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Abstract. The inter-annual variability and potential
predictability of 850 hPa temperature (¹

850
), 500 hPa

geopotential (/
500

) and 300 hPa stream function (t
300

)
simulated by the models participating in the Atmo-
spheric Model Intercomparison Project (AMIP) are
examined. The total inter-annual variability is par-
titioned into a potentially predictable component
which arises from the forcing implied by the prescribed
SST and sea-ice evolution, or from sources internal to
the simulated climate, and an unpredictable low fre-
quency component induced by ‘‘weather noise’’. There
is wide variation in the ability to simulate observed
inter-annual variability, both total and weather-noise
induced. A majority of models under simulate seasonal
mean /

500
variability in DJF and JJA and over simu-

late t
300

variability in JJA. All but one model simulates
less ¹

850
total inter-annual variability than in the ana-

lysed data. There is little apparent connection between
gross model characteristics and the corresponding abil-
ity to simulate observed variability, with the possible
exceptions of resolution.

1 Introduction

There has recently been substantial interest in using
general circulation models (GCMs) to make multi-sea-
son dynamical climate forecasts (Dix and Hunt 1995;
Rowell 1998; Zwiers 1996; Kumar et al. 1996; Kumar
and Hoerling 1995; Stern and Miyakoda 1995; Ander-
son and Stern 1996). Such seasonal predictions are

justified by the fact that much of the variability of the
climate system on seasonal and longer time scales arises
from interactions with the land, sea and ice covered
surface of the Earth. Slowly varying boundary condi-
tions, such as sea surface temperature, or sea-ice extent,
may produce predictable variations in seasonal mean
quantities. Also, the internal dynamics of the atmo-
sphere, or slowly varying surface properties such as soil
moisture and snow cover, may generate potentially pre-
dictable interannual variability. Additional variability
on seasonal and longer time scales arises from daily
weather which cannot be predicted in detail longer than
two weeks in advance. Thus the inter-comparison of the
inter-annual variability from these sources may provide
us with useful insights into the predictability of the
climate system on seasonal to interannual time scales.

It is therefore of general interest to examine the
ability of current GCMs to simulate variability from
potentially predictable and non-predictable sources,
and to examine the relative magnitude of these sources
of variability. Climates in which a large fraction of the
interannual variance of seasonal means originates from
sources other than high frequency weather (also known
as weather noise) are often described as being ‘‘poten-
tially predictable’’ (Madden 1976; Zwiers 1996).

The purpose of this study is to inter-compare the
inter-annual variability and potential predictability of
seasonal means of the climates simulated by the models
participating in the Atmospheric Model Intercom-
parison Project (AMIP) (Gates 1992). The AMIP ex-
perimental protocol describes a 10-y climate simulation
which is forced with ‘‘observed’’ sea-surface temper-
ature and sea ice extent for the January 1979 to Decem-
ber 1988 period. We will focus primarily on 850 hPa
temperature (¹

850
), 500 hPa geopotential (/

500
) and

300 hPa stream function (t
300

) in this study. The
850 hPa surface is reasonably near the surface and
variations in ¹

850
are indicative of thermal variability

generated either locally or in response to circulation
changes. The 500 hPa geopotential is the classical



mid-tropospheric variable that represents the mid-
tropospheric flow in the extra-tropics. In the tropics
/
500

responds to variations in the distribution of atmo-
spheric mass and to the mean temperature of the lower
troposphere. Various mechanisms which determine the
atmospheric response to SST anomalies in the tropics
and extratropics are discussed by Webster (1981) and
many others. The atmosphere is dynamically most
active and eddy kinetic energy is greatest at about
300 hPa. The 300 hPa stream function t

300
measures

the intensity of the rotational flow at this level and
carries roughly the same information as geopotential
in the extra tropics. In the tropics, t

300
represents the

rotational dynamics. It responds to variations in
boundary forcing that change the vertical motion
and thereby induce rotational flows such as the anti-
cyclonic and cyclonic dipoles associated with anomal-
ies in the ascending and descending branches of the
Walker circulation during ENSO episodes (Boer 1985;
Gill 1980).

By developing suitable analysis techniques we have
been able to restrict our data needs to only the stan-
dard monthly mean AMIP data products and to daily
analyses of the observed climate system for the AMIP
period. Consequently, we are able to inter-compare the
simulations submitted by all 30 AMIP participants.
The methodology used is described in detail by Zwiers
(1996, cited as Z96 from here on).

The observed data used in this study consist of daily
NMC analyses of ¹

850
, /

500
and the 300 hPa winds for

the AMIP decade, and monthly means of ECMWF
analysed ¹

850
for 1980—88. Daily t

300
was derived

from the analysed winds. Monthly means of NMC
analysed /

500
and t

300
were computed from the daily

analyses. The monthly means of NMC analysed
¹

850
were not used because they have inflated interan-

nual variances. A variety of changes were made to the
NMC analysis system in late May, 1986 (Ropelewski,
personal communication) which resulted in a change in
global mean ¹

850
of approximately 2 °C. The data are

described more fully in Z96.
The calculations for this study have been performed

in a number of steps.
1. All data sets were interpolated to the 96]48 Gaus-

sian grid used by the Canadian Climate Centre 2nd
generation general circulation model (CCC GCM2;
McFarlane et al. 1992) so that local data manipula-
tion, diagnostic and graphics tools could be used.

2. A high terrain mask was derived for ¹
850

by com-
puting the union of masks provided by groups that
supplied masks with their data. In essence, this de-
rived mask represents the spatial resolution of the
lowest resolution grid point model. The mask was
used in all calculations involving ¹

850
.

3. The annual cycle was removed separately from each
of the 31 data sets used in the analysis of each
variable (i.e. the observations and the 30 AMIP
simulations).

4. The inter-annual variance of seasonal mean ¹
850

,
/
500

and t
300

was computed in the standard way
for each data set using the standard definitions of the
seasons (i.e. DJF, MAM, JJA and SON). We refer to
these variance estimates as total variances to distin-
guish them from the ‘‘weather noise’’ induced vari-
ance component discussed below. No data collected
or simulated prior to June, 1979 is used in these, or
any other, calculations. That is, the first five months
of every simulation is discarded to allow the land
surface processes to equilibrate with the prescribed
SSTs and sea-ice boundaries. Even so, the equili-
bration process may not have completed within
5 months (Z96 and Robock et al. 1996), particularly
in the Northern Hemisphere where the initial distri-
bution of frozen soil moisture can persist for several
months in some places.

5. Seasonal mean inter-annual variance arises from
a number of sources (see Z96), including the forcing
implied by the prescribed evolution of SST and
sea-ice, sources internal to the simulated climate
(such as a simulated atmosphere’s internal dynamics
and the interaction between it and the land surface),
and low frequency variability induced by day-to-day
changes in the simulated ‘‘weather’’. The latter is
often referred to as ‘‘weather noise’’ (Madden 1976;
Zwiers 1987). We estimated the weather noise in-
duced inter-annual variance component using a
technique that will be briefly described in Sect. 2. We
will refer to this variance component as the weather
noise induced inter-annual variance to distinguish it
from the total inter-annual variance of the seasonal
mean.

6. Global means of the induced and total inter-annual
variances for DJF and JJA were computed. These
variance indices were intercompared and attempts
were made to relate index values to model character-
istics.

7. The ratio between the total and induced variance is
an indicator of the potential predictability of a cli-
mate. This ratio was computed and intercompared.
The weather noise induced variance is inherently
non-predictable. However, when the total variance
is significantly greater than the estimated weather
noise induced variance, the excess variance may be
predictable. Z96 shows that much of the excess vari-
ance simulated by CCC GCM2 is attributable to the
prescribed SST/sea-ice forcing.
Sample size imposes an important constraint on this

study. AMIP samples are small, consisting of 9 north-
ern winters and 10 summers, and only one realisation
per model was available. Consequently we expect sub-
stantial sampling variability of the variance estimates.
Nonetheless, we believe that the analysis is useful and
revealing.

The outline of the remainder of this work is as
follows. The method used to estimate the weather noise
induced variance is described briefly in Sect. 2 as is the
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test which is used to determine whether the total vari-
ance contains a potentially predictable component. The
global averages of total and induced variance are dis-
cussed in Sect. 3. Potential predictability is discussed
in Sect. 4. Conclusions are drawn in Sect. 5.

2 Estimating the weather noise induced interannual variance

The weather noise induced component of the interannual variance of
a seasonal mean is estimated by means a time domain analysis of
variance (see Z96; Zwiers 1987; or Madden 1976) which we now
briefly describe.

First, to establish notation, let X
yt

represent anomalies from the
annual cycle for the variable of interest where y"1,2,½ indexes
years and t"1,2 , ¹ indexes time within a specific season. Pre-
vious ‘‘potential predictability’’ studies (e.g. Madden 1976; Zwiers
1987) have used daily data to compute the weather noise induced
interannual variance. Here we wish to use monthly mean data for
this purpose to avoid the daunting task of obtaining daily data from
each of the 30 AMIP simulations. For now, however, we leave the
unit of time unspecified except to note that t marks time within
a specific season, such as DJF.

The statistical model which is implicit in potential predictability
studies is a 1-way ANOVA model which may be written as

X
yt
"k#b

y
#e

yt
. (1)

Here k represents the long term seasonal mean, the b
y
’s represent

year-to-year variations in the level of X that are potentially predict-
able, and the e

yt
’s represent within season variations that are pre-

sumably not predictable on seasonal and longer time scales.
It is necessary to make several assumptions about this model.

First we state three assumptions that are implicit in all potential
predictability studies of this type, even when the ANOVA model (1)
is not explicitly stated. An additional fourth assumption is required
in this study because daily data are not available.
1. The random variables b

y
, y"1,2 , ½, represent potentially pre-

dictable climate signals generated from both external sources and
internal sources. The external sources (e.g. SST/sea-ice forcing
which is prescribed identically in every AMIP simulation) may
generate a potentially predictable signal, primarily in the tropics
where the slowly varying lower boundary conditions are impor-
tant. The atmospheric model may also generate potentially pre-
dictable variations internally from, for example, interactions with
land surface processes by the atmosphere’s internal dynamics.

We assume b
y
, y"1,2 , ½, to be independently distributed

Gaussian random variables with mean zero and variance p2b . The
Gaussian assumption would appear to be reasonable for seasonal
mean quantities. On the other hand, it seems clear that both the
independence and constant variance assumptions are at best
approximations. The independence assumption is in question, for
example, because the ocean varies on time scales much longer
than a year and because the response to a volcanic event often
persists for longer than a year. The constant variance assumption
may be in question, for example, because climate variations
during and after a volcanic event might have different amplitude
than variations at other times.

2. The weather noise time series Me
yt
, t"1,2, ¹N, y"1,2, ½ are

assumed to be independent realizations of the same Gaussian
stochastic process. Again, we might question both the indepen-
dence assumption and the assumption that the stochastic proper-
ties of Me

yt
, t"1,2, ¹N do not vary from year to year.

3. The weather noise process is assumed to be independent of the
potential predictable process Mb

y
, y"1,2 , ½N. Again, it seems

obvious that this is an approximation.
4. Each weather noise time series Me

yt
, t"1,2 , ¹N is assumed to

behave as red noise. This assumption is stronger (and thus less

robust) than Madden’s (1976) low-frequency white noise assump-
tion because it prescribes a specific form for the power spectrum
of the weather noise at all frequencies. Madden assumes that the
power spectrum of the weather noise is continuous at the origin
so that the spectrum is flat at zero frequency (Zwiers 1987).
Implicitly Madden also assumes that the curvature of the power
spectrum is low at the origin so that the power at zero frequency
can be estimated from daily variation within seasons with rela-
tively little bias. Madden’s assumptions would appear to be quite
reasonable for the variables we consider. The stronger assump-
tion is required so that the weather noise induced variance can be
estimated from the standard AMIP monthly mean data products.
Clearly there are limitations to the utility of this model. Nonethe-

less, departures from these assumptions would appear to be mild
enough that model (1) remains a useful device for partitioning
variance into potentially predictable and non-predictable compo-
nents. We now discuss how this model is used for this purpose.

The total inter-annual variance of the seasonal mean of X
yt

is
estimated by

p̂2
X
y°
"

1

(½!1)

Y
+

y/1

(X
y°
!X

°°
)2. (2)

Here X
y°

denotes the year y seasonal mean (i.e. the ‘‘circle’’ in the
subscript indicates that an average has been taken over the index
which it represents). Similarly, X

°°
denotes the mean of the seasonal

means. Substituting model (1) into Eq. (2) we see that

p̂2
X
y°
"

1

(½!1)

Y
+

y/1

(X
y°
!X

°°
)2

"

1

(½!1)

Y
+

y/1

(b
y
#e

y°
!(b

°
#e

°°
))2

"

1

(Y!1) A
Y
+

y/1

(b
y
!b

°
)2#

Y
+

y/1

(e
y°
!e

°°
)2

#2
Y
+

y/1

(b
y
!b

°
) (e

y°
!e

°°
)B .

The first term in this expression is an unbiased estimator of the
variance of b

y
and the second term is an unbiased estimator of the

variance p2e
y°

of the seasonal mean weather noise. Since the expecta-
tion of the cross-product term is zero as a consequence of our
independence assumptions, we obtain

E(p̂2
X
y°

)"p2b#p2e
y°

. (3)

Hence the total inter-annual variance of the seasonal mean in model
(1) contains climate signal and weather-noise components.

Equation (3) indicates that we can determine whether the ob-
served process is potentially predictable by testing the null hypothe-
sis that the seasonal means of X vary only because of weather noise.
That is, we need to test

H
0
: p2b"0. (4)

To conveniently perform the test we require an estimate of the
variance of the time average of the weather noise p2e

y°
that is

statistically independent of the total variance.
When daily data are available, a method first described by Mad-

den (1976) is often used to estimate p2e
y°

by assuming that the
weather noise induced variance is well approximated by fee (0)/¹
where fee (j) is the spectral density function of the daily weather noise
process.

When only monthly means are available, a method proposed by
Z96 can be used. Z96 showed that an unbiased estimate of p2e

y°
can

be made by computing

p̂2e
y°
"SSE

3#4o
1
#2o

2
6½ (3!2o

1
!o

2
)

(5)
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where SSE is the sum of squared within season deviations

SSE"+

y

3
+

t/1

(X
yt
!X

y°
)2

and o
1

and o
2

are the lag-1 month and lag-2 month auto-correla-
tions of the monthly mean weather noise process. SSE is statistically
independent of p̂2X

y°
when assumptions 1—3 hold. Thus p̂2e

y°
will

provide the necessary estimate of the weather noise induced inter-
annual variance that is required to test null hypothesis (4)
provided that suitable estimates of o

1
and o

2
can be found for

utilisation in (5).
There are several possibilities for estimating o

1
and o

2
. The

obvious approach is to estimate these correlations from the within
season monthly deviations X

yt
!X

y°
. Unfortunately, this approach

results in estimates with very large bias because the within season
deviations are algebraically related; the three deviations within each
season must sum to zero. Another approach is based on the observa-
tion that variation in the monthly anomalies X

yt
is due only to

weather noise when null hypothesis (4) holds. Correlations com-
puted from the monthly anomalies are very nearly unbiased under
the null hypothesis. However, Monte Carlo simulations reveal that
the estimates obtained in this way are subject to considerable samp-
ling variability. Unfortunately, this uncertainty compromises the
test described later. To avoid this problem, a third approach that
estimates o

1
and o

2
indirectly from daily data is used.

The lagged correlations are estimated as follows. First, the mean
annual cycle is removed from the NMC analyses. Then, for each
season, the seasonal mean is subtracted. Next, it is assumed that the
resulting deviations behave as a Markov process (i.e. as an autoreg-
ressive process of order one). The Markov process is fitted by
estimating the lag 24-h autocorrelation o of the deviations. The
estimated o is subject to very little sampling variability because the
number of days available in the sample is large. The auto-correlation
function of the monthly mean deviations is then deduced algebraic-
ally from the fitted Markov model.

The estimate p̂2e
y°

obtained in this way is now used to test null
hypothesis (4) by computing

F"p̂2
X
y°

/p̂2e
y°

(6)

and comparing it against critical values from the F-distribution
which best approximates that of F when null hypothesis (4) is true.
Z96 shows that this approximating distribution has (½!1) and
¹* (½!1) degrees of freedom where

¹*"
2(3!2o

1
!o

2
)2

9!12o
1
#8o2

1
!6o

2
!4o

1
o
2
#5o2

2

. (7)

The o
1
and o

2
estimated from NMC analyses were used in Eqs. (5)

and (7) for all models. This approach is justified by the fact that the
estimates of p̂2e

y°
and ¹* are relatively insensitive to the lag-1 day

correlation coefficient o, unless day-to-day dependence is very
strong. In particular, 1.954¹*42 for all o(0.9. This is true over
the most of the globe for all variables used in this study, when o is
estimated from the NMC analysed daily data. We find estimates of
o'0.9 only in some areas at high-northern latitudes in the DJF
season for /

500
and t

300
. The factor that scales SSE in Eq. (5) to

obtain the estimate of p̂2e
y°

is also relatively insensitive to o for small
to moderate day-to-day correlations.

Z96 used the same technique to make decisions about his null
hypothesis H

I
that there is no potential predictability from internal

sources of variability in an ensemble of AMIP simulations per-
formed with CCC GCM2. He found that very similar decisions were
made when F was computed as above using lag-1 day auto-correla-
tions computed from either the daily NMC analyses or the daily
model output. Also these decisions were almost identical to those
obtained directly from the daily data with Madden’s (1976) method.
Thus we assume that modest errors in the estimated lag-1 day
correlation will not have a substantial effect on the decisions made
with F.

3 Global averages of total and induced variance

The global averages of the total and weather noise
induced inter-annual variances of DJF and JJA mean
¹850 , /500 and t300 simulated by the 30 AMIP models
are displayed in Fig. 1 as a proportion of the corres-
ponding ‘‘observed’’ quantity. Several things can be
noted about Fig. 1.
1. With the exception of one outlier, the total

¹
850

variance simulated by the models in both JJA
and DJF is less than that which is contained in
the corresponding ECMWF analyses. A number of
factors may be responsible for this. Part of the ex-
planation is likely variability induced in the ana-
lysed temperatures by analysis system changes.
Analysis error is likely also a contributor. Trenberth
(1992) describes the ECMWF analyses. Other pos-
sible factors include:
a. The simulations see only SST variability on

monthly and longer time scales.
b. Some low frequency variance may be missing

depending upon how monthly SSTs are interpo-
lated (Sheng and Zwiers 1998).

c. There may be errors in the prescribed SSTs (e.g.
the SST analysis system may have damped spa-
tial variations).

d. The variability in midlatitudes may be under
simulated on long time scales compared to that
in full coupled models (Barsugli and Battisti
1998) because feedbacks from the atmosphere to
the ocean are missing.

e. Model insensitivity to the specified boundary
conditions.

2. The weather noise induced ¹
850

variance clusters
closely around the ‘‘observed’’ value in both seasons.
The fact that almost all points lie above the line
shows that the models tend to simulate relatively
more weather noise induced variance in JJA than in
DJF.

3. There is considerably less scatter for ¹850 than for
/500 . This is understandable considering the strong
constraint that is exercised by the prescribed SSTs
and sea-ice boundaries on 850 hPa temperature.
There is even more scatter in the corresponding
figure for t300 . One might conjecture that, in gen-
eral, the amount of scatter increases in the vertical.

4. DJF variance of both kinds is generally a good
predictor of the corresponding JJA variance. This is
not all that surprising because the variance statistics
considered here are global averages and because,
to first order, the spatial distribution of variance in
JJA is antisymmetric about the equator to that in
DJF.

5. A majority of the AMIP models under simulate both
total and weather noise induced /500 variability. As
with ¹850, weather noise induced /500 variance
tends to be relatively greater in JJA than in DJF.
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Fig. 1 The globally averaged
total (left hand column) and
induced (right hand column)
inter-annual variance of DJF
and JJA mean ¹

850
(upper row),

/
500

(middle row) and
t
300

(lower row) as simulated by
the 30 AMIP models. The
variances are expressed as
a proportion of the
corresponding observed
quantity. There is one point
outside of bounds at (2.05, 2.80)
in the upper right hand panel

6. While the median model simulates DJF t300 total
and weather noise induced variability correctly,
a majority of models over simulate JJA t300
variability.
The variance indices displayed in Fig. 1 were cross-

tabulated with a number of descriptors of model char-
acteristics (e.g. horizontal and vertical resolution,
whether grid point or spectral, type of radiation, cloud
and convection treatment, etc.) as summarised in Phil-
lips (1994). While this attempt to explain a gross feature
of the simulated climate using a gross descriptor of
the model was largely unsuccessful, we did uncover
evidence suggesting that the amount of variability
simulated by a model is related to its resolution. The

globally averaged total variance of /500 tends to in-
crease with vertical and horizontal resolution in both
seasons (Fig. 2) and similarly for t300 (not shown). In
contrast, the globally averaged total variance of
¹850 does not appear to be related to resolution (not
shown). Similarly, the weather noise induced simulated
variance tends to increase with vertical and horizontal
resolution in both seasons for /500 and t300 while that
of ¹850 (not shown) is virtually unrelated to resolution.
Note that the resolution effect may be strongly con-
founded with those of other model features since the
high resolution models also tend to be the more
modern models in the AMIP cohort (Boer; personal
communication). The apparent resolution effect may
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Fig. 2 Globally averaged total /
500

variance expressed as a proportion of the corresponding observed variance and plotted as a function of
the vertical resolution (upper row) and horizontal x-resolution (lower row) of the simulating model. Dashed lines are linear least-squares fits

therefore also be due to other evolutionary changes
which have been made to these models.

We also tried to classify the models according to
their ability to simulate total and weather noise in-
duced variability. For this purpose, the variability
properties of each model were crudely characterised
using a 12-number variance summary consisting of the
global means of the total and weather noise induced
interannual variance of ¹850 , /500 and t300 in DJF
and JJA. Hartigan’s k-means clustering algorithm
(Hartigan, 1979) was applied to the variance summaries
to divide the models into two groups. We then exam-
ined the relationship between cluster membership and
a number of model characteristics using cross tabu-
lations of cluster membership with various model char-
acteristics. We found weak evidence that the clustering
procedure could discriminate between two groups of
models, one of which is characterised by greater vari-
ance and higher resolution and the other by lower
variance and lower resolution. However the clustering
procedure did not generally succeed in classifying the
models in terms of their physical parametrisations.

4 Potential predictability

The potential predictability F statistic, Eq. (6), is dis-
played in Fig. 3a for ‘‘observed’’ DJF /500 . Null hy-

pothesis (4) is rejected over 51% of the globe at the
10% significance level. The general structure of this
map is very similar to that of the forced SST/sea-ice
signal obtained from CCC GCM2 (see Z96, Fig. 14).
That is, we see a wide band of large F values in the
tropics which reflect variations in the direct heating of
the tropical atmosphere by the tropical ocean. There is
weak evidence of potential predictability over North
America where F is generally greater than one, but not
by a statistically significant amount. The picture is very
similar in JJA (not shown) except that now evidence of
possible predictability over North America is restricted
to the south-western part of the continent. There is also
some evidence of a potentially predictable signal over
South Asia. Z96 discusses these diagrams further and
compares these results with previous studies.

The finding that there is only weak evidence of po-
tential predictability over North America in the ob-
served climate is consistent with the result of Z96 that
the SST/sea-ice signal in CCC GCM2 is relatively weak
over North America. Such a signal will be difficult to
detect in the observed climate using F because of the
short period of record. Specifically, F has substantially
fewer degrees of freedom than the F

B
statistic used by

Z96 to detect the SST/sea-ice signal in an ensemble of
AMIP simulations. In the present setup, where there is
a single 9-y record (10-y in JJA), F has just 8 and
approximately 16 degrees of freedom. In contrast, the
F
B
statistic used in the 2-way ANOVA of Z96 has 8 and
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Fig. 3a–d The F ratio between
the interannual variance of the
seasonal mean and the
corresponding weather noise
induced variance for NMC
analysed DJF /

500
a and b as

simulated by the CCC model
c MPI model and d UKMO
model. Contours are 0.5, 1, 2, 4,
8 and 16. The F statistic is used
to test the hypothesis that the
climate is not potentially
predictable. ¸ight (dark)
shading corresponds to F ratios
that are significantly greater
than one at the 5% (1%)
significance level
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Fig. 4a–d The F ratio between
the interannual variance of the
seasonal mean and the
corresponding weather noise
induced variance for ECMWF
analysed DJF mean a ¹

850
and

b as simulated by the CCC
model, c MPI model and
d UKMO model. Contours
and shading are as in Fig. 3.
High terrain areas have been
masked (see text)
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Fig. 5a, b The F ratio between
the interannual variance of the
seasonal mean and the
corresponding weather noise
induced variance for a NMC
analysed DJF t

300
and b as

simulated by the CCC model.
Contours and shading are as in
Fig. 3

48 degrees of freedom. Power charts for the F-test
displayed in Pearson and Hartley (1976; see pp 67
and 250—259) give some indication of the gain in
power which occurs when the degrees of freedom in
the denominator of the F statistic are increased from
16 to 48. The increase in power is particularly dramatic
when the alternative to the null hypothesis is a weak
signal.

Models generally simulate the observed potential
predictability statistic for DJF /500 quite well. The
DJF results for the CCC, MPI and UKMO models
displayed in Fig. 3b—d are typical and indicate some of
the variation in results obtained between simulations.
Differences between maps are due to both differences in
model formulation and substantial sampling variabil-
ity. An indication of the effects of sample variation can
be obtained from the six member CCC GCM2 AMIP
ensemble. In these simulations the rate of rejection of
Eq. (4) varies between 41% and 56%. The MPI map is
probably most typical of other models. In contrast to
Fig. 3a—d, at least one model did not show significant
DJF F statistics in the tropical band. Also, several
models showed significantly large F statistics at high-
southern latitudes.

Observations show moderate potential predictability
in some areas in midlatitudes, in particular, in the

North Pacific in DJF (Fig. 3a). This is believed to be
largely due to the atmospheric response to the equato-
rial SST anomalies associated with ENSO. About half
of the models were able to reproduce potential pre-
dictability to some extent in this area.

The models also simulated the observed potential
predictability of JJA /500 quite well. If anything, there
was a slightly weaker tendency towards pathological
behaviour in this season than in DJF. For example, the
model cited already which simulated the DJF F statis-
tics poorly in the tropical band, did quite well in JJA.
Many models tend to have a wider area of potentially
predictable variability in the tropics in the summer
hemisphere than that in the winter hemisphere. Several
models exhibited significantly large F statistics at high-
northern latitudes.

The potential predictability statistic for observed
DJF mean ¹850 is displayed in Fig. 4a. Note that high
terrain has been masked out in this diagram. As with
/500 , strong evidence of potential predictability is seen
in the tropics.

All models participating in AMIP simulated less
¹850 potential predictability than computed from the
analyses. Typical examples for DJF, which correspond
to those displayed above for /

500
, are illustrated

in Fig. 4b—d. Although there is consistency between

Zwiers and Kharin: Intercomparison of interanual variability and potential predictability 525



Fig. 6 ¸eft column, the
proportion of the globe over
which the simulated climate is
potentially predictable
expressed as a fraction of the
proportion over which the
‘‘observed’’ climate is
potentially predictable. The JJA
potential predictability ratio is
displayed as a function of the
DJF ratio. Right column, the
DJF potential predictability
ratio (see above) displayed as
a function of the DJF global
mean total variance (expressed
as a fraction of that which is
‘‘observed’’). The bottom right
hand panel has one dot out of
bounds at (3.09, 1.59)

models in terms of the proportion of the globe at which
significant potential predictability is found, there is
considerable variation in the spatial pattern of signifi-
cant F statistics.

The ECMWF analysis shows high values of ¹850
potential predictability and standard deviation (not
shown) in the equatorial eastern Pacific south of the
equator. Many models do not reproduce or strongly
under estimate this feature.

We have also computed the potential predictability
of observed and simulated t300 . F statistics for DJF
t300 computed from observations are displayed in
Fig. 5a. The corresponding diagram for the CCC
AMIP simulation, which is typical of many other
models, is displayed in Fig. 5b. We see substantially

more evidence in both diagrams for potential predicta-
bility of the extra-tropical circulation at the 300 hPa
level than we do in the corresponding diagrams (Fig.
3a, b) for geopotential at the 500 hPa level. There is also
evidence of potential predictability in the rotational
flow on the 300 hPa surface in the tropics which ap-
pears to be the result of the atmosphere’s response to
variations in tropical SSTs.

There is a great deal of intermodel variation in both
the total interannual variance of t300 that is simulated
and also in the diagnosed potential predictability. This
is perhaps not surprising considering that the 300 hPa
surface is near the tropopause where we might expect
to see strong effects from variation in the large-scale
overturning circulations (such as the Walker and
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Hadley cells) of the atmosphere. There are apparently
large differences between models in the sensitivity of
these circulations to variations in the conditions occur-
ring at the atmosphere’s lower boundary.

Figure 6 summarises the ability of the models to
simulate the observed potential predictability. The left
hand panels display the proportion of the globe with
significant F statistics expressed as a fraction of the
proportion of the globe over which the observed cli-
mate has significant F statistics. The right hand panels
display this quantity for DJF as a function of globally
averaged total interannual variance simulated by the
model in DJF.

Several things can be noted about Fig. 6.
1. Intermodel variation is least for ¹850 , presumably

because ¹850 is more strongly constrained by the
prescribed SSTs and sea-ice boundaries. Also, there
is more scatter for t300 than for /500 .

2. DJF potential predictability is generally a good pre-
dictor of that in JJA.

3. As noted, the models simulate less potential pre-
dictability for ¹850 than computed from ECMWF
analyses.

4. The ‘‘average’’ model simulates the observed /500 po-
tential predictability well. This is indicated by the fact
that the points in the centre left panel of Fig. 6 cluster
about the (1, 1) location. The same is true of t300 .

5. The right hand column in Fig. 6 shows that the ability
to simulate the climate’s potential predictability is not
related to the ability to simulate the correct amount
of interannual variability. That is, the ratio between
potentially predictable and weather noise induced
variance in a simulated climate is not determined by
its low frequency variance.

5 Conclusions

We have examined the interannual variability and po-
tential predictability of all of the climates simulated by
the models participating in AMIP in a number of ways
and now summarise by drawing a few general con-
clusions.
1. There is wide variation in the ability to simulate

observed inter-annual variability, both total and in-
duced. The range of abilities apparently increases in
the vertical as the degree of contact between the
simulated atmosphere and the prescribed SST/sea-
ice conditions decreases.

2. A majority of models under simulate seasonal
mean /500 variability in both DJF and JJA. Also,
a majority of models over simulates t300 variability
in JJA. We could not judge the ability of models
to simulate ¹850 variability because of data
problems. We conjecture, however, that models
simulate ¹

850
variability quite well (see Z96 for

related discussion).

3. With the possible exceptions of resolution and
model type (grid point or spectral), there is little
apparent connection between gross model charac-
teristics and the corresponding ability to simulate
observed variability. Models with higher resolution
tend to simulate more total interannual and
weather-noise induced variance in both seasons.

4. Most models simulate the ratio between total and
weather noise induced inter-annual variance quite
well for both /500 and t300. That is, models exhibit
potential predictability similar to that which is
observed even if they do not simulate observed
variability very well.
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