
Climate Dynamics (1999) 15 :419}434 ( Springer-Verlag 1999

M. R. Allen ' S. F. B. Tett

Checking for model consistency in optimal fingerprinting

Received: 9 December 1997 / Accepted: 24 December 1998

Abstract Current approaches to the detection and at-
tribution of an anthropogenic in#uence on climate
involve quantifying the level of agreement between
model-predicted patterns of externally forced change
and observed changes in the recent climate record.
Analyses of uncertainty rely on simulated variability
from a climate model. Any numerical representation of
the climate is likely to display too little variance on
small spatial scales, leading to a risk of spurious detec-
tion results. The risk is particularly severe if the detec-
tion strategy involves optimisation of signal-to-noise
because unrealistic aspects of model variability may
automatically be given high weight through the opti-
misation. The solution is to con"ne attention to aspects
of the model and of the real climate system in which the
model simulation of internal climate variability is ad-
equate, or, more accurately, cannot be shown to be
de"cient. We propose a simple consistency check based
on standard linear regression which can be applied to
both the space-time and frequency domain approaches
to optimal detection and demonstrate the application
of this check to the problem of detection and attribu-
tion of anthropogenic signals in the radiosonde-based
record of recent trends in atmospheric vertical temper-
ature structure. The in#uence of anthropogenic green-
house gases can be detected at a high con"dence level in
this diagnostic, while the combined in#uence of anthro-
pogenic sulphates and stratospheric ozone depletion
is less clearly evident. Assuming the time-scales of the
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model response are correct, and neglecting the possi-
bility of non-linear feedbacks, the amplitude of the ob-
served signal suggests a climate sensitivity range of
1.2}3.4 K, although the upper end of this range may
be underestimated by up to 25% due to uncertainty in
model-predicted response patterns.

1 Introduction

A common overall approach has emerged to the detec-
tion of anthropogenic climate change. A detection stat-
istic is de"ned and evaluated in an observational
dataset. This might be a global mean quantity (e.g.
Stou!er et al. 1994); a model versus observation pattern
correlation (Mitchell et al. 1995a; Tett et al. 1996); the
observed trend in pattern correlation (Santer et al.
1996); or some form of &&optimised "ngerprint'' (Hassel-
mann 1979; HannoschoK ck and Frankignoul 1985; Bell
1986; Hasselmann 1993; Santer et al. 1994a; North et al.
1995; Hegerl et al. 1996; North and Stevens, 1998). The
same detection statistic is then evaluated treating
sections of a control run of a climate model (in which
there is no secular change in forcing) as &&pseudo-obser-
vations'' to provide an estimate of the distribution of
that statistic under the null-hypothesis of no anthropo-
genic change. If the observed value of the chosen statis-
tic lies in the uppermost 100]P5) percentile of the
distribution estimated from the control, then detection
is claimed with a 100]P% risk of a type-1 error (so
P"probability of a false positive). Clearly, this ap-
proach to quantifying the risk of error requires com-
plete con"dence in the realism of the model simulation
of internal climate variability.

Hasselmann (1997) distinguishes between &&detection''
of anthropogenic climate change (ruling out, at a cer-
tain con"dence level, the possibility that an observed
change is due to internal variability alone) and &&attri-
bution'' (demonstrating that the observed change is
consistent with the predictions of a climate model



subjected to a particular forcing scenario and inconsist-
ent with all physically plausible alternative causal ex-
planations). Formal attribution is clearly a much more
demanding objective than detection. Indeed, as Hassel-
mann (1997) observes, it is a logical impossibility unless
we use physical arguments to con"ne attention a priori
to a relatively small number of alternative explana-
tions. The attribution framework proposed by Hassel-
mann (1997) and implemented by Hegerl et al. (1997)
also relies heavily on model-simulated climate variabil-
ity, because &&consistent'' and &&inconsistent'' are form-
ally de"ned as &&within the bounds of variability as
simulated by a particular climate model''.

Following standard practice, we will distinguish be-
tween &&internal'' (unforced) climate variability and the
climate system's response to time-varying natural forc-
ings such as changes in the solar constant. If the tem-
poral history of these natural forcings is known, and
the response mechanism can be accurately modelled,
these can be treated exactly like an anthropogenic
forcing (e.g. Hegerl et al. 1997). If the forcing histories
are unknown, they must be treated as sources of varia-
bility similar to internal variability: in this situation, we
would simply increase the variance attributable to in-
ternal variability to take into account the additional
variance due to these unknown external forcings.

We have a number of a priori reasons to distrust
model simulations of internal climate variability. On
the simplest level, there are known sources of variabil-
ity in the observational record (the simplest example
being observation error) which are not represented in
current models. Even if these additional sources are
included in the model, it will always be the case that
variability on small spatio-temporal scales is likely to
be under-represented in any "nite representation of a
continuous turbulent system. Fortunately, we do not
require a model simulation of internal variability to be
accurate in every respect for the model to be used for
uncertainty analysis in climate change detection and
attribution. In principle, only those aspects of model
behaviour which are relevant to the detection and attri-
bution problem need to be realistic. For example, if our
chosen detection statistic is the global mean temper-
ature, then all we require is an estimate of the variabil-
ity of this quantity on the relevant time-scales. The
problem is determining which aspects of model varia-
bility are crucial to a particular detection or attribution
problem and developing quantitative measures of model
adequacy.

Simple checks, such as the comparison of global
mean power spectra, can identify gross de"ciencies in
model variability, but the problem of how to remove
the (presumed, but incompletely known) anthropogenic
signal from the historical record prior to computing
a power spectrum remains, see Jones and Hegerl (1998)
for a discussion of this point. Proxy and incomplete
observations of the pre-industrial period (e.g. Bradley
and Jones, 1993) can help here, but separating low-

frequency climate variability from slow changes in the
relationship between proxy observations and the cli-
matic variables which they are supposed to represent
remains a problem (e.g. Bri!a et al. 1998). There is also
the intrinsic di$culty that paleo-climate observations
are sparse, so a paleo-climate reconstruction of any
climate index must be contaminated with the high-
spatial-wave-number components of variability which
models are known to simulate poorly (Stott and Tett
1998) and which, it is hoped, are irrelevant to climate
change detection. This may be an issue for recent pion-
eering studies comparing model-simulated variability
with the paleo-climate record (e.g. Barnett et al. 1996).

The other problem with global mean power spectra
is that a de"ciency in the model's internal variability
may fail to show up in the global mean while having
a signi"cant impact on the chosen detection statistic:
this is necessarily true if a &&centred'' statistic is used,
which is de"ned to be independent of the global mean,
Santer et al. (1993). Recognising this, Hegerl et al.
(1996) use a linear response model to estimate and
remove the anthropogenic signal from the historical
record and then use the residual as an estimate of
natural variability. While clearly an advance on simple
power spectra, this approach relies uncomfortably on
the adequacy of a very simple linear model for both the
form and amplitude of the anthropogenic signal. They
note that it would tend to give a very conservative
estimate of uncertainty, because errors in the model
compound genuine natural variability in the observa-
tions. This may be unimportant if all that is being
tested is the null-hypothesis of zero climate sensitivity
(i.e. no response to the candidate forcing, the crudest
form of &&detection'') but when these techniques are
extended to the attribution problem, or to provide
error estimates on forecasts of 2145 century climate
change, an excessively conservative estimate of uncer-
tainty is as misleading as an excessively optimistic one.

The crucial question is this: is the model simulation
of internal climate variability adequate to quantify un-
certainty in global change detection? Or to rephrase
the question in a testable form: do we have reason to
distrust the results of this particular application of the
model? The notion of adequacy for a particular task is
crucial. It will always be possible to identify de"ciencies
in some aspect of model climatology or simulated cli-
mate variability, and therefore misleading to insist that
the model be absolutely realistic on all spatio-temporal
scales before it can be trusted for climate applications.
In the following section, we attempt to address this
question in the context of the &&optimal "ngerprint''
approach to climate change detection and attribution.

2 Fingerprinting as generalised linear regression

Although it has appeared in various guises (Hasselmann 1979;
Bell 1986; Santer et al. 1994b; North et al. 1995; Thacker 1996), the

420 Allen and Tett: Checking for model consistency in optimal "ngerprinting



basic principle of &&optimal'' detection is the classical technique of
generalised linear regression: see Mardia et al. (1979) for a helpful
introduction. In order to stress this link, we use the standard nota-
tion of the linear regression literature. A set of m &&response patterns'',
xk;k"1,m , each consisting of a rank-l vector representing the pattern
of the climate system's response to a particular external forcing
scenario, provide the independent variables of the regression model.
We denote these as the columns of the l]m matrix X. Typical
examples include the pattern of surface or vertical temperature
change which is expected to result from increasing concentrations
of greenhouse gases, anthropogenic sulphate aerosols, declining
stratospheric ozone, aerosols from volcanic eruptions or some com-
bination of these. The individual elements of the x

k
might corres-

pond to the local trend expected due to the k5) forcing scenario at
a particular latitude}longitude or (in the &&vertical detection'' prob-
lem discussed here) latitude-height location. Alternatively, in the full
&&space-time'' variant of the algorithm, they correspond to the ex-
pected response at a given point in both space and time. In our
discussion here, we shall assume that X is real, although in the
frequency-domain representation of North et al. (1995) elements
may correspond to complex coe$cients after the data have been
Fourier transformed in time. The same basic principles apply in both
cases (Hegerl and North 1997). All current approaches to optimal
detection are based on the assumption that the recent climate record
may be represented as a linear superposition of these model-pre-
dicted response patterns plus an additive noise term.

Response patterns may be speci"ed a priori, or using simple
physical arguments based on the pattern of the forcing (as in Santer
et al. 1996) or by averaging the response to a particular forcing
scenario from an ensemble of runs of a climate model (as in Tett et al.
1996). For consistency with Hasselmann (1997) we shall base our
optimisation procedure on the assumption that the response pat-
terns may be treated as noise free. If these patterns are derived (1)
from simulations of the 2145 century, as in Hegerl et al. (1996) or (2)
from energy balance models, as in North and Stevens (1998) then
this assumption is well justi"ed, since in both cases the sampling
uncertainty in the response patterns is essentially zero (repeating the
experiment would yield an identical pattern). Both of these ap-
proaches have disadvantages, however: (1) assumes that response-
patterns do not change over time, and is inapplicable to responses to
natural forcing such as solar and volcanic activity, while (2) requires
that the full response of the non-linear climate system is correctly
represented by an energy balance model.

Following Mitchell et al. (1995a) and Tett et al. (1996) we prefer to
compare like with like, basing our response-patterns on the mean of
an ensemble of simulations of a fully non-linear GCM spanning the
same period which is covered by the observations. The disadvantage
of this approach is that the response patterns themselves, as well as
the observations, are subject to sampling uncertainty: a second
ensemble would yield a somewhat di!erent ensemble mean response.
If the model simulation of internal variability is correct, the variance
in the response patterns from an M-member ensemble is approxim-
ately 1/M times the variance in the observations (exactly so if all
distributions are Gaussian). With only a four-member ensemble in
the example in Sect. 5, this introduces a bias towards zero in
estimated pattern-amplitudes. Resolving this bias requires the intro-
duction of non-linear estimators, which we will consider elsewhere.
We do, however, make a "rst-order correction for noise in the
response patterns in our analysis of uncertainty, as detailed later.

Once the response-patterns have been speci"ed, the detection
problem simply involves estimating the amplitude of these patterns
in a rank-l vector of observations, y, or estimating the parameters
b in the basic linear model

y"Xb#u (1)

where u is the &&climate noise'' term whose covariance is given by the
l]l matrix C

N
:

C
N
,E(uuT), (2)

E being the expectation operator. Under the assumption that u is
multivariate normal (which we will return to), the best (lowest
variance) linear unbiased (BLUE) estimator of b in (1) may be found
by introducing a &&pre-whitening'' coordinate transformation P such
that

E(PuuTPT)"PC
N
PT"I. (3)

The term pre-whitening refers to the fact that the transformed noise,
Pu, appears to be &&white'' (uncorrelated and uniformly distributed).

The notion of a &&low-variance estimator''may require some clari-
"cation for non-specialists: strictly interpreted, it means that if we
were able to repeat the whole experiment (not just the model simula-
tions, but the actual forcing of the real climate system over the 205)

century) a large number of times, then the BLUE estimator for
b would vary less between experimental realisations than any linear
unbiased alternative. Given that we only have a single realisation of
the real climate, this interpretation may seem rather arti"cial: Hassel-
mann (1993) and North et al. (1995) prefer to discuss these estimators
in terms of signal-to-noise, while Hasselmann (1998) and Leroy
(1998) recommend an explicit Bayesian treatment. We stress that, at
the level of complexity we are dealing with here, the di!erences are
a matter of interpretation, and that all these approaches should give
essentially the same result: di!erent interpretations may, however,
suggest di!erent avenues for further re"nement of the technique. The
Bayesian treatment, for example, is particularly well suited to the
incorporation of prior information into the analysis, while couching
everything in terms of classical linear regression suggests how other
standard regression tools can be brought to bear on the problem.

Equation (3) is satis"ed if PTP"C~1
N

, provided this inverse exists.
Because Pu is indistinguishable from white noise, we may invoke the
Gauss}Markov theorem (Mardia et al. 1979) to prove that the
following estimator for b is BLUE:

b3 "(XTPTPX) ~1XTPTPy"(XTC~1
N

X) ~1XTC~1
N

y,FTy , (4)

introducing FT,(XTC~1
N

X)~1XTC~1
N

as the operator which ex-
tracts b3 from y. Notice that this is simply the ordinary least squares
solution applied to the transformed variables, PX and Py. The link
to standard regression is most transparent in the case of a single-
pattern with uncorrelated noise (i.e. when X has only a single column
and C

N
is diagonal), in which case:

bI "
+

i
x
i
y
i

j2
i

+
i

x
i
y
ij2

i ,

(5)

where j2
i

is the expected noise variance in the i5) component of y.
For reference, the l5) row of XTC~1

N
in Eq. (4) corresponds to the

l5) "ngerprint f il in Eq. (29) of Hasselmann (1997) while the matrix
XTC~1

N
X corresponds to the metric Dlk in his Eq. (30) and b3 corres-

ponds to the detection coe$cients, dl in his Eq. (32). The disadvan-
tage of Hasselmann's (1997) de"nition of a "ngerprint is that, in a
multi-pattern problem, pattern-amplitudes are not estimated by
operating directly on the observations with XTC~1

N
unless XTC~1

N
X

is diagonal, which it generally is not. This led Hegerl et al. (1997) to
introduce an &&orthogonalised "ngerprint'' for display purposes, to
make it clear which aspects of the observations play a dominant role
in estimating the di!erent elements of b3 . Hegerl et al.'s (1997) idea, in
a two-pattern problem, is to modify (&&rotate'') one row of XTC~1

N
to

give X@TC~1
N

such that the rows of X@C~1
N

are orthogonal under the
metric de"ned by C

N
, meaning that (C~1

N
X@)TC

N
(C~1

N
X@)"

X@TC~1
N

X@ is diagonal.
Although it is only used for display, we have found this ortho-

gonalisation procedure to be potentially confusing since it implies
that di!erent patterns are treated di!erently in the estimation of b,
which they are not: if XTC~1

N
X is non-diagonal, then none of the

rows of FT will be aligned exactly with Hasselmann's (1997) "nger-
prints. Some way of referring to FT is required, since this is the actual
operator used to extract b3 from the observations. Citing a much
older literature, we could simply refer to it as the BLUE estimator
for b, but for consistency with climate change detection terminology,
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we suggest that the m rows of FT-should be referred to as the
&&distinguishing "ngerprints'' in the multi-pattern detection problem.
In physical terms, Hasselmann's (1997) "ngerprints discriminate
against noise with covariance C

N
, while the k5) distinguishing "nger-

print distinguishes the response to forcing scenario k from alterna-
tive responses x

i
, x

j
, 2 etc. in the presence of this noise. We stress

that this is an issue of terminology and presentation, not a substan-
tive di!erence in approach.

The estimate b3 is unbiased, so E(b3 )"b, and its m]m covariance,
E[(b3 !b) (b3 !b)T], is given by

<(b3 )"(XTC~1
N

X)~1. (6)

Provided u is multivariate normal, this can be translated into a con-
"dence ellipsoid as follows. Equation (6) implies that

(b3 !b)TXTC~1
N

X(b3 !b)&s2
m
, (7)

meaning that the left-hand side (LHS) of Eq. (7) is distributed as the
sum of squares of m normally-distributed unit-variance random
numbers, or s2

m
. To bound the region corresponding to a given

P-value (where P is the probability that the true value of b lies
outside this region), we "nd the critical value of s2 for which
P(s2's2

#3*5
)"P and plot the values of b for which the LHS of Eq.

(7) is equal to this value. Again, in the single-pattern, uncorrelated
noise case, Eq. (6) becomes

E[(b3 !b)2]"
1

+
i

x2

j2
i

. (8)

It we wish to compute the joint distribution of a subset of the
parameters in the multi-pattern case, we simply extract the relevant
rows and columns from XTC~1

N
X and evaluate Eq. (7) with this

reduced number of degrees of freedom: see Press et al. (1992) for
a clear discussion of this point. The con"dence intervals thus ob-
tained represent an estimate of our uncertainty in the factors by
which we have to scale the model response to the various forcings to
match what is taking place in the real world.

This estimate of the variance of b3 also provides an estimate of the
implied uncertainty in any scalar linear diagnostic, /. With trivial
exceptions, / can always be represented as a projection of the
observations onto a vector of weights, or /"wTy. If the elements of
w are all equal to 1/l, for example, then / is simply the global mean.
If w is a unit vector, then / is the value of the observation-vector at
a particular location and so on. Neglecting uncertainty in X as
before, the variance of / attributable to the uncertainty in b3 is:

<(/)"wTX<(b3 )XTw. (9)

By assessing the extent to which trends at individual locations or in
global-mean quantities are consistent with optimal detection results
in this way, we can move on from the simple question of whether the
observations are globally consistent with the predictions of a climate
model to investigate which aspects of the observational record
disagree most strongly with the model predictions, identifying likely
model errors. (Of course, if we use detection results to identify and
correct model errors, there is a danger of circularity: a positive
detection result with the corrected model no longer carries the same
weight as one obtained with an independently-speci"ed model.
There are techniques for establishing whether an apparent improve-
ment in model-data agreement simply due to over"tting, but to
discuss these issues in detail is beyond our scope here. Validation
against independent observations, preferably of di!erent variables,
would also help: exclusive reliance on temperature data is clearly
unsustainable.)

The fact that we are using a linear model in Eq. (1) does not mean
that we cannot examine problems in which non-linearity is impor-
tant. For example, suppose a model forced with the combined e!ects
of changing sulphate-aeorsol and greenhouse-gas levels gave a pat-
tern of change which was signi"cantly di!erent to the sum of the
patterns obtained in runs forced with each of these factors alone

(signi"cance might prove very di$cult to establish without very
large ensembles of runs, but suppose the non-linearity is strong
enough that it is possible). We can then use the di!erence between
the combined pattern and the sum of the two individual patterns to
de"ne a &&"ngerprint'' of this non-linearity. This, too, can then be
searched for in the observations to establish whether such non-
linearity is detectable in the real world. If it is detected, then a full
non-linear treatment would be necessary to analyse it explicity: we
simply note that the linear model can, in principle, be applied to the
initial step of testing the null-hypothesis of complete linearity.

The key advantage of this regression-based approach over detec-
tion schemes based on pattern correlation (e.g. Mitchell et al. 1995a;
Santer et al. 1996; Tett et al. 1996) is that it provides information on
relative amplitudes of response-patterns in model and observations:
correlations convey no amplitude information. If the response pat-
terns are based on an ensemble-average of model simulations with
forcing changes matched to the period of the observations, and the
model has the timing and amplitude of the response to these forcing
changes exactly right, then the expected value of the estimated
pattern-amplitude coe$cients, E (b3 ), will be approximately unity.

As noted, E(b3 ) is only approximately unity because the assump-
tion that X is noise free is only correct in the limit of an in"nite
ensemble. In general, noise in X will tend to bias b3 towards zero
(Mardia et al., 1979) and increase the true variance in the estimator
by a factor of approximately 1#1/M, where M is the ensemble size.
This factor is obtained by assuming that the shapes of the columns of
X are approximately constant, while their amplitude varies due to
the small size of the ensemble. Suppose b3

obs
is the factor by which we

would have to scale the &&true'' (in"nite ensemble) model response
pattern to reproduce the observations, and b3

ens
is the corresponding

pattern amplitude in this particular M-member ensemble-mean. The
value of bI we obtain from regressing the observations onto this
ensemble mean is the ratio

bI "
bI
obs

bI ens
\

N[E (bI
obs

), <(bI )]
N[E(bI

ens
), 1

M
I(bI )]

. (10)

Provided O(<I (bI )/M)@1, then E(bI
ens

)K1 and this ratio may be
approximated by

bI \N[E(bI
obs

) , (1#1/M)<I (bI )]. (11)

We therefore simply in#ate <I (bI ) by this factor, but the bias in
bI remains, making the overall algorithm slightly over-conservative.
The derivation of alternative unbiased estimators in the presence of
noise in both X and y is straightforward (e.g. Ripley & Thompson,
1987), but we will examine these in detail elsewhere.

3 Estimating the climate noise covariance

The key di$culty in optimal "ngerprinting is that C
N

is unknown
and is estimated from a control integration of the climate model
thus:

C]
N
"

1

n
Y

N
YT

N
(12)

where the columns of Y
N

represent a succession of n vectors of
&&pseudo-observations'', y

N
, extracted from the control. As far as

possible, these pseudo-observations must be calculated in such
a way as to mimic the observation vectors, including in particular
applying the same observation mask to account for the e!ects of
missing data.

Since y typically represents trends over 30}50 y period, and con-
trol integrations are necessarily limited to 1000}2000 years duration,
the number of independent vectors of &&pseudo-observations'' in
a typical control run (the rank of Y) is orders of magnitude less than
l, the number of elements in y. The estimated covariance matrix, C]

N
,

is therefore non-invertible.
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One solution to this problem is obtained by noting that we do not
actually require C~1

N
for b3 to be BLUE. We only require that the

transformation P is such that Eq. (3) is satis"ed, and the unit matrix
on the right-hand side (RHS) of Eq. (3) need not be l]l. If we
assume that C]

N
provides a reliable estimate of the noise covariance

only in the subspace spanned by the i highest-variance &&EOFs of the
control'' (eigenvectors of C]

N
), then a natural transformation to use

is P(i) where the rows of P(i) are the i highest-variance EOFs of the
control weighted by their inverse singular values (square root of the
corresponding eigenvalue of C]

N
). P(i)C]

N
P(i)T is equal to the i]i

unit matrix by construction.
This is equivalent to using the Moore-Penrose pseudo-inverse,

P(i)TP(i) in place of C~1
N

. The pseudo-inverse based on the EOFs of
the control seems the most natural one to use, but others are also
possible: for example, Hegerl et al. (1996) use the EOFs of one of
their forced runs. This seems reasonable when only a single forcing is
under consideration, but introduces a bias towards one scenario
over another when m'1, which may be an important consideration
in attribution studies. We are also concerned about the impact on
algorithm stability of including basis-vectors which are known to be
poorly sampled in the control integration: all things considered,
although using the EOFs of the control may compromise the power
of the detection algorithm, we believe it is the approach least likely
to give misleading results.

The problem is that key results depend critically and predictably
on the choice of i: in general, the estimated uncertainty envelope
around b3 shrinks close to monotonically with increasing i, so (in
a detection problem) the con"dence level at which the null-hypothe-
sis of zero climate sensitivity can be rejected increases predictably
with i even when this null-hypothesis is valid. The reason is that
increasing i introduces EOFs in which the variance in the control is
unrealistically low. These will automatically be given high weight by
the optimisation procedure.

The most obvious source of this problem, which is also the
simplest to deal with, is that low-ranked EOFs of the control will
generally contain unrealistically low variance due to sampling de"-
ciencies: these correspond to state-space directions which were not
visited during this relatively short control integration. Although
P(i)C

N
P(i)T"I by construction, C]

N
OC

N
because of the "nite

length of the control, so Eq. (3) is only approximately satis"ed.
Worse, because the EOFs of the control have been chosen to
maximise variance in a particular segment, YN

1
, the transformation

P(i)T is biased with respect to that segment. Applied to another,
arbitrarily selected, segment of the control with estimated
covariance matrix C] N

2
"(1/n

2
)YN

2
YTN

2
, the diagonal elements of

P(i)CN
2
P(i)T will, on average, tend to be less than unity (see North

et al. 1982; von Storch and HannoschoK ck 1986). This is important
because it introduces a bias in the estimate of the covariance of
b3 (Bell 1986). Recognising this, Hegerl et al. (1996) stipulate that
di!erent control runs, possibly from di!erent models, are used for
optimisation and hypothesis testing.

To take this into account, we replace Eq. (6) with the estimate

<I (bI )"<] (FT
1
yN

2
)

"

1
n
2

FT
1
YN

2
YTN

2
F

1

"FT
1
C] N

2
F
1

(13)

where F
1
"(XTC] ~1N

1
X)~1XTC] ~1N

1
. Because E(FT

1
yN

2
)"0, the RHS of

Eq. (13) is simply the standard estimate of the variance of b3 obtained
by summing squares over n

2
realisations of FT

1
yN

2
. A scatter plot of

these individual estimates provides a simple way of visualising the
distribution. Note that Eq. (13) collapses to Eq. (6) in the limit of
a long control integration, as C] N

2
PC] N

1
PC

N
.

Suppose the estimate C] N
2
has l degrees of freedom (if all the yN

2
are

independent, then l would equal n
2

this is virtually never the case in
practice) : Eq. (7) for the errors b3 is then replaced by

(b3 !b)T[<I (b3 )]~1 (b3 !b),e2 (b)\mF
m,l , (14)

the standard F distribution with m and l degrees of freedom
in the numerator and denominator, respectively taking into
account sampling uncertainty in b3 and <I (b3 ). A con"dence ellipsoid
around our &&best-guess'' value, b3 , can be found by plotting the locus
of points b for which e2(b) is equal to the corresponding critical value
of the F

m,l distribution. (When only a single response pattern is
under consideration, m" 1, the Student's t-distribution may be
used instead, but this is trivially related to the F

1,l-distribution so
we will not discuss it here for the sake of brevity.)

The RHS of Eq. (14) only converges to s2
m
"mF

m,=
(correspond-

ing to an in"nitely long control, in which case Eqs. (14) and (7)
become equivalent) for l'100. In a 50-year diagnostic, this would
require control runs of several thousand years, which are not gener-
ally available. Much attention has therefore been devoted to the
estimation of l, the &&true'' number of degrees of freedom of a relative-
ly short control integration } see, for example, Zwiers and von
Storch (1995) and references therein. This is important because an
over-estimate of l, due to the neglect of serial correlation in YN

2
, can

lead to spuriously high estimates of signi"cance. Zwiers and von
Storch (1995) propose a correction for l based on the assumption
that the temporal evolution of all these scalar diagnostics in the
control run can be represented by "rst-order autoregressive pro-
cesses, or &&AR(1) noise''. The problem, noted by Zwiers and von
Storch (1995) themselves, is that the control model is not in fact
a linear stochastic process at all, even though it may be indistin-
guishable from one, so there is no rigorous answer to the question of
what is the &&correct'' value of l, and results can depend disconcert-
ingly on the method used to estimate it. For example, temporal
correlations will generally depend on spatial scale: the projection of
the control onto a highly structured spatial pattern may be much
less autocorrelated in time than the projection onto a very smooth,
large-scale pattern. In a multi-pattern analysis, which autocorrela-
tion coe$cient is appropriate? In the analysis presented here, we use
the largest one, giving the most conservative estimate of l, but can
see no rigorous justi"cation for this choice.

An alternative approach, which makes the role of the estimate of
the degrees-of-freedom more transparent, is to focus the reporting of
results onto return-times rather than con"dence intervals. Assuming
we have 300 years of control available for hypothesis-testing, we
evaluate e2(b) over all vectors of pseudo-observations in YN

2
(recalling

that E(b3 )"0 in the control), and simply take the maximum value,

e2
.!9

"max (yTN
2
F
1
[<I (bI )]~1FT

1
yN

2
) (15)

as indicating a &&300-y error'' (that is, an estimate of the maximum
error in b3 we expect to observe in a 300-y segment of the control,
where the &&size'' of the error is de"ned in terms of the estimated error
covariance, [<I (b3 )]~1). We then plot b for which the LHS of Eq. (14)
equals e2

.!9
.

In the single-pattern case (F
1

of rank one), equating e2
.!9

with the
LHS of Eq. (14) is equivalent to stating that the uncertainty range in
b3 is given by $max(DFT

1
yN

2
D), or plus/minus the largest value of

b3 estimated from the pseudo-observation vectors in YN
2
. The role of

the estimated error covariance, <I (b3 ) in Eq. (15) is simply to provide
the shape of the con"dence interval in the multi-pattern case.

If an estimate of degrees-of-freedom l is available, then e2
.!9

rep-
resents a median estimator of the 100](1!P)5) percentile of the
underlying distribution, where P+ln(2)/l; that is, e2

.!9
will exceed

this critical value of the underlying distribution in approximately
50% of cases, even for non-Gaussian control distributions. If we
want to avoid mentioning degrees of freedom at all, we can simply
state that there is a 50% probability of the maximum error in
b3 exceeding e2

.!9
in any randomly-selected 300-y segment of the

control or in any time-series with equivalent variability (trivially
true, since there is no reason for e2

.!9
form YN

2
to be larger or smaller

than that obtained from another realisation of equivalent variabil-
ity).

More generally, the k#15) largest value (k"0 corresponding to
the largest) of a diagnostic obtained from a control integration with
l degrees-of-freedom is a median estimator of the 100](1!P)5)
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percentile of the underlying distribution if

l
+

j/k`1A
l

j B (1!P)jPl~j"0.5, (16)

the 505) percentile of the cumulative binomial probability of
5(k#1) occurrences of an event of probability (1!P) in a series of
l trials.

Reporting return-times explicitly, accompanied by approximate
P-values based on the estimated degrees-of-freedom l, has four clear
advantages over con"dence intervals based on an assumption of
multivariate normality:
1. They are conceptually simpler for presentation of results to non-

specialists: &&the control did not move outside this region in 300 y'';
2. They rely much less on distributional assumptions: we require

only that the distribution of bI is radially symmetric under the
norm de"ned by <I (bI ), not that this distribution is Gaussian;

3. The role of the estimated degrees-of-freedom of YN
2

is more
transparent (we plot what the control actually did, and state what
approximate P-value this corresponds to, rather than plotting
P-values directly and relying on the validity of poorly understood
distributional assumptions);

4. And most importantly, they explicity discourage claims of signi"-
cance which involve extrapolation beyond the region explored by
the control.
For example, if l"15, so ln(2)/lK0.05, this is the smallest P-

value which can be quanti"ed legitimately. If the observations lie
well outside the region de"ned by e2

.!9
, then all that can be said is

that we have detected a model-data discrepancy at P(0.05
. Using an

F-test to claim signi"cance at the P
0.001

level, for example, implies
we can extrapolate from observations of the central body of the
distribution right out into the tails, which is clearly unsafe.

Whichever approach is adopted to de"ne uncertainty intervals, we
still rely on the assumption that C< N

1
and C] N

2
are individually

realistic, or at least that errors in the representation of climate
variability in the two control runs are unrelated. Even if separate
models are used, any such independence assumption for di!erent
climate models is suspect, because these models have so much (often,
entire components) in common. If, as is likely, both models display
too little variance on small spatial scales, both C< N

1
and C< N

2
will be

subject to a similar bias, compromising analysis of uncertainty.

4 Consistency checks to detect model inadequacy

Having framed the optimal "ngerprinting algorithm as a
linear regression problem, a variety of simple checks
for model adequacy immediately present themselves,
drawn from the standard statistical literature. For
simplicity, following Hasselmann (1997) we will focus
on parametric tests based on the assumption of multi-
variate normality. To judge from the analyses we have
performed to date, the assumption of normality is likely
to be reasonably close to valid for temperature data
on large spatio-temporal scales. Assuming normality
for other data types (such as precipitation) would be
more problematic.

Our null-hypothesis, H
0
, is that the control simula-

tion of climate variability is an adequate representation
of variability in the real world in the truncated state-
space which we are using for the analysis, i.e. the sub-
space de"ned by the "rst i EOFs of the control run
does not include patterns which contain unrealistically
low (or high) variance in the control simulation of

climate variability. Because the e!ects of errors in ob-
servations are not represented in the climate model,
H

0
also encompasses the statement that observational

error is negligible in the truncated state-space (on the
spatio-temporal scales) used for detection. A test of
H

0
, therefore, is also a test of the validity of this

assumption.
If we are unable to reject H

0
, then we have no

explicit reason to distrust uncertainty estimates based
on our analysis. This does not, of course, mean that
these uncertainty estimates are correct. It may mean
only that the tests we have devised are not powerful
enough to identify some crucial de"ciency in model-
simulated variability. But it is important to recognise
that the demonstration of internal consistency is all
that can ever be expected from a formal attribution
study. Proof that the model is &&correct'', meaning that
every alternative has been taken into account and rejec-
ted, is a logical impossibility.

We formulate a simple test of this null-hypothesis as
follows: if H

0
is true then the residuals of regression

(see Eq. (1),

u8 "y!Xb3 , (17)

should behave like mutually independent, normally
distributed random noise in the coordinate system (un-
der the norm) de"ned by C3 ~1

N
, so

r2"u8 TC] ~1
N

u8 \s2i~m
, (18)

is distributed as the sum of the squares of i!m
normally-distributed random variables. If an increase
in i introduces EOFs of the control which contain
unrealistically low variance, then r2 will move to an
improbably high percentile of the s2i~m

distribution,
and H

0
will be rejected, giving us some warning that

estimates of uncertainty are then likely to be unreliable.
The principle of the test may be clari"ed if we again

consider the case of single-pattern with uncorrelated
noise, in which case Eq. (17) and (18) become

i
+
i/1

(y
i
!bI x

i
)2

j2
i

\s2i~1
. (19)

Terms in which the control variance is unrealistically
low correspond to small values of j2

i
which in#ate the

LHS of Eq. (19) into a high percentile of the s2 distribu-
tion.

In geometric terms, the s2 test involves summing
residuals over all directions in the state-space de"ned
by EOFs 1 to i of the control which are orthogonal
to the hyperplane de"ned by the response patterns,
X, where orthogonality is de"ned in terms of the
metric given by C] ~1

N
(i.e. a and b are orthogonal if

aTC] ~1
N

b"0). If, by increasing i, we introduce an EOF
in which control variance is unrealistically low then the
component of that EOF which lies in the plane de"ned
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by X will tend to distort uncertainty analysis in the
regression but, at the same time, the component ortho-
gonal to X will tend to in#ate r2 faster than we would
expect it to rise if the control variability is adequate,
giving us some warning that uncertainty estimates are
becoming unreliable. (A residual check based on the
s2 statistics has been proposed independently by Leroy
1998, we are grateful to G. Hegerl for drawing our
attention to this work.)

The basis of the s2 test is to estimate and remove
all externally-forced signals and then to examine the
residuals for consistency with the climate noise model
based on the control. If, therefore there is component
of natural variability that is incorrectly simulated
by the control and is associated with a pattern identical
to the predicted pattern of anthopogenic change, the
s2 test will fail to identify any inconsistency. It should
be clear that, with only a single vector of observations,
y, an error in simulated variability whose properties
are statistically identical to the predicted anthropo-
genic change cannot, by de"nition, be identi"ed
through statistical analysis. If, on the other hand,
a series of detection experiments are performed, for
example on successive 50-years segments of the obser-
vational record as in Hegerl et al. (1996) then the s2 test
can readily be generalised to check directions lying in
the plane de"ned by X, provided that some sort of
smoothness assumption could be made concerning the
temporal evolution of the anthropogenic signal. For
the sake of simplicity, we postpone discussion of this
generalisation to a future publication. In the &&vertical
detection'' problem we use as the example here, this
option is not available because we are investigating
35-y trends in a 35-y dataset, so we only have a single
y to work with.

If independent control runs are used for optimization
and testing then, strictly speaking, an F-test should
be used in place of the s2-test to take into account the
e!ects of uncertainty in the projection of C] N

2
onto the

EOFs of C] N
1
:

u8 TC] ~1N
2
u8 \(i!m)Fi~m,l (20)

In practice, we "nd it makes very little di!erence
which test is applied, provided they are used to place an
upper limit on the truncation level. Moreover, the F-
test requires an estimate of l, the degrees of freedom of
the estimate of C] N

2
, problems with which have been

noted. The s2-test corresponds to lPR, and so will
always be more likely than the F-test to indicate that
the null-hypothesis of residual consistency should be
rejected. Since, in this application, we are using the test
to guard against including EOFs in which control
variance is unrealistically low, this represents the more
cautious option.

A limitation of the simple s2 check, which would be
shared by any univariate summary statistic, is that if
the model displays too much variance on large spatial

scales, this may mask the introduction of EOFs in
which model variance is too low (since the mean over
all scales may still look reasonable). A solution to this
problem would be to examine a running s2-statistic,
based on residuals i!g to i: more importantly, the
general evolution of the statistic must be examined,
rather than reliance on an automated check.

Aware that truncating at too high a level raises
problems in optimal "ngerprinting, Hegerl et al. (1996)
use a simple criterion to determine the truncation level
based on the correlation between the unrotated re-
sponse patterns (columns of X) and rotated "ngerprints
(rows of (XTC~1

N
X)~1XTC~1

N
). As soon as this correla-

tion begins to drop rapidly with truncation, they con-
clude that the optimisation is &&introducing noise'' and
reduce the truncation. In advocating something slightly
more complicated, we feel obliged to detail what we see
as the potential problems with the Hegerl et al. (1996)
approach while stressing that there is no reason why
their approach and ours should not give similar results
in a particular application. The key problem with the
Hegerl et al. (1996) correlation criterion is that it is
insensitive to the global variance in the control. If
the model consistently underestimates variability on all
spatio-temporal scales then the rotation at a given
truncation and therefore the correlation between re-
sponse pattern and "ngerprint is una!ected. Hegerl
et al. (1996) use other indicators like the power spectra
of global mean quantities to check that global variance
in the control is not inconsistent with the observations,
but because these indicators are not speci"c to the
truncated state-space used for detection, their use
might lead to the model being rejected even when
model variability is realistic in that truncated space.
Perhaps worse, a problem in model variability which
did not happen to project onto the global mean might
pass unnoticed.

A second problem with the Hegerl et al. (1996) cor-
relation criterion is that it may render optimisation
useless in precisely the situation where it is most
needed. When the unrotated response patterns are
completely dominated by regions or spatio-temporal
scales in which the climate noise is also very high, the
correlation criterion may indicate truncating at a value
of i which excludes all EOFs containing a reasonable
level of signal-to-noise even when there is a genuinely
detectable signal and the control simulation of natural
variability is perfectly adequate.

Instead of selecting the truncation level a priori or
using some relatively ad hoc criterion, we compare r2
from Eq. (18) with the standard s2 distribution to
establish the maximum value of i for which the control
still gives a believable estimate of climate noise. Detec-
tion can then only be claimed if the null-hypothesis
of zero climate sensitivity can be rejected for values of
i smaller than this limits. An example of the applica-
tion of this test to the &&vertical detection'' problem is
given in the following section.
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Fig. 1 ;pper panel, vertical pattern of zonal mean temperature
di!erence between the period 1961}80 and 1986}95, excluding years
contaminated by volcanic eruptions. Note the overall pattern of
stratospheric cooling and tropospheric warming. ¸ower panel, two
standard deviations of the same diagnostic estimated from 40 35-y-
long segments extracted at 10-y intervals from a 426-y control
integration of HadCM2

5 An example: the ‘‘vertical detection problem’’

We examine results from the application of the algo-
rithm described to the comparison of the observational
record of atmospheric vertical temperature structure
over the period 1961}1995 with a series of simulations
from the HadCM2 (Johns et al. 1997) coupled climate
model: this is the example considered by Tett et al.
(1996). The observation vector, y, is based on opera-
tionally received radiosonde data expressed as
anomalies about the 1971}90 period. These were
monthly averaged on a 103 longitude by 53 latitude grid
on standard pressure levels (850, 700, 500, 300, 200, 150,
100 and 50 hPa). Annual averages were computed to
each latitude/pressure point in which there were more
than 8 months with data.

Following Tett et al. (1996) we compute vertical
pro"les of the zonal mean di!erences between the
period 1961}80 and 1986}95. To minimise the impact
of volcanos, data for 1963}4 (Mt. Agung) and 1992 (Mt.
Pinatubo) are omitted (the eruption of El ChichoH n in
1981 should not a!ect this particular diagnostic, being
outside either period). Latitude/pressure points with
fewer than 20% (50%) of the years with data in the
1961}80 (1986}95) periods are also set to missing. The
upper panel in Fig. 1 shows the resulting pattern of
vertically resolved temperature changes.

We also extract precisely the same diagnostic (ap-
plying the same missing data mask to the zonal mean
temperatures, giving rise to the discrepancies between
the "gures displayed here and those in Tett et al. 1996,
see, Appendix) from a series of experiments performed
with the HadCM2 coupled general circulation model.
The resolution of both atmosphere and ocean compo-
nents of the model is 3.753 longitude by 2.53 latitude
with 19 vertical levels in the atmosphere and 20 in the
ocean. This model has been extensively investigated for
global change detection and prediction purposes (e.g.
Mitchell et al. 1995a; Johns et al. 1997), and generates
internal variability when integrated in a &&control'' con-
"guration (no change in forcing) which compares reas-
onably well with that observed in the real world (Tett
et al. 1997). The lower panel in Fig. 1 shows two
standard deviations of our chosen diagnostic estimated
from 40 35-y long segments extracted at 10-y intervals
from a 426-year control integration and masked using
the pattern of missing data in the observations: the
columns of YN

1
(a separate 310-y segment is used to

provide YN
2
for hypothesis-testing). The trends in the

observations are evidently signi"cant relative to inter-
nal climate variability as simulated by HadCM2. The
question we address here is whether they can be at-
tributed to anthropogenic in#uences.

We compare these observed zonal mean temperature
changes with changes simulated in two sets of experi-
ments performed with the HadCM2 model. In the "rst
ensemble of four integrations (intialised from points in
the control integration separated by 150 years), de-
noted G, the model was forced with the e!ects of ob-
served changes in CO

2
, methane and cholro#uorocar-

bons (expressed as equivalent-CO
2
) for the period 1860

to 1996. The upper panel of Fig. 2 shows the ensemble
mean of an identical diagnostic to that shown in the
upper panel of Fig. 1 extracted from the model years
1961}95. A second ensemble of four integrations, de-
noted GSO and shown in the lower panel, included
a simple parametrisation of the e!ects of sulphate aero-
sols (Mitchell et al. 1995b) and an estimate for the e!ect
of declining stratospheric ozone after 1974 based on
extrapolating trends observed by the Total Ozone
Mapping Spectrometer for the period 1979 to 1989.

The contribution of changing aerosols to the ver-
tical pattern of temperature change, modelled in a
third ensemble (GS) in which ozone levels were held
constant, is relatively minor. For the sake of brevity we
do not discuss GS results here, but for the vertical
detection problem, they are generally similar to results
from G.

In all the results reported here, we use a mass-based
weighting on all patterns. This has no direct impact on
the estimation step once the truncation space has been
de"ned (because the climate noise covariance provides
its own, physically based, weighting function), but it
does impact the EOF-decomposition of YN

1
. Using

mass weighting means that high-ranked EOFs have

426 Allen and Tett: Checking for model consistency in optimal "ngerprinting



Fig. 2 Model-predicted changes over the period 1961}95 based on
the ensemble mean of four integrations of the HadCM2 climate
model forced with the e!ects of changing greenhouse gases (upper
panel) and including the e!ects of sulphate aerosols and declining
stratospheric ozone (lower panel)

Fig. 3 Estimated amplitude of G (greenhouse gas pattern) versus
rank of the detection space (number of EOFs retained of the con-
trol). Diamonds, &&best guess''; vertical bars, P

0.05
con"dence interval

based on an assumed Gaussian distribution; Dashes, &&310-y error'':
$Je2

.!9
observed in a 310-y control integration. Note how error-

bars decline as we include more EOFs: what is the &&correct'' trunc-
ation/error-bar?

substantial loading in the troposphere, whereas high-
ranked EOFs based on a volume weighting, for example,
are completely dominated by the stratosphere. This turns
out to be important because the model simulation of
stratospheric variability is less realistic than its
simulation of stropospheric variability (Gillett et al.
1998), so the use of a volume-based (log-pressure)
weighting function leads to the model being rejected by
our internal consistency checks before we "nd we can
detect anything.

We begin by testing a simple univariate model: as-
suming that the observations consist only a scaled
version of G (greenhouse gas pattern) with additive
climate noise. The diamonds in Fig. 3 show b

G
, the

estimated amplitude of the G pattern, as a function of
the rank of the detection space (i"number of EOFs
retained of the control). Vertical bars show the P

0.05
(two-tailed) con"dence interval based on an assumed
Gaussian distribution with l"12 degrees of freedom
in YN

2
. Estimates of l taking into account lag-1 auto-

correlation in YN
2
range from 11 to 28, depending on

the precise diagnostic considered, but the higher values
are clearly unrealistic since there are only 8}9 non-
overlapping 35-y segments in this control segment. The
value of l"12 implies that a &50% increase in de-
grees of freedom has been gained by overlapping vec-
tors of pseudo-observations, which is consistent with
standard spectral estimation theory (Allen and Smith
1996, Appendix).

The horizontal dashes in Fig. 3 show the &&310-y
error'' range, that is, $ the largest absolute pattern-
amplitude (Je2

.!9
) observed in a 310-y control integra-

tion. These ranges approximately match the parametric
ranges, indicating that the Gaussian assumption and
our estimate of l are, in this instance, reasonably accu-
rate. We stress that l is a very uncertain quantity, so
these 310-y error ranges represent a more robust diag-
nostic than the standard con"dence intervals.

Figure 3 indicates that H (b
G
"0), the hypothesis

that the amplitude of the greenhouse gas pattern is
zero in the observations, can be consistently rejected at
P

(0.05
(0.05 being approximately the smallest P-value

we can quantify with a control integration of this
length). For truncations i413, however, H (b

G
"1),

that the model-predicted amplitude is correct, can also
be rejected at P

(0.05
, except at the lowest truncations,

where the detection space appears to be inadequate to
resolve the signal. The key point to note is that error
bars consistently decline as we increase the truncation
level. Before drawing any further conclusions, there-
fore, we need to establish the maximum truncation at
which the model is reliable.

The singular value spectrum of the control, shown in
Fig. 4, gives little indication of the appropriate trunc-
ation. Were this to consist of a small number of large
singular values followed by a sharp cuto!, we would
truncate after the cuto!. As is generally the case in
geophysical systems (Allen and Smith 1996), no such
break is evident, so we require other truncation criteria.

The solid line in Fig. 5 shows the evolution of
(i!m)/r2 as de"ned in Eq. (18) as a function of trunc-
ation. Although we test r2 directly using a Eq. (18),
we plot this quantity because it may be interpreted
physically as the cumulative ratio of model/observed
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Fig. 4 The spectrum of singular values of the control. There is no
sharp break in the spectrum, giving no indication of an appropriate
truncation

Fig. 5 Solid line, evolution of (i!m)/r2 (cumulative model/ob-
served residual variance ratio) with truncation. Model-simulated
variability appears to be approximately correct for low truncations,
and consistently low for higher truncations. Dashed (dash-dot) line,
5}95% range of the (i!m) /s2i~m

(1/Fi~m,l) distribution. If the solid
line moves outside this range, uncertainty estimates will be unreli-
able

Fig. 6 Estimated amplitude of GSO (greenhouse gases, aerosols and
ozone pattern) versus rank of the detection space. Note how, unlike
in the case of the G pattern, H(b

GSO
"1) cannot be rejected at

12-EOF truncation

residual variance. For truncations 412 it varies around
unity, indicating the model variability is consistent
with observed, while for higher truncations it drops
rapidly outside the range indicated by the s2i~m
and Fi~m,l distributions. The range based on s2i~m
is consistently narrower than that based on Fi~m,l,
indicating that the s2 test should be used in preference
to the F-test to provide a conservative truncation point
given the di$culties in estimating l. A similar trunc-
ation point is indicated if we reverse the control seg-
ments YN

1
and YN

2
, suggesting that variability is consis-

tently underestimated in these low-ranked EOFs,
rather than just in this particular segment.

Levels of internal variability can vary by more than
a factor of two in variance between di!erent models

(Kim et al. 1996). If the r2 values in Fig. 5 are reduced
by this amount, the s2 test indicates that uncertainty
estimates are unreliable for truncations as low as 7.
For small truncations, i"4}6, the test is simply not
powerful enough to identify this model-data discrep-
ancy.

We conclude that, over truncations at which the
model can be relied upon, the G pattern signi"cantly
overestimates the response in the real world, that is,
H (b

G
"1) is rejected. A univariate model based on

the GSO pattern appears to do rather better, shown in
Fig. 6. Again, 12 is the maximum allowable truncation,
at which point H (b

GSO
"0) can be rejected, while

H (b
GSO

"1) cannot. Note how the estimate of
b
GSO

varies with truncation, emphasising the need for
objective truncation criteria: at the lowest truncations,
we are failing to represent the signal adequately, so
results are essentially arbitrary. Estimates then stabilise
up to i"12, upon which they begin to vary again,
presumably because we are introducing EOFs contain-
ing unrealistically low variance which are being given
high weight in the optimisation.

It would be incorrect to conclude on the basis of this
improvement alone that the combined in#uence of sul-
phates and ozone is detectable in the observations. It
might be the case that the model sensitivity to green-
house gas increase is too strong and the sulphates and
ozone forcing is simply compensating for this error. To
establish whether both e!ects are detectable, we need to
investigate a bivariate detection model.

The bivariate model is that the observations consist
of a linear superposition of the G and GSO patterns
with an additive noise term. We apply the optimal
"ngerprinting algorithm (4) to estimate pattern-ampli-
tudes and associated uncertainty ranges with G and
GSO patterns providing the columns of X. Best-guess
pattern amplitudes, b3 , and the associated 310-y return
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Fig. 7 Best-"t amplitudes b3 and associated uncertainty ranges for
the model-predicted patterns of change due to greenhouse gases
alone ( horizontal axis) and the combined e!ects of greenhouse gases,
sulphates and ozone (vertical axis). Estimates based on i"12 high-
est-ranked EOFs of the control

Fig. 8 The joint distribution of G and GSO pattern amplitudes, with
S/N optimisation, in segments of a 310-y control integration. Solid
ellipse shows largest noise-weighted excursion from the origin, dot-
ted/dashed lines show P

0.05
/P

0.1
con"dence intervals based on an

assumed Gaussian distribution

envelope (somewhere between the P
0.1

and P
0.05

con"-
dence interval, depending on the unknown true degrees
of freedom of the control) are shown in Fig. 7, with
G pattern-amplitude on the horizontal axis, GSO on the
vertical. Because the e!ects of greenhouse gases are
present in both runs, patterns are highly correlated, so
the ellipse is far from circular. The point [0,1], corres-
ponding to exact agreement with the GSO prediction,
lies within the con"dence bound. The point [1,0], exact
agreement with G, is excluded. The best-"t is obtained
at the point [0.4, 0.3], indicating the model over-
predicts the response to greenhouse gases by \30%,
and overpredicts the combined response to sulphates
and ozone by a factor of three. This is consistent with
the results of Tett et al. (1996) who found that a 50%
reduction in the amplitude of the model-predicted re-
sponse to ozone depletion improved the "t to observa-
tions. Both errors in the response and the crudeness of
the parametrization used for ozone trends are likely to
be responsible. The hypothesis of a zero or negative
(meaning the model predicts the wrong sign) response
to greenhouse gases can be excluded at the P0.1}0.05 con-
"dence level on the basis of these data, but if we assume
no prior knowledge of the amplitude of the greenhouse
gas response, the observations do not exclude the pos-
sibility of a zero response to sulphates and ozone. We
stress that this does not mean that the response to
sulphates and ozone is zero, simply that the pattern of
response predicted by the HadCM2 model (which

could be incorrect) is not detectable using this algo-
rithm in this particular diagnostic.

The origin of the 310-y return envelope is illustrated
in Fig. 8, which shows the joint distribution of G and
GSO pattern amplitudes, with S/N optimisation, com-
puted from the columns of YN

2
. The ellipse, by con-

struction, passes through the largest excursion from
the origin as de"ned in Eq. (15). For comparison, the
dashed and dotted lines show the P

0.1
and P

0.05
con"-

dence intervals respectively computed using Eq. (14)
with l"12, the estimated degrees of freedom taking
into account lag-1 auto-correlation in the control. As
we would expect for this l, the 310-y return envelope
lies between the two. As discussed above, we conclude it
would be unwise to attempt to quantify absolute (un-
signed) P-values much less than 0.1 on the basis of this
length of control. This is certainly intuitively plausible:
the control segment used is approximately 10 times as
long as the observational record, so P

0.1
is a natural

lower limit on claims which can be made without
extrapolation.

Figures 7 and 8 show results for i"12, con"ning the
detection space to the 12 highest-ranked EOFs of the
control. As argued, we expect results to be critically
dependent on the choice of i. This is indeed the case.
Figure 9 shows the corresponding result with i"4: in
this case the truncation is too severe and the signals
cannot be represented at all, resulting in large con"-
dence intervals and complete loss of signi"cance. Fig-
ure 10 shows the result of truncating at i"16: the
con"dence region is now much smaller, and we appear
to be able to reject the hypothesis of zero response to
sulphates and ozone.
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Fig. 9 Best-"t bI and associated uncertainty ranges with very low
truncation: i"4. The detection space is unable to represent the
signal, leading to very large uncertainties. Note revised axes

Fig. 10 Best-"t bI and associated uncertainty ranges with excessively
high truncation: i"16. Inclusion of high-ranked EOFs containing
unrealistically low variance leads to misleadingly small estimated
uncertainties

Fig. 11 An example of the bene"ts of optimisation: best-guess pat-
tern amplitudes in the bivariate detection model with 12 EOF
truncation but without S/N optimisation

Qualitatively di!erent results emerge from the ad-
option of di!erent truncations, graphically illustrating
the need for objective criteria to determine the ap-
propriate truncation level. The evolution of P(s2) with

truncation in the bivariate model is very similar to
the univariate case shown in Fig. 5. P-values for the
s2 statistics remain around the 505) percentile until
i"12!13, at which point they collapse towards zero.
This is clearly the maximum truncation at which we
should trust our analysis model, so results at i"16 are
meaningless.

The bene"ts of optimisation are illustrated in Fig. 11,
which shows results from precisely the same bivariate
detection model based on a 12-EOF detection space
but without weighting by the inverse noise variance
(i.e. giving equal weight to errors in all 12 EOFs, cor-
responding to an ordinary least squares estimate). The
best-guess pattern-amplitude is very similar to the opti-
mised case, as would be expected because the ordinary
least squares estimator is unbiased, but the uncertainty
envelope is much larger.

6 Implications for climate sensitivity

If an anthropogenic signal is indeed detectable in the
recent climate record, then it should be possible to
exploit this signal to quantify how the climate system
responds to changing radiative forcing. We believe
there has been insu$cient emphasis to date on the
physical implications of detection and attribution re-
sults, so we conclude with a preliminary illustration,
subject to many caveats, of how such an exercise might
proceed.
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Fig. 12 Translating optimal detection results into estimates of cli-
mate parameters: the sum of G and GSO pattern amplitudes gives an
estimate of the scaling required on the total greenhouse response to
match observations, and thus an estimate of the climate sensitivity

Of particular interest is the response of the climate,
on decadal time-scales, to rising greenhouse gases. If
the various forcings had been prescribed separately in
the original runs, we could infer this from the estimated
amplitude of the greenhouse response, which we shall
call bI

GHG
. Under the (very restrictive) assumption that

the timing of the model response is correct, a
bI
GHG

range including unity would imply that the true
climate sensitivity is consistent with the sensitivity of
the model.

Since various forcings were prescribed simulta-
neously in the GSO run, interpretation is slightly more
complicated, but an estimate of climate sensitivity can
nevertheless be derived. Suppose x

GHG
and x

SO
repres-

ent the responses to greenhouse gases and the com-
bined e!ects of sulphates and ozone respectively in the
real world. Given the assumption of linearity, our best-
"t regression model then becomes

y8 "bI
G
x
GHG

#bI
GSO

(x
GHG

#x
SO

)

"(bI
G
#bI

GSO
)x

GHG
#bI

GSO
x
SO

"bI
GHG

x
GHG

#bI
SO

x
SO

. (21)

Hence the sum bI
GHG

"bI
G
#bI

GSO
gives an estimate of

the scaling on the total greenhouse response required to
match observations, and thus an estimate of the climate
sensitivity, taking into account our uncertainty in the
amplitude of the response to sulphates and ozone,
while (in this two-pattern regression), the bI

SO
"bI

GSO
estimate is only dependent on the sulphate/ozone sig-
nal. Because the regression algorithm is linear, precisely
the same results would be obtained by subtracting x

G
from x

GSO
initially to give a separate x

SO
pattern to

input to the regression. This pattern would, however,
be intrinsically noisier than x

GSO
, so we prefer to dis-

play results based on the simulations which were ac-
tually performed and derive the parameters of interest
from the estimates afterwards. Since, at this stage, we
are ignoring the e!ect of noise in the model-predicted
patterns, it makes no practical di!erence which ap-
proach is taken.

At 12 EOF truncation, the scaling factor bI
GHG

lies in
the range 0.35}1.0 (310-y error, which is approximately
the 5}95% interval) see Fig. 12. This implies, on the
basis of this diagnostic, that the model is either over-
predicting the response to greenhouse gases by almost
a factor of 3 or (at the other end of the range) that the
amplitude of the model response is approximately cor-
rect. We stress that these estimates are subject to a
known bias towards zero due to noise in the estimated
response-patterns, as discussed above. Preliminary re-
sults suggest that the application of an unbiased algo-
rithm (Ripley and Thompson 1987) raises the upper
end of the range by up to 25%, with little change to the
lower end, bringing the central estimate (&&best guess'')
closer to, but still less than, unity. The reason the model
may be overpredicting the response to greenhouse

gases needs further investigation, but it may be related
to the strong warming of the tropical upper tropo-
sphere observed in the model, which Tett et al. (1996)
argued is likely to be a model error.

Speci"cally, the model-predicted negative lapse-rate
feedback (a decrease in lapse rate accompanying a
tropospheric warming) appears to be unrealistically
strong (Tett et al. 1997; Gillett et al. 1998), which would
mean that the model could be overpredicting the mid-
and upper-tropospheric temperature response to in-
creasing greenhouse gases while getting the surface
temperature response correct. If true, this would mean
that our estimate of the climate sensitivity based on
tropospheric temperature changes would be a system-
atic underestimate of the true (surface temperature)
sensitivity. Work on more direct estimates of the sensi-
tivity, based on surface temperature changes, is in pro-
gress.

The equilibrium sensitivity, S, of HadCM2 to doubl-
ing CO

2
is 3.3K (based on an extended integration of

the coupled model C. A. Senior, personal communica-
tion) so, to "rst order, we can translate our uncertainty
range in bI

GHG
into an &&observed'' range for the climate

sensitivity of 1.2}3.4K (rounding to 2 signi"cant "g-
ures), reiterating that the upper end of this range may
be underestimated by up to 25% due to our neglect of
noise in the model-predicted patterns. We stress that
there is a considerable element of extrapolation in this
estimate: we are assuming that the timing of the model-
predicted response is correct, that the response is su$-
ciently linear that we can make inferences from the
observed response to intermediate-amplitude forcing
changes to the full doubled-CO

2
sensitivity, and that

the pattern of response is independent of its amplitude.
There are, in fact, strong physical arguments that the

timing of the response itself depends on the sensitivity
see, for example, Hansen et al. (1985), in which case the
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Fig. 13 Maximum and minimum (P
0.05

one-tailed limits) local
trends indicated by the detection model. Locations where the obser-
vations (Fig. 1, top panel) lie outside this range indicate systematic
model de"ciencies

&&transfer function'' relating the sensitivity to the observed
response-pattern-amplitude, S"S (b

GHG
), would neces-

sarily be non-linear. Quantifying the strength of this
non-linearity represents work in progress. If, however,
we assume the relevant oceanic processes are correctly
simulated, two points on the transfer function are
known: [b

GHG
"0, S"0] (zero response implies zero

sensitivity) and [b
GHG

"1, S"3.3] (correct response
implies the model-predicted sensitivity). As long as we
are interpolating between these two points (i.e.
b
GHG

41, scaling down from the model prediction), the
impact of non-linearity in S (b

GHG
) is limited, but it

would clearly be unsafe to extrapolate far outside the
04b

GHG
41 interval.

The assumption that the pattern of response is inde-
pendent of its amplitude is also questionable. For exam-
ple, on physical grounds, we would expect the rate of
stratospheric cooling to be virtually independent of the
tropospheric feedbacks which primarily determine cli-
mate sensitivity. To quantify accurately the physical
implications of detection results, it will eventually
become necessary to decompose detection diagnostics,
such as "ngerprint patterns, into components which
depend on key climate parameters, like sensitivity,
and components which do not. Again, this generalisa-
tion must be pursued in subsequent work. Bearing
in mind all these caveats, however, we present this
sensitivity estimate as an example of how, as the
signal of anthropogenic climate change emerges from
the noise, optimal detection results may be used to
obtain information on physically-interpretable climate
parameters.

Given the estimate bI and its associated uncertainty
<I (bI ), and bearing in mind these caveats, we can recon-
struct the best-guess trend at each latitude/pressure
point and the corresponding P

0.05
con"dence interval

using Eq. (9). Maximum and minimum reconstructed
trends, taking into account internal variability illus-
trated in Fig. 1, are shown in Fig. 13. Note that these
are not themselves realisable patterns because uncer-
tainties are correlated between locations (that is, a high
positive trend in one region may be associated with a
high negative trend in another and so forth). These
maxima and minima provide, however, an indication of
where the model-predicted trends may be consistent
with the observations when subject to an appropriate
scaling, and allow us to identify regions in which obser-
vations (Fig. 1) and model are clearly inconsistent. The
s2 test described, being based on a global summary
statistic, might well fail to identify local model-data
discrepancies. For example, the observed cooling at
\50hPa in the extratropical stratosphere is consider-
ably larger than the maximum model-predicted cool-
ing, indicating an unambiguous model de"ciency (it
seems implausible that this error could be attributed to
problems with the prescribed forcing). Over most of the
troposphere, however, the observations lie within the
range of possible model-predicted trends.

7 Summary

Formulating the optimal "ngerprinting algorithm as
a linear regression problem suggests some simple con-
sistency checks for detection model adequacy whose
primary purpose is to ensure that uncertainty estimates
based on model-simulated variability are not demon-
strably inaccurate. We have presented a simple check
(the s2-test or F-test on residuals) which should
detect gross model inadequacies and demonstrated
its application to the &&vertical detection problem'',
examining decadal changes in atmospheric vertical
temperature structure over the period 1961}1995. The
HadCM2 control integration was found to be an inad-
equate model of internal variability in the particular
diagnostic examined, provided a mass-weighting scheme
was used to focus the analysis on the troposphere.
Observed residual variability (after anthropogenic
signals had been removed) was found to be inconsistent
with the model when a volume-weighted diagnostic
was used, highlighting known de"ciencies in the model
simulation of stratospheric variability.

Under the mass-weighted scheme, the in#uence of
anthropogenic greenhouse gases on atmospheric verti-
cal temperature structure was detected unambiguously
at a high con"dence level. Taking into account the model-
predicted e!ects of sulphates and ozone improved
the overall "t, but not enough for us to claim unambi-
guous detection of a sulphate/ozone signal. Because
the greenhouse and sulphate/ozone signals are not
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Table 1 Revised version of Table 1 from Tett et al. (1996) study using
full length of control integration and correcting error in application
of missing data mask. R and g values show pattern correlation and
congruence statistics between observed pattern of zonal mean tem-
perature change between 1961}80 and 1986}95 and model predic-
tions under greenhouse-gas-only (G) , greenhouse-plus-sulphate (GS),
greenhouse-sulphate-and-ozone (GSO) and revised greenhouse-sul-
phate-and-ozone, halving the e!ect of ozone (SENS1). Numbers in
brackets show the largest observed R or g value in 169 35-year
segments from the HadCM2 control integration. Only the patterns
involving ozone in#uence are detectably di!erent from zero with this
diagnostic

Signal Mass weighting Volume weighting
R g R g

GSO 0.78 (0.65) 0.78 (0.55) 0.79 (0.73) 0.81 (0.57)
GS 0.73 (0.76) 0.72 (0.91) 0.81 (0.87) 0.60 (0.89)
G 0.70 (0.83) 0.69 (0.94) 0.81 (0.88) 0.51 (0.92)
SENS1 0.78 (0.70) 0.82 (0.87) 0.82 (0.81) 0.79 (0.76)

orthogonal to each other, assuming no prior knowl-
edge of any of these signal amplitudes leaves us with an
ambiguity: either the real climate response to green-
house gas increase is weaker than that predicted by the
model and the response to sulphate and ozone changes
is negligibly small, or the model-predicted amplitude of
both signals is approximately correct.

Even allowing for this uncertainty in the sulphate/
ozone signal, we estimate (on the basis of the mass-
weighted "ngerprint, at the 95% con"dence level) that
the response to greenhouse gas increase is 0.35}1.0
times the model-predicted value. Assuming the timing
of the model response is correct, this implies a 5}95%
range in the climate sensitivity to doubling CO

2
of

1.2}3.4K, although the upper end of this range is likely
to be biased towards zero due to sampling uncertainty
in the model-predicted patterns. This use of optimal
detection results to obtain observationally-based esti-
mates of climate parameters and to identify systematic
model de"ciencies represents, we believe, an exciting
and novel research opportunity provided by the emerg-
ence of the anthropogenic signal.

Finally, we have also suggested that uncertainties
should be presented in terms of return-times rather
than con"dence intervals based on an assumption of
multivariate normality. Conventional con"dence inter-
vals require an estimate of the degrees of freedom of the
control, which is invariably uncertain and may involve
extrapolation from the body of the &&climate noise''
distribution into the distribution's tails. Without a priori
reason to believe that climate noise is exactly Gaussian
(and with good reason to believe it is not), such
extrapolation is clearly unsafe. An alternative, non-
parametric, approach is presented which avoids the
most restrictive of these distributional requirements.

Appendix: discrepancies with Tett et al. (1996)

When using segments of &&pseudo-observations'' from a model con-
trol integration as a basis for uncertainty analysis in a detection
study, it is important that the same data gaps which occur in the
observations are imposed on these segments of model data, since
missing data increases the variance in any diagnostic. Owing to
a coding error, this was not imposed on the control segments in Tett
et al. (1996). The revised Table 1 from that study, using the full length
of the control integration which was not available at that time, is
shown here:

The revised Table 1 might be interpreted as giving some support
to the hypothesis that declining stratospheric ozone had an in#uence
on recent temperature trends, since only scenarios involving ozone
indicate pattern correlation or congruence values with the observa-
tions which are signi"cantly di!erent from zero. The corrected
version of Table 2 of that study, however, now indicates that none of
these scenarios is signi"cantly better than any other under these
correlation-based diagnostics. Tett et al.'s (1996) detection of com-
bined in#uence of greenhouse gases, sulphate aerosols and stratos-
pheric ozone depletion, as speci"ed in the GSO and SENS1 experi-
ments, still stands, but on the basis of these R and g statistics, it is
impossible to say which of these three forcings is primarily respon-
sible for the agreement. Regression-based diagnostics, as used in the

present study, are much easier to interpret when multiple forcing
scenarios are involved. This illustrates the importance of careful
treatment of missing data in detection studies, earlier noted by
Santer et al. (1993). This is an area which has still not been com-
pletely resolved, since due to computational constraints, we still use
zonal mean diagnostics without imposing the meridional sampling
pattern.
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