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Abstract Hirschsprung’s disease (HSCR) is a fairly fre-

quent cause of intestinal obstruction in children. It is

characterized as a sex-linked heterogonous disorder with

variable severity and incomplete penetrance giving rise to a

variable pattern of inheritance. Although Hirschsprung’s

disease occurs as an isolated phenotype in at least 70 % of

cases, it is not infrequently associated with a number of

congenital abnormalities and associated syndromes, dem-

onstrating a spectrum of congenital anomalies. Certain of

these syndromic phenotypes have been linked to distinct

genetic sites, indicating underlying genetic associations of

the disease and probable gene–gene interaction, in its

pathogenesis. These associations with HSCR include

Down’s syndrome and other chromosomal anomalies,

Waardenburg syndrome and other Dominant sensorineural

deafness, the Congenital Central Hypoventilation and

Mowat–Wilson and other brain-related syndromes, as well

as the MEN2 and other tumour associations. A number

of other autosomal recessive syndromes include the

Shah-Waardenburg, the Bardet–Biedl and Cartilage–hair

hypoplasia, Goldberg–Shprintzen syndromes and other

syndromes related to cholesterol and fat metabolism among

others. The genetics of Hirschsprung’s disease are highly

complex with the majority of known genetic sites relating

to the main susceptibility pathways (RET an EDNRB).

Non-syndromic non-familial, short-segment HSCR appears

to represent a non-Mendelian condition with variable

expression and sex-dependent penetrance. Syndromic and

familial forms, on the other hand, have complex patterns of

inheritance and being reported as autosomal dominant,

recessive and polygenic patterns of inheritance. The phe-

notypic variability and incomplete penetrance observed in

Hirschsprung’s disease could also be explained by the

involvement of modifier genes, especially in its syndromic

forms. In this review, we look at the chromosomal and

Mendelian associations and their underlying signalling

pathways, to obtain a better understanding of the patho-

genetic mechanisms involved in developing aganglionosis

of the distal bowel.
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Introduction

Hirschsprung’s disease (HSCR) accounts for approxi-

mately 10 % of intestinal obstruction in the neonatal period

and not infrequently presents later with chronic obstructive

symptoms. It occurs as an isolated phenotype in at least

70 % of cases, but has not infrequently been associated

with a number of congenital abnormalities and associated

syndromes.

HSCR is characterized as a sex-linked heterogonous

disorder (male predominance) with variable severity and

incomplete penetrance [1] giving rise to a variable pattern

of inheritance. Affected families are known to carry as high

as a 200 times higher risk of recurrence [2]. The higher

familial incidence has been shown to particularly apply to

(but is not confined to) patients with long-segment agan-

glionosis (L-HSCR) [3–5] where it has been reported to

recur in 15–21 % [6] and as high as 50 % in patients with

ultra-long segment aganglionosis [7]. An asymmetrical

parental origin is observed for RET coding sequence
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mutations with a higher maternal inheritance. Although a

parent-of-origin effect is usually assumed to account for

this, there is a hypothesis that the more severe mutations

have affected the reproductive rate [8].

Inheritance and familial transmission

Familial transmission of HSCR is well known and affected

families are known to carry higher risk of recurrence [2].

The higher occurrence of familial transmission has been

shown to particularly apply to (but is not exclusive to)

patients with long-segment aganglionosis (L-HSCR) [3–5,

9], where it has been reported to recur in 15–21 % [6] and

as high as 50 % in patients with ultra-long segment agan-

glionosis [7]. In addition, it has also been reported in mono

and dizygotic twins [10–12], and has a 12 % association

with chromosomal anomalies [2].

HSCR inheritance is variable, however. On the one

hand, isolated HSCR (without associated anomalies) has

been reported as a non-Mendelian condition with a low,

sex-dependent penetrance [13]. These appear to have a

variable expression in terms of length of the aganglionic

segment [14]. Syndromic HSCR on the other hand has been

reported to have all forms of Mendelian inheritance, which

suggests other genetic influences [15]. In syndromic

expression, it is not clear if the identified genetic associa-

tion is causative or acts as a modifier influence on one of

the main susceptibility pathways.

Genetic counselling remains a challenge in Hirsch-

sprung’s disease because no clear pattern of inheritance

exists [16, 17]. The majority of HSCR cases can thus be

classified as complex genetic disorders where familial

aggregation is observed without consistent Mendelian

inheritance [18]. Autosomal dominant [19, 20] transmission

has been reported, but also recessive [21–23] and multi-

genic patterns appear [15, 24]. In addition, to this, several of

the known syndromic associations are inherited in an

autosomal dominant manner [19, 21] Autosomal dominant

Mendelian transmission appears to be mediated by the RET

proto-oncogene. EDNRB mutations, on the other hand, may

be recessive and suggest haplotypic gene–gene interaction.

HSCR-associated conditions

There are several well-known associations which are

known or suspected to be related to an increased risk of

HSCR. These include Down’s syndrome [16], dominant

sensorineural deafness [25], Waardenburg syndrome [16,

26–28], neurofibromatosis [26], neuroblastoma [16],

Phaeochromocytoma [16, 26, 27], the MEN Type IIB

syndrome [27, 29] and other abnormalities [16].

The reported associations with HSCR are significant for

at least 2 reasons:

First, it gives insights into the abnormal genetic sig-

nalling during ENS development. This has given clues as to

the genetic mechanisms involved in HSCR and its patho-

genesis. This is particularly true for the Mendelian-linked

syndromes.

Second, there is the contribution of associated anomalies

on long term prognosis and outcome of these patients.

The reporting of HSCR-associated conditions has

already been of great value in revealing many of the

genetic associations of the disease [30], and have been a

major factor in identifying genes such as the RET [31, 32],

Endothelin B receptor (EDNRB) [33, 34] and SOX genes

[35, 36] in the Waardenburg syndrome and the PHOX2B

gene in congenital hypoventilation [37]. It has also helped

identify the potential of genes not in the two main sus-

ceptibility pathways (e.g. the ZEB2 and ZFHX1B genes in

the Mowat–Wilson syndrome [38, 39]), and the SIP1 gene

associations [40]. Other known HSCR associations such as

Down syndrome[42], the Bardet–Biedl [42] and cholesterol

affecting syndromes [43] in addition to a number of other

conditions may well modify the two main susceptibility

pathways in some way and remain interesting areas of

further research. It is therefore important that the extended

form of the condition in 2–13 % of patients [5, 44–46] be

explored, so as to assist in genetic counselling, particularly

in potential familial recurrences [9].

Genes and the pathogenesis of Hirschsprung’s disease

Hirschsprung’s disease would appear at a molecular level

to result from disruption of normal signalling during the

development of the Enteric Nervous system (ENS) due

mainly to chromosomal and impaired signalling cascades

of controlling genes. As a result, the signals controlling the

migration of the neural crest cells are deficient which

results in aganglionosis of the distal bowel, leading to a

functional intestinal obstruction.

The disorder is complex, as is shown by the number of

genes implicated in its pathogenesis (at least, 11 genes and

5 gene loci have reportedly been associated with HSCR)

[47]. This has caused much confusion in understanding

how these different genetic influences link to give rise to

the common Hirschsprung’s feature of aganglionosis as

considerable differences in HSCR phenotypic expression

exist. The associated syndromes are hardly surprising as

the signals governing cell migration and development in

the embryo are extraordinarily complicated and signalling

molecules are notorious for crosstalk and redundancy, as

well as having co-ordinate and dependent regulation of

expression on occasion. How they do this is still largely a

matter of conjecture? Studies of these syndromes do,

however, suggest possible relevant pathogenic mechanisms

and links.
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Known genetic variations have been identified in at least

12 % of HSCR cases [3, 48–51], which is higher than the

expected in the normal population. In addition, these genetic

variations account for more than 50 % of the observed

abnormalities associated with HSCR. HSCR has been

associated with high penetrance mutations in at least 11

neuro-developmental genes (viz: RET, GDNF, NRTN,

SOX10, EDNRB, EDN3, ECE1, ZFHX1B, PHOX2B,

KIAA1279, and TCF4). There is a monogenic subgroup for

which rare RET coding sequence mutations with high pen-

etrance are found (45 % of HSCR familial cases [8]. A

recent population-based case group study tested for associ-

ations between HSCR and common genetic variation

has confirmed the associations with RET, HOXB5 and

PHOX2B variation, but failed to demonstrate significant

association with ASCL1, L1CAM and PROK1 [52]. The

association with HOXB5 and PHOX2B provide supportive

evidence that genes regulating enteric neuroblast prolifera-

tion, migration and differentiation may confer HSCR risk.

Although RET variants were strongly associated with HSCR

(P 10(-3)-10(-31)), interethnic variation was observed in

ethnic African–Americans which suggests interethnic vari-

ation in certain race/ethnic groups.

The roles of the major susceptibility genes on chromo-

some 10 (RET) and chromosome 13 (EDNRB) in the

pathogenesis of HSCR, are well established [31, 53]. What

is not always appreciated is that 9 of the 11 identified genes

are related to these major susceptibility gene signalling

pathways [viz: the REarranged during Transfection [RET

(RET; GDNF; GFRa; NTN) signalling cascade and the

Endothelin B receptor-related pathways (EDNRB; EDN-3;

ECE-1; PHOX2B and SOX10)]]. In the developing ENS,

the RET gene product and the GDNF family neurotrophic

factors [mainly GDNF and GDNF receptor alpha1 (GFR-

alpha1)] stimulate the proliferation of enteric neural crest

cells by activating numerous signalling pathways to

determine ENS development [54, 55]. Under this genetic

control, the enteric neuroblasts then migrate from the

neural crest to the proximal developing gut and then follow

the vagal fibres down the GI tract to form the intermyen-

teric ganglia and ENS.

The genetic influence appears to vary in terms of the

length of the affected segment, long segment Hirsch-

sprung’s disease and total colonic aganglionosis being

considered to have an autosomal dominant inheritance

pattern with incomplete penetrance (mostly RET);

whereas isolated short-segment Hirschsprung’s disease

appears to be transmitted in an autosomal recessive

manner or due to multiplicative effects of a number of

involved genes [51]. In addition, several known associ-

ated syndromes are also inherited in a Mendelian auto-

somal dominant manner.

Potential gene effects in the pathogenesis of HSCR

within these pathways, include loss of function, gain of

function, apoptosis, aberrant splicing and decreased gene

expression [56]. Other identified genes are mostly related

to specific syndromes (Mendelian and other), and their

pathogenetic connection to HSCR is not as yet fully

understood but low-penetrance polymorphisms have also

been identified in other genes (e.g. RET NRG1 and pos-

sibly TCF4 genes and are thought to possibly act as genetic

modifiers). TCF 4 (transcription factor 4) is broadly

expressed, and is thought to play an important role in

nervous system development [57]. SMADIP1, (encoding a

transcriptional co-repressor of SMAD target genes), pos-

sibly plays a role in patterning of neural crest-derived cells

[58].

The chromosome 10-associated tyrosine kinase receptor

RET appears to be the major gene involved in HSCR

development and approximately 45 % of HSCR familial

cases have high penetrance RET coding sequence muta-

tions [8]. Current knowledge includes both infrequent

coding sequence mutations throughout the genes well as a

frequent variant located in an enhancer section which

appears to predispose to HSCR [59, 60]. RET also main-

tains and supports the survival and several neuronal pop-

ulations in the CNS (e.g. midbrain dopamine neurons and

motoneurons) and may also contribute to the development

and differentiation of specific cortical interneuron subtypes

[54].

Genetic associations with HSCR include Down’s syn-

drome (DS-HSCR), congenital central hypoventilation

(CCHS), the Shah-Waardenburgh (WS4), the Bardet–Biedl

(BBS), cartilage–hair hypoplasia (CHH), Smith–Lemli–

Opitz (SLO), Goldberg–Shprintzen (GSS), and hydro-

cephalus due to congenital stenosis of the aqueduct of

Sylvius (HSAS) in addition to the Mowat–Wilson syn-

drome (MWS) among others [61].

Chromosomal abnormalities and HSCR

One of the basic questions in HSCR is to explain how a

complex series of genes may influence the highly variable

HSCR phenotype in terms of gender, length of aganglio-

nosis, familial recurrence, and expression of HSCR. Hav-

ing already noted that the pattern of conditions associated

with HSCR been of great value in unravelling many of the

genetic associations of the disease, further study of the

associated anomalies appears to indicate further less fre-

quent associations with the condition.

Known chromosomal anomalies are associated with at

least 12 % of HSCR cases [2, 48, 51], which is higher than

the expected prevalence in the normal population. Chro-

mosomal aberrations are also associated with more than
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50 % of the HSCR-associated anomalies reported and

genetic-HSCR associations have been identified with a

number of related Mendelian syndromes [2, 47, 62]. In

particular, associations with chromosomes 2, 9, 20, 21 and

22 may be important as they may act as ‘‘modifiers’’ of the

final phenotypic expression [14].

A review showed that apart from Down syndrome, the

relative incidence of other phenotypic expressions is of the

order of 21 % [2]. Interest in chromosome 22 was first

raised by Beedgen et al. [63].

Trisomy 21 and HSCR

HSCR (DS-HSCR) remains the most common of the con-

genital ENS dysganglionosis associated with DS [1, 16,

64], and there is a clear cut association between Hirsch-

sprung’s disease (HSCR) and DS (DS-HSCR) in 2–15 % of

patients [2, 16, 30, 65–69]. A mean incidence of 5.82 %

was calculated in a collective review of 5249 Downs

syndrome patients [41], which is higher than the

0.15–0.17 % expected incidence in the normal population.

As a result, all DS children with constipation should be

considered as potential candidates for HSCR.

Although the clinical association between Hirsch-

sprung’s disease (HSCR) and Down’s syndrome (DS) is

well established, little consensus exists as to the possible

aetiologic factors of the two conditions. The initially

observed non-random association of the RET and chro-

mosome 21 in the EDNRB-linked Mennonite kindreds

suggested a multiplicative form of inheritance [70]. By this

or a similar mechanism, the cumulative effects of multiple

mutations appear to represent a likely mode of HSCR

pathogenesis. The effect of the extra 21 chromosome on

the development of the gastro-intestinal tract remains elu-

sive, however. Initially it was thought to be related to the

Down’s critical region at 21q22, but is not necessarily part

of it [70].

Recent research has identified at least 5 levels at which

the developing ENS may be affected and thus result in ENS

malfunction in DS [71]. These include a decreased pool of

available neuroblasts for migration into the ENS [72],

abnormal neuronal cells and post-synaptic connections

[73–76], early gene-related influences on the migrating

neuroblasts [70], germline and somatic mutations of genes

[77], and a possible overfriendly local tissue environment

[78].

First, decreased neuronal migration has been reported in

the cortex of the brain of animal DS models, under known

chemotactic factors (viz: glutamate or N-methyl-D-aspar-

tate (NMDA) stimulation [79]. As a result, the DS brain

has been shown to have both a decreased number and

density of neurons in most brain regions.

Second, in addition to decreased pool of available neu-

roblasts in the CNS, the brain of DS patients also typically

shows reductions in synaptic density and surface area with a

decreased number of postsynaptic spines [73, 75, 80]. This

probably reflects an altered neuronal morphology in DS,

based on shortened basilar dendrites particularly in the

cortical pyramidal tracts resulting in defective cortical

layering [73–76]. This failure of the normal dendritic

development in the brain of foetuses with DS, results in a

‘‘tree in winter’’ histological picture due to the lack of

dendritic branching [72]. The existing spines appear

abnormally long, thin, or irregular in contour and appear-

ance [73, 75, 80]. As a result, there are reports of reduced

numbers of oesophageal plexus ganglia neurons reported in

DS patients provide further evidence of a decrease in neural

ENS cells in DS (69 and 75 % of the control value in the

deep submucous and Auerbach plexuses, respectively) [81].

It would therefore seem reasonable to extrapolate this

decrease in ganglion cells reported in the oesophagus as

occurring throughout the GIT, including the colon and may

go some way to explain the oesophageal dysfunction (and

other GI dysfunction), commonly encountered in DS. In

addition, Hypoganglionosis is also not uncommon in the

chromosome 21 animal model [82] with some having an

aganglionic segment in addition to the abnormally devel-

oped ENS [82, 83].

There also appear to be early gene-related influences

(germline and somatic mutations) on the migrating neuro-

blasts, in HSCR–Downs. Our own studies have shown both

in a RET enhancer, as well as in the EDNRB gene varia-

tions in DS [84]. In the latter, EDNRB 561C/T Polymor-

phism was over represented in the HSCR/DS (p \ 0.002,

v2 with Yates correction = 12.14), suggesting a low-pen-

etrance effect [84]. In addition, we recently identified

an association between somatic mutation of SNP2

(rs 2435357) to aganglionic tissue [77]. Both the RET

Intron 1HSCR-related SNP 1 (rs2506004) [77] and SNP2

(RET ?9.7 (rs2435357:C[T) 10q11.2) [60]. In our own

study, the SNP1 (rs2506004) showed variation in all 14 of

the DS-patients tested, but was also found in all 3 DS

controls (without), and also much less frequently in normal

population controls [77].

Although homozygous expressions of SNP1, appeared

to correlate with aganglionosis in tissue samples, SNP2

(rs2435357) was found to be heterozygous in normally

ganglionated and transition zone tissue but homozygous in

four aganglionic tissue samples from the same patients. We

were thus able to demonstrate potential disease-related

RET intronic mutations in DS-HSCR patients, which

appeared to undergo somatic mutation in affected tissue

[77]. In itself this may be a significant explanation as to

why only a segment of bowel is affected. It also suggests
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that local micro-environmental (e.g. extracellular matrix

(ECM)) factors play a role in HSCR pathogenesis.

The entire ENS in DS appears, therefore, to be potentially

affected in a number of ways both by developmental and

genetic defects. Disturbances of the GIT are not uncommon

in DS and are probably related to an abnormal ENS. Func-

tional GI disturbances may continue into adulthood in DS

and require special counselling and follow-up.

Other HSCR-associated chromosomal anomalies

Although the main chromosomal anomaly associated with

HSCR is Trisomy 21, there are other reported chromo-

somal variations which are uncommonly HSCR-associated.

These include chromosomal lesions such as deletion of 20p

[85], 18p monosomy and 18q Trisomy [86], and XO/XX/

XXX mosaicism [87].

There are at least two other chromosomal regions where

genomic studies have re-emphasised an already suspected

HSCR link. One of these is the association between HSCR

and 2q37, which arose because of a possible homology

with the splotch mouse model [88]. Since the initial con-

nections with this site, the SMAD interacting protein 1

gene (SIP-1) at 2q22-23 [89], partial duplication of chro-

mosome 2 [90, 91] and the Mowat–Wilson syndrome with

its ZEB2 (ZFHX1B) mutations and deletions at 2q22-q24

[91] have been associated with HSCR.

In addition, the 9q31 region has been identified in sib

pairs without significant RET variations [92]. This site has

been previously associated with reports of tetrasomy of 9p

[93] and the association with Riley–Day familial dysau-

tomnia [94], whose IKBKAP gene has been linked to 9q31

[95]. In addition, the RMRP gene mutation in the carti-

lage–hair hypoplasia syndrome relates to a similar area

[96].

Dandy–Walker abnormalities have been reported asso-

ciated with both HSCR [93] and the Shah-Waardenburgh

syndrome [97]. It is frequently associated with genetic

anomalies, brain or systemic malformations (e.g. heart,

orthopaedic, intestinal, urogenital and facial anomalies)

and also part of many syndromes and appears also to be

linked to chromosome 9 variations possibly explaining the

HSCR connections [92, 93].

Abnormalities of chromosome 22 karyotype have been

reported to be associated with both malrotation and agan-

glionosis both in animal models [98] and in humans [99].

Associations related to this site, include the cat-eye syn-

drome associated with Trisomy 22pter-q11 [100] and the

Di-George velocardiofacial syndrome at del22q11 [101],

both of which have been associated with HSCR.

L1 gene (LiCAM) mutations have been associated with

both hydrocephalus and HSCR [102]. Although there

appears to be some association with L1 [103], it has

recently been shown to not be causative in HSCR [52]. It

may, however, act as a modifier gene for members of the

Endothelin signalling pathway during enteric nervous

system development [104].

It is interesting to note that the majority of the reported

chromosomal sites that lie outside of the major suscepti-

bility genes, have been identified in patients without major

RET mutations, suggesting that these chromosomal sites

may have a unique interaction resulting in HSCR [92].

Mendelian inheritability in Hirschsprung’s disease

The genetics of Hirschsprung’s disease are highly complex.

On the one hand, non-syndromic non-familial, short-seg-

ment HSCR appears to represent a non-Mendelian condi-

tion with variable expression and sex-dependent

penetrance [47]. On the other hand, syndromic and familial

forms of HSCR have complex patterns of inheritance and

have been described as dominant and recessive Mendelian

forms of inheritance. In the strict sense, they are not truly

Mendelian although many of the associated syndromes

appear to be transmitted in a Mendelian manner. As a

result, autosomal dominant [19, 20], recessive [21] and

polygenic patterns [24], have all been observed in patients

with HSCR.

The phenotypic variability and incomplete penetrance

observed in Hirschsprung’s disease could be explained by

the involvement of modifier genes, especially in its syn-

dromic forms.

The pattern of HSCR inheritance also appears to vary in

terms of the length of the aganglionic segment, long-seg-

ment Hirschsprung’s disease being considered to have an

autosomal dominant inheritance pattern with incomplete

penetrance (mostly RET): whereas short-segment Hirsch-

sprung’s disease appears to be transmitted in an autosomal

recessive manner or due to multiplicative effects of a

number of involved genes [51].

Of the several known associated syndromes inherited in

a Mendelian manner those being transmitted autosomal

dominantly include the Waardenburg syndrome (mainly

when the SOX 10 gene is involved [105]), the Congenital

Central Hypoventilation Syndrome [37] the Mowat–Wil-

son [106], as well as the MEN2A tumour syndrome [107].

Those being transmitted as autosomal recessive include the

Shah-Waardenburg [108] the Bardet–Biedl and Cartilage–

hair hypoplasia (CHH) [109] and Goldberg–Shprintzen

syndromes [110]. The suggestion that Mendelian trans-

mission is related to the non-RET related syndromic types,

although interesting, does not fully explain the autosomal

dominant transmission in MEN2 among others.

It would appear to be important to look carefully at these

syndromes to gain insight into the molecular mechanisms

responsible for the HSCR connection.
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Mendelian syndromes associated with Hirschsprung’s

disease

Waardenburg (WS) and Shah-Waardenburgh (WS4)

syndromes

Waardenburg syndrome (WS) represents a congenital dis-

order, resulting from defective neural crest cell develop-

ment of melanocytes (pigmentary disorders, white

forelock), is one of a number of rare conditions where

sensorineural deafness may be associated with pigmentary

disturbances and Hirschsprung’s disease (HSCR). It has a

variable phenotype and has been reported to be an autos-

omally dominant mode of inheritance (especially when a

Sox10 gene mutation is involved [105]). In addition to

deafness, it may also be associated with maldevelopment of

CNS neural cells manifesting as mental retardation plus

additional ENS ganglion cell (Aganglionosis; Hirschsprung

disease; WS4), autonomic and peripheral nervous system

deficits (peripheral neuropathy).

The Shah-Waardenburg syndrome (WS4) is an uncom-

mon autosomal recessive condition referring to the Waar-

denburg–HSCR association.

Although inheritance of Waardenburg syndrome is

autosomal dominant, penetrance is often incomplete, the

fact that multiple genes have been implicated in WS,

allows certain combinations able to cause more than one

WS subtype or combination of phenotypic expression,

resulting in a considerable variation in clinical expression.

The identification of a deletion at 13q22-32.1, led to

identification of the second major susceptibility gene in the

aetiology of Hirschsprung’s disease [70, 111–113] and its

association with the Waardenburg and other Neurocrist-

opathies. This deletion included the recessive EDNRB

gene, located at 13q22 [70, 114, 115]. Other related genes

of the EDNRB pathway include and much less frequently

associated ligand Endothelin 3 (EDN3) [116], the Endo-

thelin-converting enzyme 1 (ECE1) [117], the sex-depen-

dent Y factor-like homeobox 10 (SOX10) gene [118] as

well as Neurturin (NT)N [119]. SOX 8 also appears to be

required along with SOX10 to maintain vagal neural crest

stem cells [120]. Identification of a deletion at 13q22-32.1

led to identification of the second major susceptibility gene

[70, 105, 111–113] and its association with the Waarden-

burgh and other neurocristopathies. This includes the

recessive EDNRB gene, located at 13q22 [70, 114, 115]

and much less frequently its ligand Endothelin 3 (EDN3)

[116] Other related genes involved in HSCR pathogenesis

include the Endothelin-converting enzyme 1 (ECE1) [117],

the sex-dependent Y factor-like homeobox 10 (SOX10)

gene [118] and Neurturin (NT)N [119]. SOX 8 also appears

to be required along with SOX10 to maintain vagal neural

crest stem cells [120]. Although mutations in the PAX3

gene are responsible for the majority of these anomalies in

WS type 1, genetic variation in the homeobox gene

HOXA2 has been reported to cause microtia in at least one

previous Iranian family.

Clinical syndromes which are mostly related to the

EDNRB gene and Sox10 and include the following:

• Long-segment Hirschsprung’s disease in the Waarden-

burg-Shah syndrome.

• Congenital hypomyelinating neuropathy, central dys-

myelination, and Waardenburg-Hirschsprung disease:

phenotypes linked by SOX10 mutation.

• Shah-Waardenburgh (Type 1V WS).

• Certain other forms of sensorineural deafness.

Sensory organ and related anomalies appear mostly to

be related to genetic disturbances other than RET (e.g. the

EDNRB and Sox10 genes).The transcription factors

SOX10 as well as ZFHX1B also appear crucial for ENS

development. Double mutants of these two genes present

with severe ENS maldevelopment, caused by a decrease in

the proliferation of enteric neuroblasts as well as increased

neuronal differentiation from day E11.5 onwards in

experimental mutant mouse models [121]. This is not

surprising as Sox10 is known to maintain crest-derived

neuroblasts in their uncommitted state, regulating both Ret

[122, 123] and EDNRB [124] genes. Sensorineural deaf-

ness associated may occur either as part of a Waardenburgh

Type 4syndrome(WS4) [16, 17, 26–28, 125, 126] or as a

dominant sensorineural deafness [25]. These may be

associated with long-segment Hirschsprung’s disease in the

Waardenburgh-Shah phenotypes (Type 1V WS) as well as

certain other forms of sensorineural deafness including

congenital hypomyelinating neuropathy, central dysmyeli-

nation, and the Yemenite deaf-blind hypopigmentation

syndrome. Other associations with ophthalmic anomalies

may also be included in those with auriculovertebral syn-

dromes (e.g. Goldenhar syndrome) [127].

Other pigmentary disturbances and HSCR

Pigmentary disturbances are a well-known association with

HSCR in the Waardenburg syndrome (WS4) [128] as well

as other sensorineural deafness syndromes such as the

ABCD [23, 129], Black locks albinism [130], and familial

piebaldism [25]. The Yemenite deaf-blind hypopigmenta-

tion syndromes have now been shown to be associated with

a SOX10 mutation [23].

Cartilage–hair hypoplasia (CHH)

Approximately 10 % of patients with Cartilage–hair

hypoplasia syndrome are associated with HSCR [131].

This syndrome represents an autosomal recessive skeletal
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dysplasia with metaphyseal to spondylo-meta-epiphyseal

dysplasia and anaemia, immunodeficiency, and gastroin-

testinal Malabsorbtion as well as HSCR [109]. There is

also a predisposition to cancer and the syndrome has been

attributed to an RMRP gene mutation [96, 132] (which

maps to chromosome 9p13—a well known associated site

[133]).

Other skin conditions may be involved in HSCR-asso-

ciated pathology. These include the KID (keratitis, ich-

thyosis and deafness) syndrome [134] and familial

ichthyosis [5, 134, 135]. Although the exact genetic links

with ichthyoids are unknown, two more recent publications

indicate Xp22.3 [136] and 2q35 [137] both of which are

close to areas with known HSCR connections.

Congenital central hypoventilation syndrome (CCHS)

Congenital central hypoventilation syndrome (CCHS) is an

uncommon autonomic nervous system dysfunction as a

result of a decrease in the hypercarbic response. CCHS is

inherited in an autosomally dominant way and is linked to

polyalanine expansion mutations and malfunction of the

paired-like homeobox 2B (PHOX2B) gene. [37]. These

patients also have impaired autonomic functions such as

thermoregulation, cardiac rhythm, and digestive motility,

but these appear less severe than other in conditions.

Affected neonates die because they fail to breathe despite

progressive hypercapnoea and hypoxia, if untreated. CCHS

and Haddad syndromes share a link with a Hirschsprung-

like phenotype [138]. In addition to being linked to con-

genital colonic aganglionosis (Hirschsprung’s disease),

PHOX2B is also associated with neural crest-related

tumours and diffuse autonomic dysregulation.

Studies have shown that PHOX2 maintains noradren-

ergic differentiation during embryogenesis in the main

noradrenergic centre as well as requiring ongoing expres-

sion in sympathetic ganglia [139]. The majority of

PHOX2B mutations are sporadic in nature, but there is

some reported association with specific mutated alleles and

the severity of the disease. It may also be associated with

abnormalities of the eye and autonomic nervous system,

especially when associated with HSCR [140]. Early clini-

cal recognition and genetic screening and treatment may be

life saving as well as giving hope of a relatively successful

long-term outcome.

The identification of these causative genes allows some

speculation as to the possible pathophysiology of this

condition. The paired-like homeobox 2 (PHOX2B), gene at

chromosome 4p12 is expressed in developing neuroblasts

and is essential for neurogenesis [52]. Compound effects of

PHOX2B and RET gene variants have been shown in

HSCR-associated CCHS [141] and in knockout mice, dis-

ruption of the PHOX2B gene results in an almost total

intestinal aganglionosis. Malfunction of PHOX2B will

result in a decrease in RET expression on the cell surface

with resultant phenotypic consequences. It works in con-

junction with SOX10, and appears to regulate Ret expres-

sion [142]. This was demonstrated by Leon et al. [142]

using a reporter construct (a luciferase-reporter plasmid) to

demonstrate the ability of PHOX2 to upregulate RET

promoter function (178–36 position) demonstrating acti-

vation of NKX2-1. Luciferase activity rising by a factor of

6.5.

The Haddad syndrome is an uncommon congenital

variant of CCHS due to the co-segregation of central

congenital hypoventilation syndrome with HSCR (Usually

long segment or TCA). This association relates to the

critical role played by the Endothelin system in ENS and

melanocyte development which has also been demon-

strated in animal models (e.g. EDNRB knockout mice)

[143] and is probably SOX10 related. Recent studies in

transgene-insertion mutant mouse line (Hry), which display

incomplete aganglionosis, melanocyte loss, and reduced

Sox10 expression but have negative Sox10 coding

sequences, has shown that a 15.9-kb deletion underlies the

observed WS4 phenotype and probably removes sequences

essential for Sox10 expression, suggesting that non-coding

regulatory sequences are disrupted [35].

Syndromes related to cholesterol and fat metabolism

Smith–Lemli–Opitz (SLO)

Other less common associations with HSCR include syn-

dromes related to cholesterol and fat metabolism such as

the Smith–Lemli–Opitz [43, 144, 145], Bardet–Biedl non-

syndromic obesity [BBS] [42, 146, 147] and the related

McKusick-Kaufman syndrome [148] has a 10 % HSCR

incidence [149].

Bardet–Biedl syndrome (BBS)

The Bardet–Biedl non-syndromic obesity [BBS] is a

familial syndrome characterised by progressive retinal

dystrophy, postnatal obesity, post-axial polydactyly, renal

dysfunction, learning difficulties and hypogonadism with

Undescended testes [150]. The rare association between the

Bardet–Biedl and Hirschsprung’s disease, is mostly being

reported from families in the Middle East. They also belong

to a group which includes other syndromes related to cho-

lesterol and fat metabolism such as the Smith–Lemli–Opitz

and the related McKusick-Kaufman syndrome.

The 11 BBS loci identified to date are examples of

‘oligogenic’ inheritance (i.e. conditions not inherited as

simple single-gene Mendelian disorders and yet are not

classic complex traits, but rather fit a model in which
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mutations in a small number of genes may interact genet-

ically to manifest the phenotype). In the case of BBS has

led to the concept of ‘triallelic inheritance’, whereby

families with at least three mutations from genes at two

different BBS loci, are at highest risk of transmitting the

condition [151]. The same could apply to many cases of

HSCR.

Although BBS is generally accepted to be multigenic in

origin and to have an autosomal recessive pattern of

inheritance, this association with HSCR suggests a com-

mon signalling pathway possibly related to the major sus-

ceptibility genes [14].

Chromosome 3 (3p21) has been identified as an

important link on genomic scanning of HSCR [42, 146,

147]. The BBS and HSCR susceptibility genes have been

shown to interact and concomitant mutations of BBS genes

and regulatory RET elements, suggest that BBS mutations

can potentiate HSCR predisposing RET alleles, which by

themselves are insufficient to be causative [152]. Homo-

zygosity for the common hypomorphic T allele plus an

11 bp deletion in the enhancer of RET in association with

missense mutations in the BBS genes may help explain this

association. Gut innervation can then be affected, probably

through complementary, yet independent, modifying

pathways that have a similar biological function.

Mowat–Wilson syndrome

Mowat–Wilson syndrome (MWS) appears to have a

genetic aetiology and has been shown to recur in families

with an approximate 1–2.3 % recurrence risk [153–155].

Autosomal dominant transmission, with at least three sib-

ling recurrences has been reported [106, 153, 155, 156].

Clinically, MWS represents a spectrum of congenital

dysmorphic features of the head and face (microcephaly,

corpus callosal agenesis, hypertelorism, prominent colu-

mella, pointed chin, and uplifted earlobes) as well as GI

motility disturbances which include Hirschsprung’s disease

(HSCR) and/or severe constipation [157, 158]. In addition,

there are numerous other associated anomalies such as

genitourinary anomalies (especially hypospadias and renal

tract anomalies), congenital heart defects, short stature and

eye defects [39]. The ocular abnormalities may include

bilateral microphthalmia, cataract, and retinal aplasia

[159], as well as coloboma [160]. The clinical diagnosis of

MWS may prove difficult due to phenotypic variation,

especially when HSCR is absent. In these cases, a molec-

ular diagnosis of the ZEB2 gene is required to confirm the

diagnosis.

What makes MWS interesting is that ZEB2 is not part of

the two main HSCR susceptibility pathways, but appears

to be the result of heterozygous deletions or truncat-

ing mutations of the ZFHX1B/ZEB2 (SIP1) gene on

chromosome 2q22 [39]. Although mutations of this gene

are diagnostic [158, 161] and can be identified in most

MWS patients, not all patients with MWS and ZEB2 gene

variations have HSCR (the association occurring some-

where between 41 and 71 % [58, 156]). As a result, it

suggests a modifying or indirect signalling connection to

the main susceptibility pathways. In this context, MWS

probably represents an association of multiple gene-based

abnormalities and has also been associated with chromo-

some 21-linked HSCR [160].

In addition to the intellectual disability, the main long-

term clinical problem in MWS is the (often severe) asso-

ciation with functional GI motility disturbances, especially

Hirschsprung’s disease [91]. The persisting dysmotility in

these patients may become a major issue in longer term

patient management. In those with HSCR, the length of the

aganglionic segment varies and not always reported in

large reviews [156]. Bonnard et al. [162], however,

reported Total colonic aganglionosis (TCA) in 3 out of 5

cases (60 %) and Isihara et al. [163] in seven cases, sug-

gesting an association with TCA. In MWS, the GI motility

disturbances (including Hirschsprung’s disease and/or

severe constipation) may be partly due to variations in the

severity of the ENS architecture as well as a possible

prolonged transitional zone [163].

Goldberg–Shprintzen syndrome (GSS)

Goldberg–Shprintzen syndrome is an uncommon autoso-

mal recessive genetic condition, characterized by short-

segment Hirschsprung disease, cleft palate, microcephaly,

mild mental retardation, short stature and distinctive facial

appearance [110]. It has been described in siblings [164]

and is regarded as having an Mendelian inheritance pattern,

because of recurrence in siblings and parental consan-

guinity in some families.

It is currently thought that GSS is caused by inactivating

mutations in the Kinesin Binding Protein (KBP) gene

KIAA1279 (10q22.1) [165], which localizes to the mito-

chondria and interacts with the SCG10[stmn2-b; stathmin-

like 2] gene [166], thus linking the Goldberg–Shprintzen

syndrome to microtubule dynamics and the differentiation

of enteric neurones. SCG10 does not appear to be directly

implicated in HSCR pathogenesis [167], although its role

as modifying factor cannot be ruled out.

It is an interesting association, as it falls within the ambit

of a number of conditions linking HSCR with CNS

anomalies such as microcephaly, mental retardation, poor

brain growth and various dysmorphic features. The asso-

ciated CNS anomalies also includes patients with an absent

corpus callosum (either isolated or in association with the

Goldberg–Shprintzen [168, 169] and Mowat–Wilson syn-

dromes [39]).
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HSCR associations with tumours

Associations between HSCR and a number of associated

tumours related to neural cell development include neu-

roblastoma [16], phaeochromocytoma [16, 26, 27] and the

MEN Type II A and B syndromes and medullary thyroid

carcinoma (MTC) [27, 29, 170], among others [16].

MEN2A is an autosomal dominant genetic condition

characterized by the development of a number of tumours

including phaeochromocytoma, medullary thyroid carci-

noma (MTC), thyroid C-cell hyperplasia and Parathyroid

tumours [107].

Reports of the relatively uncommon co-segregation of

HSCR and MEN2 in the same patient [50, 170–182] exists,

because of the common factor of the RET gene being

associated with both conditions [HSCR, MEN type 2 and

MTC]. This is an extremely interesting observation, as it

involves both gain and loss of function of the same gene in

the same patient.

The HSCR–MTC relationship also appears to be

bi-directional and RET gene activation or suppression

appeared to vary over succeeding generations within the

same family [183, 184]. Butter et al. [185] reported a 50 %

incidence of HSCR in 20 patients undergoing a prophylactic

thyroidectomy for RET-associated MTC risk (a RET C620

mutation). In one further reported case of familial MTC

with a C620S point mutation [186], the MTC developed

12 years after surgical correction of HSCR in the child plus

a maternal MTC 7 years after the child’s birth. In our own

reported series [183], MTC was detected in the parent

5 years following the birth of the affected child.

In addition, HSCR is associated with other tumours of

neural origin with neurofibromatosis and other autonomic

nervous system disturbances [187]. In familial Neuroblas-

toma it would appear that the most likely genetic candidate

is PHOX2B gene as it appears to be the major suscepti-

bility gene in CCHS, as well as being associated with

familial NB [188] and HSCR–NB associations [187, 189].

Conclusion

Hirschsprung’s disease represents a wide spectrum condi-

tions, characterized by aganglionosis of varying lengths of

distal bowel. Whereas Chromosomal and Mendelian asso-

ciations are largely absent in the non-syndromic non-

familial, short-segment HSCR, syndromic and familial

forms of HSCR have complex patterns of inheritance and

have been described as dominant and recessive Mende-

lian forms of inheritance. Investigation of the underlying

signalling pathways has yielded valuable information as to

the pathogenesis of the disease.
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