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Abstract Total colonic aganglionosis is a relatively

uncommon form of Hirschsprung’s disease (HSCR). It

occurs in approximately 2–13 % of HSCR cases and

involves the entire colon which is aganglionic but may

extend proximally into varying lengths of small bowel. As

a result, it should be separated into Total colonic agangli-

onosis (TCA) [defined as aganglionosis extending from the

anus to at least the ileocaecal valve but no more than 50 cm

small bowel proximal to the ileocaecal valve] and total

colonic and small bowel aganglionosis (TCSA) which may

involve very long segments of small bowel aganglionosis.

Clinically, TCA appears to represent a different spectrum

of disease in terms of presentation and difficulties which

may be experienced in diagnosis suggesting a different

pathophysiology from the more common forms of HSCR.

It is therefore not yet clear whether TCA merely represents

a long form of HSCR or a different expression of the

disease. A number of differences exist between TCA and

other forms of HSCR which require explanation if its

ubiquitous clinical features are to be understood. In addi-

tion to the usual explanations for the aganglionosis of

HSCR, there is some evidence suggesting that in place of

being purely congenital, it may represent certain different

pathophysiologic mechanisms, some of which may con-

tinue to be active after birth. This study reviews what is

known about the clinical, radiological and histopathologic

differences between TCA and the more frequently

encountered recto-sigmoid (or short-segment; S-HSCR)

and correlates them with what is currently known about the

genetic and molecular biologic background to find possible

pathogenetic mechanisms.
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Introduction

Hirschsprung’s disease (HSCR) can be regarded as a col-

lection of conditions which produce a functional intestinal

obstruction and which have aganglionosis of the inter-

myenteric plexuses as a common feature. The aberrant

colonization of the enteric nervous system (ENS) neuro-

blasts during development, which occurs in HSCR [1], is

thought to result from disruption of normal signaling due to

several genetic variations (on at least 12 genes), which

determine its final phenotypic expression [2, 3].

Clinically, Hirschsprung’s disease has previously been

classified into ultra-short, short segment (S-HSCR) and long

segment (L-HSCR) [4]. The latter can probably be divided

into colonic, total colonic aganglionosis (TCA) and total

colonic with small bowel aganglionosis (TCSA) which may

involve a very long-segment HSCR (Zuelzers disease) [5].

Total colonic aganglionosis (TCA) is an uncommon

form of HSCR occurring in approximately 2–13 % of cases

[6–8]. TCA has long been recognized as presenting par-

ticular problems in diagnosis [9, 10] and management [11–

14]. The incidence of TCA in a Japanese population

averaged 1 in 58,496 with a male:female ratio of 1.5:1 over

a 30-year period [15]. Affected families are known to carry

approximately 200 times higher risk of recurrence [2],

particularly (but is not confined to) in patients with long-

segment aganglionosis (L-HSCR) [16–18]. TCA has been

reported to recur in 15–21 % [19] and as high as 50 % in
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patients with ultra-long-segment aganglionosis (TCSA)

[20].

Because the presentation and special problems associated

with very long aganglionic segments in TCSA, TCA has

been defined as aganglionosis extending from the anus to at

least the ileocaecal valve but no more than 50 cm proximal to

the ileocaecal valve [21]. It is thus regarded as separate from

the extended intestinal form (or TCSA) as well as the very

rare form of aganglionosis which stretches from duodenum

to anus [22, 23]. It is not yet completely clear whether sep-

aration of these two entities is justified in terms of patho-

genesis and biology, further research being required.

TCA is generally regarded as a special problem area in the

HSCR spectrum of disease. Although it does share the

common feature of aganglionosis with other forms of HSCR,

it differs in certain respects. For example, the expected 4:1

male predominance of short-segment aganglionosis (S-

HSCR) decreases to 1:1 or even 0.8:1 in TCA [12, 17, 24].

Clinically, TCA also appears to represent a different spec-

trum of disease in terms of presentation and difficulties

which may be experienced in diagnosis suggesting a differ-

ent pathophysiology from the more common forms of

HSCR. Verification of the latter could possibly explain the

late presentation of a number of TCA patients who present

later than anticipated considering the severity of disease.

Some have even gone as far as to suggest that it be regarded

as a separate condition. There has been a fairly marked

improvement in survival over the last few decades [25] over

the relatively high mortality reported early on.

Clinical differences between TCA and S-HSCR

The first area of difference is that, although TCA, like

S-HSCR, presents with a functional intestinal obstruction,

the mode of presentation appears to differ between the two.

The initial presentation is often as a functional obstruction at

or shortly after birth, but a later presentation is not uncom-

mon in TCA. Presentation within the first few weeks of life

[24] is in keeping with the severe clinical picture but TCA,

not infrequently, may have a milder presentation much later

than would be expected when the length of the aganglionic

segment is considered. A number of late presenting TCA

cases have been reported [26–29] suggesting that the

underlying pathophysiology may differ from the more

common form of short-segment Hirschsprung’s disease

(HSCR). There are even a number of reports of TCA pre-

senting as late as adolescence and early adulthood [27–29].

Our own findings are in keeping with this observation

and a later than expected presentation was observed in 9

(27 %) children with TCA who presented outside the

Neonatal period (8 presenting [6 months (14 %) and 2

(2 %) [12 months!) [7].

Secondly, TCA may be difficult to diagnose, posing

certain difficult management problems prior to and after

definitive surgery. In our series, this applied to 50 % of

cases with two patients requiring a re-siting of their stoma

due to an incorrect initial assessment of aganglionic length

[8]. The nature of the difficulties encountered in diagnosis

will be dealt with in the sections below, but one of the

factors potentially influencing diagnosis is the length of

small bowel involvement in any given case.

Radiological features

The sensitivity and specificity of a contrast enema in the

overall diagnosis of HSCR is reported as being 76 and

97 %, respectively [30]. By way of contrast, it has long

been appreciated that the diagnosis of TCA may differ

from this and an accurate determination of a transition zone

has been reported in as few as 25 % patients with TCA

[31]. It is often a particularly difficult radiological diag-

nosis, particularly in newborn infants because of lack of

consistency in the X-ray findings (Fig. 1a, b) [12]. In this

regard, a false transition zone has been reported in the

sigmoid in a number of cases. Partly, this is because the

colon may appear normal on contrast studies and the

radiological findings may be also influenced by the length

of small bowel involvement of a particular case. In this

regard, the presence of distended small bowel loops on the

plain abdominal film may be suggestive.

Despite these difficulties, distinct patterns of radiologi-

cal features are being identified which may indicate the

likelihood of TCA being present. A more recent study [32]

identified 3 distinct types of radiological pictures in TCA

on contrast enema [viz: microcolon, the question mark-

shaped colon and the lack of features in an otherwise

normal colon]. Early studies suggested that the retention of

barium [24 h was strongly suggestive of HSCR [12, 33].

However, the use of Barium has largely given way to water

soluble contrast in modern practice, making it a less

practical indicator.

An additional factor is that the clinical and radiological

findings of TCA and allied disorders (e.g. Hypoganglio-

nosis) are similar in neonates and may be difficult to sep-

arate from TCA [34].

It therefore stands to reason that the diagnosis of TCA

must be entertained if clinical symptoms of intestinal

obstruction persist in the absence of any other known

causes despite a radiologically normal-looking colon.

Histological differences in TCA

There are a number of issues related to differences in the

histological features in TCA which may lead to difficulties

in diagnosis.
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Firstly, frozen section pathologic evaluation may be

misleading. In our series the transition zone was mistaken

on frozen section due to the presence of abnormal cells

leading to re-operation in two of four cases where difficulty

in frozen section evaluation was experienced.

Secondly, the expected histological picture for a diag-

nosis of HSCR may not be as obvious due to an abnormal

bowel enervation and ganglion cell populations in TCA

[35].

Thirdly, the presence of thickened nerve trunks has been

reported to differ from that of short-segment aganglionosis

and may be completely absent in TCA bowel [36–38].

In addition, other neural elements may also be deficient

in the intestinal wall in TCA. There is some evidence of a

moderate hypoplasia of extramural sympathetic innerva-

tion as well as the cells of Cajal in the intestinal wall of

TCA patients [39]. Additional studies have shown that

although the reduction of interstitial cells of Cajal occurs in

both short- and long-segment HSCR on Kit staining [39],

there is an almost a total lack of all 3 types (submucosal,

longitudinal muscle and myenteric plexus) of ICC in the

TCA samples investigated suggesting a very severe effect

on intestinal motility [35]. Solari and Puri [35] also noted

that in addition to the aganglionosis, a markedly reduced

Peripherin immunoreactivity and a markedly reduced

number of NADPH-positive nerve trunks were present in

these patients.

Although the presence of a long hypoganglionic seg-

ment and increased immaturity of cells reported in some

animal models [40], an extended hypoganglionic segment

has not been confirmed in humans (although suspected). If

present, it may have an influence on post-surgical func-

tional outcome. All of these may confound the histological

diagnosis of TCA.

Pathogenesis and etiology of TCA

Although there has been a significant increase in knowl-

edge and understanding of the pathogenesis of HSCR and

TCA over the last 2 decades [25], there are a number of

differences from other forms of HSCR which require

explanation if its ubiquitous clinical features are to be

understood. HSCR itself is characterized as a sex-linked

heterogonous disorder with variable severity and incom-

plete penetrance giving rise to a variable pattern of inher-

itance [41]. Alterations of the major susceptibility genes

(RET and EDNRB) have thus far only been demonstrated

in 30–50 % of patients with HSCR generally which is

higher than the expected in the normal population [2, 42–

44]. In addition, these genetic variations account for more

than 50 % of the observed abnormalities associated with

HSCR. A wider analysis of these genes to include the early

introns and promoter regions increases this figure

considerably.

It is, however, not yet clear whether TCA merely rep-

resents a long form of HSCR or a different expression of

the disease. For one thing, the clinical and histological

findings suggest a distinct difference in enervation which is

not easily explained on the basis of an increased gene

penetrance alone. There is also some evidence suggesting

that in place of being purely congenital, TCA may repre-

sent certain different pathophysiologic mechanisms, some

of which may continue to be active after birth due to

continued plasticity of the ENS.

Animal models of TCA

Major contributions have been made to increase our

understanding of the ENS by the study of the

Fig. 1 a A contrast enema

showing normal caliber colon in

a neonate with TCA. b A

contrast enema showing a

microcolon in a patient with

TCA
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developmental processes that contribute to ENS develop-

ment in animal models.

Examples of animal models of HSCR include both

murine [e.g. the lethal spotting mouse (point mutation

EDN3), Piebald lethal mice (sl: absent EDNRB)] and

rodent [spotting lethal rat (301 bp EDNRB del) and the

Dominant Megacolon (Dom; point mutation SOX10)

models.

Early animal model appears to have limited aganglionic

lengths [45, 46]. However, subsequent models such as the

autosomal recessive spotting lethal rat [endothelin-B

receptor (EDNRB) gene deletion that prevents functional

EDNRB receptor expression] demonstrate two lengths of

aganglionosis (i.e. mid-colon and TCA). Only the sl rodent

model (EDNRB -/-) has produced TCA fairly consistently.

Nagahama et al. [47, 48] showed a paucity of myenteric

and submucosal nerve fibers in the affected intestine of

these animals whilst bundles of irregular nerve fibers

without ganglion cells were present in the circular muscle

layer of the mid to distal colon.

It is generally accepted that genetic mutations in these

animal models result in developmental defects in neural

crest cell migration, differentiation or survival. On the

other hand, transgenic expression has been shown to be

able to prevent aganglionosis in these animals [49].

Numerous knockout (KO) models have been developed

which include the RET ligands GDNF, GFRa1-2, Neur-

turin, those affecting the endothelin pathway (e.g. EDN3,

ECE-1 and EDNRB) and the hedgehog pathways (IHH and

SHH). Those KO models affecting the RET ligands GDNF

and GFRa tended to produce total intestinal aganglionosis

along with those related to SOX10, PHOX 2B and PAX3

making them likely molecular targets.

The endothelin system has clearly been shown to be one

of the important genetic factors in the pathogenesis of

aganglionosis (e.g. the sl rodent EDNRB -/- phenotype) but

its significance in TCA in humans is as yet not completely

clear. It would appear, however, that on the basis that a

balanced, coordinated interaction between the Sox10 and

EDNRB genes is necessary for normal ENS development,

that they both may be involved in TCA pathogenesis.

The transcription factor Sox10 has been shown to be

required for proper development of a number of neural

crest-derived cell types (including melanocytes and both

autonomic and enteric neurons). All subtypes of peripheral

glia are also absent in mice homozygous for Sox10 muta-

tions. Kapur [50] concluded from studies on the Sox10

(Dom)/Sox10 (Dom) genetic animal model, that excessive

cell death occurs in neural crest cells early in the devel-

opment in these animals due to an early increase in neural

crest cell apoptosis rather than defects in the enteric

microenvironment. In this model, whereas mutant crest

cells did not colonize the Sox10 (Dom)/Sox10 (Dom) gut,

explanted segments of Sox10 (Dom)/Sox10 (Dom)

embryonic intestine were colonized by wild-type neural

crest cells. In addition, apoptosis was increased in early

neuroblast cell development in Sox10 (Dom)/Sox10 (Dom)

embryos, prior to them colonizing the intestine. Also,

double SOX10 mutants demonstrate even more severe ENS

defects without signs of apoptosis, cell proliferation or

overall neuronal or glial differentiation, which suggests

that SOX10 may potentially play a vital role in the apop-

tosis associated with TCA [51].

Technological advances have allowed the addition of

knockout animal models as well as genome-wide searches

for profiling gene expression in both wild-type and mutant

animal models of the ENS to identify important molecules

which play a significant role in enteric neurogenesis [52].

The second advance of using multipotential ENS progen-

itors as novel therapeutic strategies is currently under

scrutiny [53].

An extended transition zone in TCA?

Many of the HSCR animal models demonstrate an exten-

ded transition zone or region of hypoganglionosis. TCA

has been reported in the Dominant megacolon mouse

(Dom) along with a long hypoganglionic transition zone

[54]. These cells may also remain immature beyond an age

when they should be mature [40]. This is also reported in

the murine-16 animal model of DS-HSCR [55] whether

this may occur in humans is still not proven although

suspected.

Genetic profile of TCA

HSCR is widely regarded as a genetic, sex modified,

multifactorial condition with a variable severity and

incomplete penetrance of a number of genes. Essentially,

HSCR appears to result at a molecular level from disrup-

tion of normal signaling during development. The cues

controlling the migration of the neural crest cells go awry

resulting in aganglionosis of the distal bowel. The disorder

is complex, as is shown by the number of genes implicated

in its pathogenesis (at least 12). This is hardly surprising as

the signals governing cell migration and development in

the embryo are extraordinarily complicated and signaling

molecules are notorious for crosstalk and redundancy, as

well as having coordinate and dependent regulation of

expression on occasion.

The genetic profile of TCA is as yet not completely clear

although current research would suggest possible different

signaling pathways in its pathogenesis. It would appear that

the genetic influence varies in terms of the length of the

affected segment. TCA is much more common in familial

series (P \ 0.001) [18] which suggests a probable genetic
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link (Fig. 2). This is in keeping with the findings of Badner

et al. [41] who reported a high degree of heritability and

gene penetrance in TCA. Certain families also show

increasing length with successive siblings [18] which

suggests increased gene penetrance with successive gen-

erations. Other modifying genes may influence this

phenomenon.

In terms of Mendelian inheritance, autosomal dominant,

recessive and polygenic patterns have all been reported in

HSCR, particularly where longer segments are observed

[18]. Generally speaking, long-segment Hirschsprung’s

disease and TCA, appears to have an autosomal dominant

inheritance pattern with incomplete penetrance [56] (mostly

RET), whereas short-segment Hirschsprung’s disease

appears to be transmitted in an autosomal recessive manner.

The heterogeneity of RET proto-oncogene has also been well

established in autosomal dominant forms of HSCR [57]. This

difference introduces the possibility of different underlying

genetic and molecular mechanisms in the pathogenesis of the

different phenotypic expressions. In other words, there may

be a different genetic profile in TCA than that of S-HSCR in

terms of gene penetrance or the multiplicative effects of a

number of involved genes [58].

The RET and EDNRB signaling cascades remain the

two major susceptibility pathways for HSCR and TCA.

RET has been shown to be the main susceptibility gene in

TCA, having been associated with the first classic

description of RET in association with HSCR [59]. Despite

the fact that RET has been identified as the main TCA

susceptibility gene [43], animal models of EDNRB [60,

61], PHOX2B mutations [62] and possibly SOX10 [51]

have also been implicated. In addition, the position of the

genetic variations on the RET gene may influence other

signaling pathways thus creating the resultant phenotype.

This should lead to further research as to other potential

gene–gene interaction to explain these phenomena. In

terms of the multiplicity of genes potentially involved in

HSCR pathogenesis, there is evidence to suggest that RET

is a possible final common pathway to their influence on

the developing ENS.

The main question is whether the genetic profile of these

patients offers clues as to the reasons for the different

pathogenesis in these patients. In our own TCA study [8],

RET variations were detected in 82 % with 50 % of these

having multiple genetic RET variations. Multiple RET

variations were, however, observed in more or less the

same proportion in both S-HSCR and extended colon

involvement. Despite this, the genetic variation appeared to

be more extensive in five suggesting that increased gene

penetrance may account for many TCA phenotypes. There

is also, however, increasing evidence that disturbances of

downstream RET-related signaling pathways may influ-

ence the phenotypic expression. It is in this context that

further signaling modification by aberrant downstream

pathways remains a strong possibility. The pattern of RET

gene variation appeared to be less consistent in TCA with a

less frequent association with the important exon two

variations (A45 polymorphism) than in those with L-HSCR

and S-HSCR but was an isolated genetic variation in two

TCA patients. The clustering of genetic variations to the

intracellular portion of the RET gene (particularly exons

17–21) suggests that the position of the genetic variations

may be as important as their extent. This observation is

supported by Inoue et al. [63] who also identified an

increase in RET mutations in the tyrosine kinase domain in

5 (63 %) out of the eight TCA patients with RET muta-

tions. This suggests the possible involvement of other

signaling pathways that bind to receptors on those sites

[64]. In particular, these binding sites mediate the recruit-

ment of phosphotyrosine-binding domain-containing

adaptor proteins which, in turn, appear to promote the

relocation of RET receptor complexes to lipid rafts,

thereby promoting downstream signaling and RET-medi-

ated cellular functions [65].

Recently it has been shown that diminished RET

expression compromises neuronal survival in the colon and

causes intestinal aganglionosis in mice suggesting once

again that apoptotic mechanisms may be important [66].

Modulation of this mechanism may be of considerable

interest in the future treatment of HSCR by modulating

RET to be neuroprotective and override the apoptotic

mechanisms involved in RET insufficiency [67].

The endothelin system is also important but its signifi-

cance in TCA is as yet unclear. Colonic ENS development

appears to be specifically related to EDN3 [68] and a

reduced EDN3 mRNA expression has been reported in the

aganglionic segment [69]. Our own study [8] showed

EDNRB exon four variations in 32 %, but the significance

of this finding is as yet unclear but many of the genes

identified in HSCR pathogenesis are interlinked.
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Fig. 2 A comparison between the prevalence of TCA in familial

cases versus a non-familial group demonstrating the significantly

higher prevalence in familial cases
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In addition, a Cysteine radical mutation (C620R) in a

patient with TCA was related to MEN2 in the family in 2

further patients in our study cohort [8]. The co-segregation of

the multiple Endocrine neoplasia syndrome (MEN) and

HSCR(MEN–HSCR) is highest in patients with long-seg-

ment HSCR and a C620 mutation and has been reported in as

many as 54 % of patients [70] and has been a constant

association in all of our familial MEN–HSCR cases [18, 71].

One possible explanation for TCA is, therefore, that

immature ganglion cells may still possibly be influenced

and processes such as apoptosis or alternatively, death of

ENS cells [50], may still continue after birth. It is thus

possible that some degree of postnatal ENS plasticity may

contribute to and possibly explain the histological differ-

ences observed in this and other studies [35]. This also

provides a potential reason for the degenerating cells and

‘‘ghost’’ ganglion cells observed on histology in two of our

cases [8]. Further support for this hypothesis also comes

from experiments showing early death of neural crest cells

in the Sox10 (Dom)/Sox10 (Dom) experimental murine

animal [50] and suggests a genetic cause.

In addition to Sox10, the related NRG1 gene at 8p 12

which encodes neuregulin 1 is also a candidate being

involved in regulating enteric neural precursor develop-

ment. Sox10 is also a pre-requisite for NRG1-dependent

survival of the multipotent neuroblasts colonizing the ENS

especially during gliogenesis [72]. Further genome-wide

associations have also identified the NRG locus as an

additional significant susceptibility locus in HSCR in

humans [73].

Associated conditions

A number of developmental conditions have been associ-

ated with TCA [40], along with several known syndromes

inherited in an autosomal dominant manner. These include

chromosomal [59] and congenital hypoventilation syn-

drome (with a PHOX2B gene mutation [62]) as well as

ileal atresia [74, 75] and tumors of neural origin [76].

Although the pattern of conditions associated with HSCR

has already been of great value in revealing many of the

genetic nature and associations of the disease [77, 78],

there appears to be no consistent association with specific

anomalies and TCA. In fact, there appears to be a

decreased TCA incidence (6 %) associated with Trisomy

21 [24, 25, 79] as opposed to the known higher occurrence

of HSCR.

Outcome following surgery

Many different surgical techniques have been utilized for

TCA [14, 80, 81] with outcomes mostly related to the type

of surgical technique performed [25]. Those used include

the Soave, Swenson, and Duhamel and Martin [14] tech-

niques or the Kimura colonic patch [81, 82]. In a 30-year

survey of TCSA in Japan, Ieiri et al. [15] noted that

Duhamel procedure and colonic patch methods have

increased over time to replace the Martin-extended Duha-

mel and other procedures because of non-optimal results or

specific procedure-related problems. Many surgeons now

accept the standard modified Duhamel procedure as the

best option in TCA in terms of long-term function. [25].

In a fairly recent study of outcome in 58 patients [83] it

was found that surgical management of TCA was largely

successful. Although mortality in TCA has decreased dra-

matically in recent years the morbidity still remains high

[21]. In the large Japanese series [15], although the mor-

tality dropped from 40.9 to 15.8 %, a high mortality still

encountered. These are particularly severe in those with

extensive small bowel involvement for fairly obvious rea-

sons. Nevertheless, TCA patients continue to have long-

term issues with bowel control and night diarrhea.

Although some of these may improve with time [15, 25],

the long-term follow-up of 42 (2–31 years) TCA patients

[83] showed that although 22 (52 %) had good bowel

control, continence remained a problem in the remaining

20 (47 %). These patients averaged 5.2 bowel movements

per day which decreased to a mean of 3.4 per day at the age

of 15 years. Ikawa et al. [84] identified severe iron defi-

ciency and growth retardation in these patients.

Hirschsprungs-associated enterocolitis (HAEC) appears

to remain a problem in patients with TCA, being identified

postoperatively in 55.4 % [83] of one series in keeping

with other long-term follow-up studies [6, 10, 12, 26, 80,

85]. Ieiri et al. [15] demonstrated a significant decrease in

HAEC in recent years. This requires careful evaluation as it

may mean that the frequent stools encountered in many

were attributed to the short bowel rather than HAEC as in

the past. Additional mechanical problems have been

experienced in older patients due mostly to the ‘‘kinking’’

of the small bowel in the pelvis which may require further

surgical management.
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