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Abstract Hirschsprung’s disease (HSCR) is a develop-

mental disorder characterized by the absence of ganglion

cells in the lower digestive tract. Aganglionosis is attrib-

uted to a disorder of the enteric nervous system (ENS)

whereby ganglion cells fail to innervate the lower gastro-

intestinal tract during embryonic development. HSCR is a

complex disease that results from the interaction of several

genes and manifests with low, sex-dependent penetrance

and variability in the length of the aganglionic segment.

The genetic complexity observed in HSCR can be con-

ceptually understood in light of the molecular and cellular

events that take place during the ENS development. DNA

alterations in any of the genes involved in the ENS

development may interfere with the colonization process,

and represent a primary etiology for HSCR. This review

will focus on the genes known to be involved in HSCR

pathology, how they interact, and on how technology

advances are being employed to uncover the pathological

processes underlying this disease.

Keywords Hirschsprung’s � RET � Genetics

Introduction

Understanding how genes and other DNA sequences

function together and interact with proteins and environ-

mental factors is paramount to the discovery of the path-

ways involved in normal processes and in disease

pathogenesis. In this respect, the study of the molecular

basis of Hirschsprung’s disease (HSCR) has made a

marked contribution to the understanding of complex dis-

eases. Complex diseases result from the interaction of two

or more genes and/or gene–environment interactions [1]

and therefore, have no identifiable pattern of inheritance.

Hirschsprung’s disease (HSCR) is a developmental

disorder characterized by the absence of ganglion cells in

the lower digestive tract. Aganglionosis is attributed to a

disorder of the enteric nervous system (ENS) whereby

ganglion cells fail to innervate the lower gastrointestinal

tract during embryonic development. There is a significant

racial variation in the incidence of the disease, and it is

most often found among Asians (2.8 per 10,000 life births)

[2]. HSCR has a complex pattern of inheritance and

manifests with low, sex-dependent penetrance (frequency

of mutation carriers who develop disease as opposed to

mutation carriers who remain healthy) and variability in the

length of the aganglionic segment. HSCR patients are

classified according to the length of the aganglionic

segment into: short-segment HSCR (SS-HSCR) (*80% of

HSCR cases) and long segment HSCR (LS-HSCR) (*20%

of HSCR cases). The rectosigmoid region acts as the

boundary between LS-HSCR and SS-HSCR. LS-HSCR is

defined as aganglionic segment extending to or beyond the

proximal sigmoid colon, whereas, the remaining cases are

grouped as SS-HSCR.

The HSCR most commonly presents sporadically

although it can be familial (up to 20% of the cases) and is
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frequently associated with many other neurocristopathies

and chromosome abnormalities [3, 4].

The genetic complexity observed in HSCR can be

conceptually understood in light of the molecular and

cellular events that take place during the ENS development

in the embryonic stage. The ganglion cells of the fully

developed ENS are derived from vagal neural crest cells

(NCCs) of the neural tube [5]. During the colonization

process, the NCCs have to adapt to a constantly changing

intestinal environment that strongly influences their dif-

ferentiation into enteric neurons [6]. The entire process is

regulated by specific molecular signals from both within

the neural crest and intestinal environment [7], and the

success of the colonization of the gut depends on the

synchronization and balance of the signaling network

implicated. DNA alterations in any of the genes codifying

for the signaling molecules may interfere with the coloni-

zation process, and consequently represent a primary eti-

ology for HSCR. The HSCR phenotype may therefore

result from (i) single severe DNA alterations (mutations) in

a major gene encoding a crucial molecule; (ii) the sum-

mation of the effects of a series of less severe mutations in

several genes; (iii) the former and the later combined. The

existence of non-clinically affected individuals carrying

mutations in major genes invokes a compensatory effect by

other genes and reinforces the oligogenic nature of the

disease. HSCR has become a model for oligogenic and

polygenic disorders in which the phenotypes and mode of

transmission result from interactions between different

genes.

The genetic etiology of Hirschsprung’s disease

In 1886, Danish pediatrician Harald Hirschsprung (1830–

1916) described the disease as a cause of constipation in

early infancy due to congenital dilatation of the colon. But

it was not till the 1940s, when histological studies revealed

absence of intramural ganglion cells of the myenteric and

submucosa plexuses downstream the dilated colon (mega-

colon), that the primary pathology of the disease was dis-

covered [8].

The development of a pull-through surgical procedure

by Swenson and Bill in 1948 made a major contribution

to our understanding of the disease [9]. This innovative

surgical technique enabled a far higher survival rate

among patients, which created the conditions for the dis-

covery of the familial transmission of the disease and the

determination of its genetic nature. Additional evidence

for a role of genetic factors in the pathology of HSCR was

indicated by (i) an increased risk of recurrence for sibs of

affected individuals compared with the population at

large; (ii) an unbalanced sex-ratio; (iii) the association of

HSCR with other genetic diseases, including mal-

formation syndromes and chromosomal anomalies; and

(iv) the existence of several animal models of colonic

aganglionosis showing specific Mendelian modes of

inheritance.

In the late 1980s, the locus for multiple endocrine

neoplasia (MEN) was assigned to chromosome 10q11.2

[10, 11]. The same locus was also identified as the cause of

papillary thyroid carcinoma (PTC) [12–14] and familiar

medullary thyroid carcinoma (FMTC) [15]. The co-

occurrence of HSCR with multiple endocrine neoplasia

type 2 (MEN2) together with the observation of a deletion

comprising the MEN2 locus in some HSCR patients

[16, 17], prompted the search for a HSCR gene in that

chromosomal region. Linkage analysis using chromosome

10 markers in HSCR families revealed a HSCR locus in the

pericentromeric region of chromosome 10 [18, 19]. The

observation of a HSCR-phenotype in mice with disrupted

Ret gene [20] and the detection of RET rare deleterious

DNA alterations (‘‘mutations’’) in HSCR families [21, 22]

lead to the recognition of RET as the main gene implicated

in HSCR, almost a century after Harald Hirschsprung first

described the disease.

The fact that not all HSCR patients bore mutations in

RET, implied that mutations in other genes accounted for

the rest of the HSCR patients or/and that mutations

occurred in regions of the gene which had not been

investigated, namely regulatory non-coding regions. Sub-

sequent studies lead to the identification of other genes in

which DNA alterations or mutations lead to the HSCR

phenotype. To date, mutations in the coding regions of nine

different genes (RET, GDNF, NRTN, PHOX2B, EDNRB,

EDN3, ECE1, SOX10, ZFHX1B, KIAA1279, and NRG1;

Garcia-Barceló and Tam et al. unpublished data) [8, 23]

have been detected in individuals affected with either

isolated or syndromic HSCR (Table 1). Most of these

genes encode protein members of important inter-related

signaling pathways that are critical for the development of

enteric ganglia: the GDNF/RET receptor tyrosine kinase,

the endothelin type B receptor, and the SOX10-mediated

transcription. RET is, however, the major gene involved in

HSCR, and the proper expression of the RET protein

expression is critical for the normal development of the

ENS [24–27]. There is evidence that the manifestation of

the HSCR phenotype may result from the interaction and/

or accumulation of DNA variants in genes of these sig-

naling pathways as illustrated by the identification of

patients bearing mutations in RET in combination with

mutations in other genes namely GDNF, Neurturin (NTN),

or EDNRB [28] (see below).

Common features to the mutations found in the HSCR

genes are low and sex-dependent penetrance and variable

expression of the HSCR phenotype for a given mutation.
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These characteristics are consistent with the expression of a

HSCR gene subject to modification by other loci [29, 30],

perhaps as a result of cross-talk between signaling path-

ways (see below).

RET receptor tyrosine kinase pathway

The RET protein, functions as a receptor for the Glial cell

line-Derived Neurotrophic Factor (GDNF) family. Receptor–

ligand interactions are mediated by RET co-receptors

(GDNF-Family Receptors-a; GFRa) [31–33]. Activation of

the RET receptor by these neurotrophic factors is essential

for the migration and differentiation of NCCs into enteric

neurons [20, 34, 35]. The correct development of the ENS

therefore depends on the ability of these neurotrophic

factors to activate RET, on the ability of the RET receptor to

transduce the signal, and on the competence of the intra-

cellular machinery to elaborate a response (Figs. 1 and 2).

RET proto-oncogene and HSCR

The RET, also known as RET proto-oncogene, is composed

of 21 exons that encode the RET receptor tyrosine kinase

protein, a cell-surface molecule that transduces signals.

Germline mutations in RET are responsible for four unre-

lated disorders in humans, HSCR, multiple endocrine

neoplasia; type IIB (MEN2B), multiple endocrine

neoplasia; type IIA (MEN2A), and medullary thyroid car-

cinoma (MTC) [36]. In PTC, somatic RET rearrangements

are the most commonly detected genetic alterations. No

germline mutations are found in PTC patients.

The RET is a single-pass membrane protein with two

main domains: extracellular (EC) and intracellular (IC).

Ligand and co-receptor complexes interact with the EC

domain of two RET molecules inducing their interaction

with various intracellular signaling proteins [37]. Activat-

ing mutations in the RET gene cause MTC, MEN2A, and

MEN2B, whereas inactivating mutations lead to HSCR

[38]. A large number of RET mutations have been reported

in HSCR patients. In general, RET gene mutations affect-

ing the RET EC domain alter the folding of the protein

impairing its maturation [39, 40]. RET mutations affecting

the RET IC interfere with the binding to intracellular sig-

naling proteins [40–42]. Mutations in any intron/exon

boundary affecting the splicing consensus sequences can

alter mRNA processing. Remarkably, silent mutations (i.e.,

the mutation does not result in an amino-acid change in the

protein) in any of the RET exons can also affect mRNA

processing [28]. Unlike in MEN 2, RET mutations causing

HSCR are, with a very few exceptions [29], scattered

throughout the gene, affecting indiscriminately any part of

the RET protein. However, many RET mutations have not

been functionally tested and it is very difficult to discern

between truly deleterious substitutions and non-deleterious

ones. A recent study based on the alignment of the human

Table 1 Genes in which coding

sequence mutations are

associated with isolated or

syndromic HSCR

a % Of isolated HSCR patients

with coding region mutations in

these genes
b Unpublished data

Gene Phenotype Inheritance Frequencya

RET Isolated HSCR Dominant,

incomplete

penetrance

50% Familial/7–

35% sporadic

HSCR-MEN2/FMTC Dominant –

GDNF Isolated HSCR Non-Mendelian Very rare

NRTN Isolated HSCR Non-Mendelian Very rare

EDNRB Isolated HSCR Dominant 3–7%

Waardenburg-Shah syndrome Recessive –

EDN3 Isolated HSCR Dominant,

incomplete

penetrance

\5%

Waardenburg-Shah syndrome Recessive –

ECE-1 HSCR with cardiac defects, craniofacial

abnormalities and autonomic dysfunction

Dominant –

ZFHX1B Mowat–Wilson syndrome ? HSCR Dominant –

SOX10 Waardenburg-Shah syndrome Dominant –

PHOX2B Haddad Syndrome (CCHS ? HSCR) Dominant –

Neuroblastoma ? HSCR Dominant –

KIAA1279 Goldberg–Shprintzen syndrome ? HSCR Recessive –

NRG1b Isolated Dominant,

incomplete

penetrance

6%
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RET protein with 12 orthologous sequences provides an

insight on the prediction of the effect of the RET mutations

[43].

Mutations in the coding regions of RET and other HSCR

genes (see below) only account for over 50% of the

familial cases, and between 7% and 35% of the sporadic

cases [44–59]. Intriguingly, genetic-linkage analyses in

HSCR families keep implicating the 10q11 chromosomal

region (RET locus) even though no RET coding regions can

be found [29, 30]. This, besides confirming the central role

of RET in HSCR, also indicates that mutations in non-

coding (regulatory) regions RET remains to be found.

Mutations in regulatory regions can alter the DNA binding

sites of transcriptional regulators and reduce or abolish the

expression of RET.

In addition to RET mutations, a possible role in HSCR

has been attributed to several single nucleotide polymor-

phisms (SNPs; variations in the DNA present in[1% of the

population) of the RET gene since they have been found

associated with the disease (the frequency of the DNA

variation varies significantly between patients and controls)

[60–63], indicating that may indeed play a role, although

subtle, in the disease. The current data indicates that these

RET-SNPs could act as modifiers by modulating the pen-

etrance of mutations in other HSCR genes and possibly of

those mutations in the RET gene itself [64–68]. It has been

shown that HSCR-associated RET-SNPs in the promoter

region [69–71] and in intron 1 [72–74] quantitatively affect

the expression RET. In particular, the RET promoter SNPs

associated with HSCR disrupt the binding site of the

transcription factor NKX2.1 (previously TTF-1; thyroid

transcription factor 1).

It is worth noting that the overall frequencies of the

HSCR-associated RET-SNPs and haplotypes are signifi-

cantly higher in Chinese, not only in patients but also in the

general population [63, 74], possibly explaining the higher

incidence of HSCR in Asians when compared to Cauca-

sians [2].

GDNF-family ligands and their receptors

(GDNF-family receptors-a; GFRa)

The relevance of RET signaling pathway in the ENS

development and the phenotypic similarities between Ret,

Gdnf, and Gfra-1 knock-out mice [20, 75–77], prompted an

extensive mutation screening of the genes encoding the

GDNF family of ligands—GDNF, neurturin (NTN), arte-

min (ARTN), and persepin (PSPN)—and of the genes

encoding their co-receptors (GFR-a1–4) and adaptors.

However, mutations in those genes have been identified in

a very small number of patients and generally co-segregate

with mutations in RET [78–82]. Screening of patients

affected with idiopathic slow transit constipation and

megacolon revealed no mutations associated with the

phenotype [83]. Also, none of the of mutations identified in

the GDNF gene is likely ‘‘per se’’ to cause HSCR, although

it is thought they can contribute to disease via interaction

with other susceptibility loci [33, 84–86]. Surprisingly,

RET is virtually the only target of HSCR mutations in the

RET signaling pathway. It is possible that homozygous

mutations in the GDNF family of ligands were lethal, and

that these ligands, particularly GDNF, may have other

functions not mediated by RET, and therefore come under

selective pressure against mutations.

RET  gene

2 3 4 5 6 7 8 9 10 12 17 18 19 2013 14 15 16 2111

Intracellular domainTMD

CYS TKCAD

RET protein

Extracellular domain

(28-635) (658-1114)(636-657)

RET protein

Neural crest cell

RET gene

1

Fig. 1 Schematic drawing

showing the RET gene and the

RET protein receptor (adapted

from [1]) and its localization on

the neural crest cells. Exons of

RET gene are indicated with

numbered boxes and doted lines
indicate the domains of the

protein they encode. Different

domains of RET receptor are

indicated with cylinders. The

extracellular part of RET

contains cadherin domains

(CAD) and the intracellular part

of RET contains two tyrosine

kinase domains (TK). TMD,

transmembrane domain. In

brackets, amino-acid residues
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HSCR genes involved in the transcriptional regulation

of RET

Because of the key role played by RET in HSCR, mutations

in genes known to be involved in the regulation of RET are

likely to give rise to phenotypes involving aganglionosis.

Not all the genes involved in the regulation process are

known and the precise mechanisms of regulation remain

unclear. Thus, further investigation on the molecules

involved in RET regulation is likely to shed more light to

the mechanisms underlying HSCR. In these respect, several

RET regulators have been scrutinized.

SOX10

The SOX10 gene encodes a transcriptional regulator, the

expression of which is essential for the development of

cells in the NCC lineage, including melanocites and enteric

neurons. During the development of the ENS, the SOX10

protein physically interacts and cooperates with another

transcriptional regulator (PAX3) to activate transcription of

RET [35, 87, 88]. Importantly, Sox10 also interacts with

Ednrb in mice [89, 90].

The significance of the SOX10 gene in HSCR was

revealed through the study of a mouse model of HSCR
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Signaling molecules

Cytoplasma
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3
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Signaling molecules

Fig. 2 Schematic

representation of the network of

interactions that govern the

development of the enteric

nervous system (adapted from

[1]). Expression of the RET
gene (regulated by transcription

factors) leads to the formation

of the RET protein which

functions as a receptor for the

Glial cell line-Derived

Neurotrophic Factor family

(GFL) through co-receptors

(GFRA). Activation of the RET

receptor by these signaling

molecules of the gut

environment activates the

intracellular machinery

necessary for the migration,

proliferation, and differentiation

of neural crest cells into enteric

neurons. Similarly, the EDNRB

receptor is activated by EDN3

and initiates a series of events

that will also regulate the

development of the enteric

nervous system in conjunction

with the RET pathway. The

Prok-1 and NRG1 pathways,

thought to be involved in the

ENS development, are also

represented. Double head
arrows indicate interrelation

between pathways.

Transcription factors involved

in RET regulation are pictured

in the nucleus. Question marks
represent yet unidentified

molecule members of the

network (see section

‘‘Modifying genes and

interaction between signaling

pathways’’ in the text)
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(Dom) fortuitously generated at the Jackson Laboratory

[91]. The molecular defect in Dom mice was a mutation in

the Sox10 gene [92–95]. Heterozygous Dom mice pre-

sented with distal colonic aganglionosis and localized

hypomelanosis of the skin and hair (features similar to

those in Waardenburg’s syndrome), which indicated that

neural crest-derived melanocytes and enteric neurons were

affected in Sox10 mutants. Dom homozygous mice were

embryonic lethal.

In humans, heterozygous SOX10 mutations have been

identified in patients with Waardenburg-Shah syndrome

(WS4; HSCR type 2). Patients with WS4 display a com-

bination of the features of Waardenburg syndrome (wide

bridge of the nose, pigmentary abnormalities, and cochlear

deafness) and HSCR [92, 96–102]. SOX10 mutations also

lead to Yemenite deaf-blind hypopigmentation syndrome

and other myelin deficiencies [103]. To date, no SOX10

mutations have been found in patients presenting agangli-

onosis as an isolated trait. SOX10 is therefore unlikely to be

major gene in isolated HSCR. Interestingly, and despite the

absence of genetic mutations, abnormal SOX10 gene

expression can be observed in aganglionic intestine of

isolated HSCR patients [102, 104].

PHOX2B

The paired mesoderm homeobox 2b gene (PHOX2)

encodes a transcription factor which is involved in the

development of several noradrenergic neuron populations.

In mice homozygous disruption of the Phox2b gene results

in absence of enteric ganglia, a feature reminiscent of

HSCR. Furthermore, there is no Ret expression in Phox2b

mutant embryos indicating that regulation of Ret by

Phox2b could account for the failure of the ENS to develop

[105, 106]. All these observations make the PHOX2B a

candidate gene for HSCR. Interestingly, a chromosomal

alteration involving the deletion of the PHOX2B locus has

been described in a patient with syndromic HSCR (devel-

opmental delay, severe hypotonia, facial dysmorphism, and

short-segment aganglionosis) [107]. This suggests that

PHOX2B haploinsufficiency may predispose to HSCR.

A SNP of the PHOX2B gene has been found to be asso-

ciated with HSCR and importantly, the interaction between

PHOX2B and RET HSCR-associated SNPs increases sus-

ceptibility to HSCR [108, 109].

PHOX2B represents the first gene for which germline

mutations predispose to neuroblastoma [110–112] and is

the major locus for congenital central hypoventilation

syndrome (CCHS, Ondine’s curse) [113, 114]. In particu-

lar, 25–30% of the CCHS patients are affected with

aganglionosis (Haddad syndrome) [115]. Intriguingly, both

neuroblastoma and CCHS are frequently associated with

HSCR [8, 116, 117]. Taken together these data support the

contribution of PHOX2B to HSCR.

HOXB5

Recently, using transgenic mouse technology, it has been

shown that the transcription factor Hoxb5 may contribute

to HSCR by interfering with the regulation of the Ret gene.

A fraction of Hoxb5 mutant mice presented with reduction

of ganglia (hypoganglionosis) and slow peristalsis and Ret

expression was markedly reduced or absent. In addition,

HOXB5 SNPs were found associated to HSCR in Chinese

patients. All these data suggest that DNA alterations in

Hoxb5 contribute to the etiology of HSCR [118, 119].

As all HOX genes have a major role in gut development

(the enteric Hox code), the implications of alterations in

other gene members of the human HOX clusters was also

investigated in Chinese HSCR patients. Genetic interaction

was found among SNPs in two HOX loci (50-HOXA13 and

30UTR-HOXB7) and the most HSCR-associated RET-SNP,

suggesting that the interacting HOX loci may affect the

penetrance of the RET-risk locus [120].

NKX2.1

It was shown later that RET transcription was decreased due

to alteration of the NKX2-1 transcription factor binding site

by two HSCR-associated RET promoter SNPs (see above),

the NKX2-1 gene was investigated for mutations in HSCR

patients. Direct sequencing of 188 Chinese and 70 Cauca-

sian patients revealed the presence of a Met3Leu mutation

in two Caucasian patients. This mutation reduced the

activity of the RET promoter and it is thought to contribute

to HSCR by affecting the RET expression through defective

interactions with other transcription factors [71, 121].

Endothelin type B receptor pathway

The endothelins are a family of three signaling peptides

(EDN1, EDN2, and EDN3) that can act on two subtypes of

G protein-coupled receptors, termed endothelin-A and

endothelin-B receptors (EDNRA and EDNRB) (Fig. 2).

The endothelins are synthesized as much larger proteins

which are cleaved by the endothelin converting enzyme

(ECE-1) to produce an active peptide. The human genes

coding for these proteins are EDN1, EDN2, EDN3, ED-

NRA, and EDNRB, respectively.

The involvement of the endothelin type B receptor

pathway in the pathology of HSCR was demonstrated when

a targeted disruption of the mouse endothelin-B receptor

gene (Ednrb) resulted in an autosomal recessive phenotype
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with aganglionic megacolon and white spotting of the coat

[122]. A targeted disruption of the mouse endothelin-3

ligand (Edn3) gene produced a similar recessive phenotype

of megacolon and white coat spotting [123]. These data

indicated an essential role for the members of the EDNRB

pathway in the development of two neural crest-derived

cell lineages, enteric neurons and epidermal melanocytes.

EDNRB signaling not only regulates migration of the ENS

progenitors but can also modulate the response of NCCs to

GDNF [6, 124]. This provides evidence of interaction

between two different pathways implicated in the patho-

genesis of HSCR.

EDNRB gene and HSCR

The occurrence of multiple cases of both isolated HSCR and

WS4 in an inbreed Old Order Mennonite community facil-

itated the mapping of another major HSCR susceptibility

gene to the chromosomal region 13q22 [125, 126]. The gene

identified on 13q22 was the endothelin type B receptor

(EDNRB) which had a mutation that resulted in the W276C

amino-acid change in the protein. In contrast to the reces-

sive, fully penetrant defects in the rodent model, this human

mutation was neither fully dominant nor fully recessive. The

homozygous W276C mutation (CC) was more penetrant

than the heterozygous (WC), and that penetrance was sex

dependent. Individuals homozygous (CC) presented with

WS4 features, while those with the heterozygous mutation

(WC) presented with isolated HSCR. Furthermore, some

family members with no W279C mutation were clinically

affected. This implied the presence of additional predis-

posing genes among this closely-related group. In fact, a

genetic modifier of HSCR found among the group was

mapped to chromosome 21q21 [125]. Subsequent EDNRB

mutation analyses conducted on both isolated HSCR and

WS4 patients revealed other EDNRB mutations with similar

genetic behavior to W279C. Homozygous EDNRB muta-

tions were associated with WS4 [127, 128] and heterozy-

gous mutations with isolated HSCR [58, 59, 129–134].

Overall, EDNRB mutations account for 5% of the isolated

HSCR phenotype. Functional analyses of EDNRB missense

mutations showed impairment of the intracellular signaling

[132, 135, 136]. EDNRB mutations found this far, are

mainly inherited from unaffected parents, and associated

with short-segment aganglionosis.

EDN3 and ECE-1 genes

HSCR patients are being screened for mutations in the

human EDN3 because of the HSCR-like phenotype pre-

sented by mice with disruption of the Edn3 gene. To the

best of our knowledge, very few EDN3 mutations have

been characterized in HSCR patients. With very few

exceptions [94], heterozygous EDN3 mutations are asso-

ciated with isolated HSCR [137, 138] and homozygous

mutations with WS4 [139, 140].

Again a knock-out mouse model provided evidence of

the involvement of another member of the EDNRB path-

way, ECE-1, in HSCR [141]. The gene encodes the

endothelin converting enzyme (ECE-1), which cleaves the

large inactive endothelins into smaller 21 amino-acids

active endothelins. Mice carrying an Ece-1 null mutation

(no protein is synthesized) present with craniofacial and

cardiac abnormalities, absence of melanocytes, and

absence of the enteric neurons in the distal gut. This phe-

notype is similar to that presented by mice with mutations

in the genes encoding other members of the EDNRB

pathway (EDN3 and EDNRB). To date, only one mutation

in the ECE-1 gene has been found and the patient was

affected with syndromic HSCR [142].

As a general rule, severe homozygous mutations in

genes involved in the EDNRB pathway are mainly asso-

ciated with WS4 (absence of enteric ganglia and epidermal

melanocytes, both neural crest cell derivatives). The asso-

ciation of homozygous mutations with WS4 and hetero-

zygous mutations with isolated HSCR may indicate that

melanocytes and enteric ganglia differ in sensitivity to the

varying levels of EDNRB signaling [143].

The restriction of aganglionosis to the distal colon in

mice with EBNRB and EDN3 deficiency and the fact that

HSCR patients with mutations in these genes mainly

present with short-segment aganglionosis suggested that

the EDNRB signaling pathway is only required during the

later stages of the colonization of the colon [144, 145].

However, it has recently been shown that the EDNRB

signaling pathway is required for the colonization of both

colon and small bowel [124]. The colonization process is

subject to distinct spatial and temporal signaling require-

ments, and at some stage EDNRB signaling enhances the

ability of the NCCs to migrate into the distal bowel [6].

ZFHX1B (previously SIP1)

The observation of a translocation involving the ZFHX1B

locus (2q22) in a patient with HSCR disease, microceph-

aly, mental retardation, epilepsy and characteristic facial

appearance, led to the first documentation of ZFHX1B

involvement in this syndromic form of HSCR [146]. Other

chromosomal abnormalities involving 2q22 and mutations

in the ZFHX1B gene are being described in patients with

similar clinical features (recently named Mowat–Wilson

syndrome) although not all of them present with

aganglionosis.

ZFHX1B encodes a transcriptional repressor (SIP1,

Smad interacting protein 1), which interacts with several
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members of the Smad family. Some Smad proteins act as

tranducers in signaling cascades critical to embryogenesis.

It is not yet known how mutations in ZFHX1B may result

in defects of the ENS, although it is tempting to speculate

on a possible functional link between SIP1 and the sig-

naling pathways currently known to be essential for the

ENS development. As in SOX10, no mutations have been

found in patients with isolated HSCR, and therefore

ZFHX1B is unlikely to be major gene in non-syndromic

HSCR [147–149].

KIAA1279

By homozygosity mapping, a novel locus on 10q21.3-

q22.1 for Goldberg–Shprintzen syndrome (GOSHS) was

identified in an inbreed family. Phenotypic features of

GOSHS in this inbred family included microcephaly,

polymicogyria, and mental retardation, as well as HSCR.

Homozygous missense mutations were identified in the

KIAA1279 gene at 10q22.1 [27]. This finding established

the importance of KIAA1279 in both enteric and central

nervous system development although the role of

KIAA1279 is not yet understood. No mutations in this gene

have been found in isolated HSCR patients.

Modifying genes and interaction between signaling

pathways

As indicated above, the successful colonization of the gut

by the ENS precursors depends on a coordinated and bal-

anced network of interacting molecules (Fig. 2). Conceiv-

ably, there should be a functional and genetic link among

these molecules for them to interact. The mechanisms

underlying these interactions may help to explain the

complexity of the HSCR phenotype and resolve puzzling

genetic observations, e.g., that in some cases more than one

mutated gene is needed to produce the phenotype, while

(conversely) healthy individuals exist with mutations in

HSCR genes. Interaction between pathways requires not

only coordination among the pathway members but also

with those molecules that mediate their interaction.

The RET and EDNRB signaling pathways were initially

thought to be biochemically independent. However, the

identification of a HSCR patient carrying both a RET

mutation inherited from the healthy mother and a EDNRB

mutation transmitted by the healthy father suggested that

these two pathways were related, and indeed, that more

than one mutation was needed for the manifestation of the

phenotype. The latter is especially true when the effect of

the mutation on the protein function is not severe [28]. The

genetic interaction between mutations in RET and EDNRB

in HSCR was verified in 2002 in an association study

conducted on 43 Mennonite family trios segregating the

W276C mutation in the EDNRB described above [64]. The

study demonstrated the joint transmission of both the

W276C mutation in EDNRB and HSCR-associated RET-

SNPs in affected individuals. The combination of these two

genotypes increased the penetrance of the W276C mutation

and therefore the risk to disease. Genetic interaction

between RET and EDNRB pathways has also been dem-

onstrated in mice [64, 124, 150]. The fact that two mutated

genes are needed for the manifestation of the disease also

implies functional interaction. EDN3 and GDNF seem to

have a synergistic effect on the proliferation of the undif-

ferentiated ENS progenitors and an antagonistic effect on

the migration of differentiated enteric ganglia. It appears

that EDN3 has a variable distribution along the developing

gut with differential effects on processes regulated by the

RET. It has been firmly established that the interaction

between these signaling pathways controls the ENS

development throughout the intestine [6, 124]. However,

both pathways have to be integrated by additional mole-

cules or ‘‘mediators’’. Protein kinase A has been suggested

as a key component of the molecular mechanisms that

mediate and link the RET and EDNRB signaling pathways

[124]. Also, in mice, Sox10 has been shown to act on both

Ret and EdnrB genes [26, 87–90] further linking these two

signaling pathways. All the molecule members of these

pathways/networks are not known. This means that genes

involved in the development of the ENS still await dis-

covery, and that DNA alterations in multiple genes have

the potential to combine and hinder a phenotype. Obvi-

ously, defective functioning of these still unknown

‘‘mediators’’ could modify the outcome of the development

of the ENS. RET and EDNRB are central to the genesis of

HSCR but little is known about the influence of the genetic

background. Unknown loci (that could encode protein

members of the RET and EDNRB pathways) can modify

RET expression and act as a disease promoting or sup-

pressing genes (modifiers). A linkage study conducted on

12 HSCR families enriched for L-HSCR form, demon-

strated linkage to RET in all but one family. However, 6 out

of the 11 families linked to RET, also showed linkage to the

9q31 locus. Interestingly, no severe RET mutations were

detected in those 6 families. The effect of a mutated gene in

the 9q31 region is thought to be required to produce the

HSCR phenotype in those individuals bearing weak RET

mutations [30]. A genome-wide scan on 49 S-HSCR

families detected linkage to three chromosomal regions,

10q12, 3p21, and 19q12. Since S-HSCR did not segregate

in the absence of RET, the authors suggested that 3q21 and

19q12 loci are RET-dependent, therefore, modifiers of the

RET expression [29]. A recent study on the 3p21 chro-

mosomal region narrowed down a HSCR-associated region
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comprising three genes involved in neurological pheno-

types [151]. Other examples of interaction include those

reported between RET and genes of the NTF3/NTRK3

signaling pathway, which also plays an essential role in the

ENS development [152].

These studies emphasize the central role of RET in all

forms of HSCR (short and long) and explained the non-

Mendelian inheritance of the disease. Also, they suggest

that the genetics of long- and short-segment HSCR may

depend on the effects of the different RET modifiers.

Other HSCR candidate genes

Mouse models and syndromes associated with HSCR pro-

vide insights into the genes that may share a common sig-

naling pathway involved in the development of the ENS and

therefore in the pathogenesis of HSCR. It is therefore logical

to study the possible contribution of these genes to HSCR.

This can be illustrated by the example posed by the Indian

hedgehog gene (IHH). The hedgehog gene family encodes a

group of secreted signaling molecules that are essential for

growth and patterning of many different body parts of ver-

tebrate and invertebrate embryos [153]. In particular, Ihh

signaling controls growth of bones and is required for the

proper development of the ENS and the intestinal stem cell

proliferation and differentiation [154]. Ihh mutant mice

present with dilated colon with abnormally thin wall, and

enteric neurons missing from parts of the small intestine and

from the dilated regions of the colon. This HSCR-like phe-

notype is observed with an incomplete penetrance of 50%,

which suggest that interaction with other factors will be

required for full expression of the phenotype. These features

are strikingly similar to those observed in HSCR patients. In

humans, mutations in the IHH gene (2q33-35) are associated

with congenital limb malformations [155] and other skeletal

dysplasias [156] some of which are also seen in some HSCR

patients [3, 4]. Yet, IHH mutation analysis in over 60 HSCR

patients with no mutations in the HSCR genes described so

far, reveal no coding region mutations that could account for

the disease [157].

Similar results were obtained for the human L1CAM

gene. This gene encodes the L1 cell adhesion molecule

involved in the development of the nervous system [158].

Mutations in L1CAM are linked to a recessive form of

congenital hydrocephalus [159]. The detection of L1CAM

mutations in individuals with congenital hydrocephalus

and HSCR [160, 161] and the fact that L1CAM maps to

chromosome Xq28, (which could account for the higher

penetrance of HSCR in males) encouraged the mutational

screening of this gene in isolated HSCR patients [162].

Although no coding region mutations were identified, it

was hypothesized that L1CAM-mediated cell adhesion

may be important for the ability of ganglion cell precursors

to populate the gut, and that the L1CAM gene could modify

the effects of a Hirschsprung disease-associated gene to

cause intestinal aganglionosis.

Genome-wide association studies (GWASs) and HSCR

Current technology allows the search of the whole genome

for common variants affecting the incidence of a disease.

Recently, our group conducted the first GWAS on HSCR

patients through which we identified the neuregulin1 gene

(NRG1) as a new HSCR susceptibility gene. NRG1

(a signaling protein) and its receptors (the ErbB family of

tyrosine kinase receptors) are among the molecular regu-

lators of the NCCs’ development by promoting neuronal

survival amid other biological functions. In this study,

which was conducted on individuals of Chinese origin,

besides the RET-SNPs, the strongest overall associations

were found for two SNPs located in intron 1 of NRG1.

Importantly, NRG1 SNPs increased risk to disease in the

presence of the RET HSCR-associated SNPs [163] imply-

ing genetic and most likely, functional interaction between

these two genes. Studies are underway to further identify

the NRG1 variants that disturb the function of the gene

(Garcia-Barceló and Tam et al. unpublished data).

Genetic counseling

In isolated HSCR, a relatively precise recurrence risk tai-

lored to individual families could be estimated based on the

estimates provided by Badner [164]. The highest recur-

rence risk is for a male sib of a female proband with

L-HSCR [3]. Nonetheless, the reduced penetrance of the

HSCR mutations makes it difficult to rationally predict and

assess the risk to disease. Genetic testing is only performed

on a research basis, and due to the advances of the surgical

management of HSCR, its utility is questionable.

As outlined earlier, mutations in the RET proto-oncogene

are also the underlying cause of the inherited cancer syn-

dromes MEN2A, MEN2B, and FMTC. In HSCR patients,

RET mutations are dispersed throughout the gene, while in

MEN2A and FMTC patients, mutations are clustered in the

cysteine codons of the RET extracellular domain (exons 10

and 11). Although HSCR and MEN2A are two different

entities, occasionally they co-segregate in some families

[165–169], and affected individuals carry a single mutation

in exons 10 or 11. Importantly, RET mutations identical to

those found in MEN2A have been detected in HSCR

patients with no clinical symptoms of MEN2A [170, 171].

This means that some HSCR patients may be exposed to a

highly increased risk of tumors, where HSCR patients carry
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these tumor-specific mutations, exploration of the family

history of MEN2A and periodic screening for tumors is

advisable. In families segregating both MEN2A and HSCR,

RET gene testing, tumor screening, and prophylactic thy-

roidectomy is also warranted.

Future directions

Although modern surgical procedures have already

achieved a high success rate of HSCR treatment, a better

understanding of the mechanisms involved in the disease

pathogenesis would enable improved diagnosis, preven-

tion, and treatment.

The major breakthrough in the study of the pathogenesis

of HSCR has been the demonstration of the genetic and

functional interaction between the RET and EDNRB sig-

naling pathways and their establishment as key players in

the development of the ENS. These important findings

should lead to the study of the complete gene network that

makes the genesis of the ENS possible. Regarding HSCR

gene-discovery, additional GWAS and whole-genome

sequencing of DNA from HSCR patients are currently

underway.

The GWAS studies are aimed at the discovery of genes

whose common variants (SNPs) are associated with the

disease, as per the common-disease-common variant

hypothesis, whereby common variants (present in [1% of

the population) might contribute to susceptibility to com-

mon diseases. These disease-associated common variants

have a modest contribution to risk. Thus, more disease-

associated functional common variants are to be identified

when the disease results from their summative effect.

Importantly, several lines of evidence indicate that in

addition to common variants/SNPs, deleterious rare vari-

ants also contribute to the multifactorial inheritance of

complex diseases although their effect and mode of

inheritance is usually masked by the effect of other disease-

contributing genes. The genes in which disease-associated

common variants are found are to be considered as can-

didates for the search of deleterious rare variants (muta-

tions) [172, 173]. Indeed, HSCR constitute a perfect

example of the above. The RET gene contains high-fre-

quency common variants with modest effects as well as

deleterious rare variants (mutations). The latter may be

transmitted in an autosomal dominant manner with reduced

penetrance giving rise to familial HSCR. Because muta-

tions are rare in the population, they must be identified by

sequencing in cases and controls in each study. Yet, the

contribution of common and rare variants to a disease or in

particular, to HSCR, is not necessarily independent.

Common variants may act as modifiers of the mutation

effects as exemplified with the EDNRB W276C mutation,

whose penetrance is increased by the presence of RET

HSCR-associated SNPs in the same individual.

For obvious reasons, conducting gene or protein

expression analyses for the study of HSCR and other

human diseases that result from gene dysfunction during

development is not feasible. Mice can provide access to the

study of human genes and proteins that have an equivalent

in mice. Scientists are now resorting to the isolation indi-

vidual mouse cell types by making use of stem cell

research. This has allowed the study the specific require-

ments of the gut neural crest stem cells (NCSCs) [124, 174,

175]. A recent study has shown that Prokineticin-1 (Prok-1)

can induce both proliferation and expression of differ-

entiation markers of Ret deficient mouse NCCs, suggesting

that Prok-1 may provide a complementary pathway to

GDNF/Ret signaling during the ENS development. This

indicates that Prok-1 crosstalks with GDNF/Ret signaling

and probably provides an additional layer of signaling

refinement to maintain proliferation and differentiation of

enteric NCCs. If the behavior of the gut NCSCs is better

understood, it may be possible to treat HSCR by trans-

planting NCSCs directly into the aganglionic gut. It will be

intriguing to determine whether these NCSCs are able to

mature and engraft in the forming gut and enhance bowel

motility, and further research of this kind should yield new

therapeutic approaches.

The HSCR phenotype may therefore be a consequence

of the interplay and/or accumulation of both common and

rare deleterious DNA variants in gene members of the

pathways involved in ENS development, and despite the

importance of RET, additional HSCR susceptibility genes

exist and are currently being uncovered through both

genetic and cell functional studies.
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