs of the GFN other than the

GFN itself contains AR and responds to androgenic

stimulation by synthesising a neurotrophin that is taken up

by the nerve endings to modify their function (Fig. 5).

This is already been shown to be the case in an adjacent

perineal structure, the bulbocavernosus muscle, a muscle

that is important in ejaculation, and that is sexually di-

morphic. The bulbocavernosus muscle is thought to

masculinise its own nerve supply in response to andro-

gens, by producing neurotrophins to modify the nerve.

Both brain-derived neurotrophin factor (BDNF) and cil-

iary neurotrophic factor (CNTF) have been linked to the

bulbocavernosus providing peripheral neurotrophic

regulation of the perineal branch of the pudendal nerve

[49–54]. On the principle that important signalling sys-

tems are likely to be preserved in evolution, we are

currently investigating the role of BDNF and CNTF in the

GFN [25, 55] (Fig. 5).

Current issues

To understand how androgens act on the GFN to produce

CGRP for gubernacular migration in inguinoscrotal descent

is an important step needed at present. Once we have fi-

nally unravelled the complex mechanism, we will be able

to assess what are the likely steps that might be abnormal in

cryptorchidism. Another issue still to be resolved is

regulation of the remodelling that occurs in the inguino-

scrotal fat pad to allow gubernacular migration to the

scrotum. We need to know which extracellular matrix

Fig. 4 Schema showing the

sequential processes comprising

the inguinoscrotal phase of

testicular descent. At the end of

the transabdominal phase, the

enlarged gubernaculum

occupies the future inguinal

canal, and must migrate 3–5 cm

to the scrotum (a step 1), taking

the testis inside the processus

vaginalis, which elongates

inside the gubernaculum.

Failure of this first step causes

congenital cryptorchidism.

After migration is complete, the

processus vaginalis (PV) closes

(b step 2), and failure of this

causes inguinal hernia or

hydrocele. The final (c step 3)

process is complete involution

of the PV remnant, allowing the

spermatic cord to elongate after

birth. Failure of this step is the

likely cause of acquired

cryptorchidism, as the fibrous

remnant of the PV prevents the

spermatic cord growing

normally
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enzymes are produced and how they are regulated. At

present, we have just begun such a study [30].

Another area still to be explored is how the guber-

naculum involutes at the completion of migration, and

what controls its fibrous adherence to the inside of the

scrotum to prevent perinatal torsion of the testis.

An important current issue is how all the research we

have done on the inguinoscrotal phase of descent in animal

models relates to the human situation. Certainly there are

some who have suggested that the GFN and its neu-

ropeptide, CGRP, may be important in animal models but

may not be relevant for testicular descent in humans [56]. It

is a truism that extrapolation of biological findings in

animal models to the human must be done with care, but

the commonality of testicular descent in nearly all modern

mammals implies that the important parts of the mechan-

ism are likely to be the same or very similar, once we allow

for some minor anatomical differences [2].

The key evidence supporting a role for the GFN in

children comes from study of the processus vaginalis, and

what controls its perinatal closure to prevent inguinal

hernia [57]. As mentioned above, the processus vaginalis

(PV) is derived from the specialised peritoneum covering

the urogenital ridge [58], and it forms inside the guber-

naculum to allow the intraperitoneal testis to exit from the

abdomen while remaining inside the peritoneal cavity [59].

We reasoned that the development of the PV and in-

guinoscrotal descent must be integrated so that testicular

descent and PV obliteration could be precisely coordinated

in timing. PV closure usually occurs just before birth, when

foetal androgens are present, or shortly after birth when the

transient postnatal surge of androgen occurs, known as

‘minipuberty’ [60, 61]. As androgens were postulated to act

via the GFN in rodents, we looked at inguinal hernia in

children and found CGRP-immunoreactive nerve fibres and

CGRP receptors in the human processus vaginalis [62].

More importantly, we found in an in vitro system that

exogenous CGRP could induce fusion PV excised during

inguinal herniotomy by epithelial transformation [63]. The

CGRP receptors in the PV are not in the mesothelium it-

self, but in the underlying mesenchyme, and fusion of the

PV can be induced by both CGRP and hepatocyte growth

factor (HGF) which may be released by the mesenchyme to

trigger the adjacent epithelium to transform into motile

fibroblasts [64]. Taken together, all these studies suggest

that the GFN is controlling both testicular descent and

subsequent PV closure in humans, and that inguinal hernia

is likely to respond to medical treatment, such as a local,

slow-release injection of CGRP into the inguinal region

[65].

The transient postnatal surge in gonadotropins and an-

drogen known as ‘minipuberty’ occurs about 2–6 months

of age in humans. It is thought to have a role in male

gender identity, by regulating changes in brain function

[66]. In addition, it is likely to have an important function

in closing the PV (to prevent inguinal hernia), and also to

remodel any remaining fibroblasts so that the PV has

completely disappeared. This process is likely to be crucial

to prevent acquired cryptorchidism, which is often caused

by failure of the fibrous remnant of the PV to completely

disappear [67]. Spontaneous descent of many acquired

undescended testes at puberty suggests that PV involution

is under androgenic control, probably indirectly via CGRP

release from the GFN. Taken together these observations

suggest that the GFN (via CGRP) regulates not only gu-

bernacular migration prenatally, but also PV closure and

subsequent obliteration postnatally. A possible cause for

congenital cryptorchidism, therefore, is insufficient CGRP

release from the GFN prenatally. If minipuberty is defi-

cient, there might also be a deficiency of CGRP release

Fig. 5 Current hypothesis on how testosterone (T) masculinises the

genitofemoral nerve (GFN) sensory fibres with cell bodies in the

dorsal root ganglion (DRG) at L1, L2. The androgen receptors (AR)

during the critical narrow time window are located in the inguino-

scrotal fat pad which is supplied by the GFN, and through which the

gubernaculum (G) must migrate to reach the scrotum. It is possible

that the inguinoscrotal fat pad produces neurotrophins in response to

androgen that regulate GFN function, so that it can produce CGRP to

modulate the migration
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postnatally, predisposing the infant to inguinal hernia, hy-

drocele and acquired UDT.

Conclusion

There is still much to learn about the regulation of tes-

ticular descent, but the evidence suggests that cryp-

torchidism is likely to be caused by a large number of

defects interfering with the very complex mechanism

whereby the previously ‘inert’ foetal gubernaculum is

triggered to remodel and migrate 3–4 cm from the external

inguinal ring to the scrotum [68]. The link between con-

genital and acquired UDT and inguinal hernia raises the

possibility that all three conditions may respond to a local

medical treatment, such as a depot injection of CGRP itself

or a synthetic analogue.
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